Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Extremophile – An Adaptive Strategy for Extreme Conditions and Applications

Author(s): Isha Kohli, Naveen C. Joshi, Swati Mohapatra and Ajit Varma*

Volume 21, Issue 2, 2020

Page: [96 - 110] Pages: 15

DOI: 10.2174/1389202921666200401105908

Price: $65

Abstract

The concurrence of microorganisms in niches that are hostile like extremes of temperature, pH, salt concentration and high pressure depends upon novel molecular mechanisms to enhance the stability of their proteins, nucleic acids, lipids and cell membranes. The structural, physiological and genomic features of extremophiles that make them capable of withstanding extremely selective environmental conditions are particularly fascinating. Highly stable enzymes exhibiting several industrial and biotechnological properties are being isolated and purified from these extremophiles. Successful gene cloning of the purified extremozymes in the mesophilic hosts has already been done. Various extremozymes such as amylase, lipase, xylanase, cellulase and protease from thermophiles, halothermophiles and psychrophiles are of industrial interests due to their enhanced stability at forbidding conditions. In this review, we made an attempt to point out the unique features of extremophiles, particularly thermophiles and psychrophiles, at the structural, genomic and proteomic levels, which allow for functionality at harsh conditions focusing on the temperature tolerance by them.

Keywords: Thermophiles, psychrophiles, extremozymes, adaptations, applications, extremophiles.

Graphical Abstract

[1]
Singh, P.; Jain, K.; Desai, C. Microbial Community Dynamics of Extremophiles/Extreme Environment; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-814849-5.00018-6]
[2]
Orellana, R.; Macaya, C.; Bravo, G.; Dorochesi, F.; Cumsille, A.; Valencia, R.; Rojas, C.; Seeger, M. Living at the frontiers of life: extremophiles in chile and their potential for bioremediation. Front. Microbiol., 2018, 9, 2309.
[http://dx.doi.org/10.3389/fmicb.2018.02309] [PMID: 30425685]
[3]
Kumar, S.; Dangi, A.K.; Shukla, P.; Baishya, D.; Khare, S.K. Thermozymes: Adaptive strategies and tools for their biotechnological applications. Bioresour. Technol., 2019, 278, 372-382.
[http://dx.doi.org/10.1016/j.biortech.2019.01.088] [PMID: 30709766]
[4]
Vogt, G.; Woell, S.; Argos, P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol., 1997, 269(4), 631-643.
[http://dx.doi.org/10.1006/jmbi.1997.1042] [PMID: 9217266]
[5]
Zeldovich, K.B.; Berezovsky, I.N.; Shakhnovich, E.I. Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol, 2007, 3, 0062-0072.
[http://dx.doi.org/10.1371/journal.pcbi.0030005]
[6]
Satapathy, S.S.; Dutta, M.; Ray, S.K. Higher tRNA diversity in thermophilic bacteria: a possible adaptation to growth at high temperature. Microbiol. Res., 2010, 165(8), 609-616.
[http://dx.doi.org/10.1016/j.micres.2009.12.003] [PMID: 20172701]
[7]
Dutta, A.; Chaudhuri, K. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation. FEMS Microbiol. Lett., 2010, 305(2), 100-108.
[http://dx.doi.org/10.1111/j.1574-6968.2010.01922.x] [PMID: 20659165]
[8]
Perutz, M.F.; Raidt, H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 1975, 255(5505), 256-259.
[http://dx.doi.org/10.1038/255256a0] [PMID: 1143325]
[9]
Weaver, L.H.; Kester, W.R.; Ten Eyck, L.F.; Matthews, B.W. The structure and stability of thermolysin. Experientia Suppl., 1976, 26, 31-39.
[http://dx.doi.org/10.1007/978-3-0348-7675-9_2]
[10]
Kumar, S.; Tsai, C.J.; Nussinov, R. Factors enhancing protein thermostability. Protein Eng., 2000, 13(3), 179-191.
[http://dx.doi.org/10.1093/protein/13.3.179] [PMID: 10775659]
[11]
Jaenicke, R. Stability and stabilization of globular proteins in solution. J. Biotechnol., 2000, 79(3), 193-203.
[http://dx.doi.org/10.1016/S0168-1656(00)00236-4] [PMID: 10867180]
[12]
Goldstein, R.A. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation. Protein Sci., 2007, 16(9), 1887-1895.
[http://dx.doi.org/10.1110/ps.072947007] [PMID: 17766385]
[13]
Kreil, D.P.; Ouzounis, C.A. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res., 2001, 29(7), 1608-1615.
[http://dx.doi.org/10.1093/nar/29.7.1608] [PMID: 11266564]
[14]
Nakashima, H.; Fukuchi, S.; Nishikawa, K. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J. Biochem., 2003, 133(4), 507-513.
[http://dx.doi.org/10.1093/jb/mvg067] [PMID: 12761299]
[15]
Singer, G.A.C.; Hickey, D.A. Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene, 2003, 317(1-2), 39-47.
[http://dx.doi.org/10.1016/S0378-1119(03)00660-7] [PMID: 14604790]
[16]
Galtier, N.; Lobry, J.R. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J. Mol. Evol., 1997, 44(6), 632-636.
[http://dx.doi.org/10.1007/PL00006186] [PMID: 9169555]
[17]
Unsworth, L.D.; van der Oost, J.; Koutsopoulos, S. Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications. FEBS J., 2007, 274(16), 4044-4056.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05954.x] [PMID: 17683334]
[18]
Hollien, J.; Marqusee, S. Structural distribution of stability in a thermophilic enzyme. Proc. Natl. Acad. Sci. USA, 1999, 96(24), 13674-13678.
[http://dx.doi.org/10.1073/pnas.96.24.13674] [PMID: 10570131]
[19]
Gerday, C. Psychrophily and catalysis. Biology (Basel), 2013, 2(2), 719-741.
[http://dx.doi.org/10.3390/biology2020719] [PMID: 24832805]
[20]
Moon, S.; Kim, J.; Koo, J.; Bae, E. Structural and mutational analyses of psychrophilic and mesophilic adenylate kinases highlight the role of hydrophobic interactions in protein thermal stability. Struct. Dyn., 2019, 6(2) 024702
[http://dx.doi.org/10.1063/1.5089707] [PMID: 31111079]
[21]
Hawwa, R.; Aikens, J.; Turner, R.J.; Santarsiero, B.D.; Mesecar, A.D. Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus. Arch. Biochem. Biophys., 2009, 488(2), 109-120.
[http://dx.doi.org/10.1016/j.abb.2009.06.005] [PMID: 19615330]
[22]
Koga, Y. Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea, 2012, 2012 789652
[http://dx.doi.org/10.1155/2012/789652] [PMID: 22927779]
[23]
Vinçon-Laugier, A.; Cravo-Laureau, C.; Mitteau, I.; Grossi, V. Temperature-dependent alkyl glycerol ether lipid composition of mesophilic and thermophilic sulfate-reducing bacteria. Front. Microbiol., 2017, 8, 1532.
[http://dx.doi.org/10.3389/fmicb.2017.01532] [PMID: 28848536]
[24]
Javed, M.M.; Zahoor, S.; Sabar, H. Thermophilic bacteria from the hot springs of Gilgit (Pakistan). J. Anim. Plant Sci., 2012, 22, 83-87.
[25]
Friedrich, A.B.; Antranikian, G. Keratin degradation by Feividobacterium pennavomns, a novel thermophilic anaerobic species of the order thermotogales. Appl. Environ. Microbiol., 1996, 62(8), 2875-2882.
[http://dx.doi.org/10.1128/AEM.62.8.2875-2882.1996] [PMID: 16535379]
[26]
Arora, N.K.; Panosyan, H. Extremophiles: applications and roles in environmental sustainability. Environ Sustain, 2019, 2, 217-218.
[http://dx.doi.org/10.1007/s42398-019-00082-0]
[27]
Finkelstein, A.V.; Badretdinov AYa, ; Gutin, A.M. Why do protein architectures have Boltzmann-like statistics? Proteins, 1995, 23(2), 142-150.
[http://dx.doi.org/10.1002/prot.340230204] [PMID: 8592696]
[28]
Greaves, R.B.; Warwicker, J. Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles. BMC Struct. Biol., 2007, 7, 18.
[http://dx.doi.org/10.1186/1472-6807-7-18] [PMID: 17394655]
[29]
Gianese, G.; Bossa, F.; Pascarella, S. Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins, 2002, 47(2), 236-249.
[http://dx.doi.org/10.1002/prot.10084] [PMID: 11933070]
[30]
Razvi, A.; Scholtz, J.M. Lessons in stability from thermophilic proteins. Protein Sci., 2006, 15(7), 1569-1578.
[http://dx.doi.org/10.1110/ps.062130306] [PMID: 16815912]
[31]
Thompson, M.J.; Eisenberg, D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J. Mol. Biol., 1999, 290(2), 595-604.
[http://dx.doi.org/10.1006/jmbi.1999.2889] [PMID: 10390356]
[32]
Daniel, R.M.; Cowan, D.A. Biomolecular stability and life at high temperatures. Cell. Mol. Life Sci., 2000, 57(2), 250-264.
[http://dx.doi.org/10.1007/PL00000688] [PMID: 10766021]
[33]
van den Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol., 2003, 6(3), 213-218.
[http://dx.doi.org/10.1016/S1369-5274(03)00060-2] [PMID: 12831896]
[34]
Lonhienne, T.; Gerday, C.; Feller, G. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta, 2000, 1543(1), 1-10.
[http://dx.doi.org/10.1016/S0167-4838(00)00210-7] [PMID: 11087936]
[35]
Russell, R.J.; Hough, D.W.; Danson, M.J.; Taylor, G.L. The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure, 1994, 2(12), 1157-1167.
[http://dx.doi.org/10.1016/S0969-2126(94)00118-9] [PMID: 7704526]
[36]
Aghajari, N.; Van Petegem, F.; Villeret, V.; Chessa, J.P.; Gerday, C.; Haser, R.; Van Beeumen, J. Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases. Proteins, 2003, 50(4), 636-647.
[http://dx.doi.org/10.1002/prot.10264] [PMID: 12577270]
[37]
Papaleo, E.; Riccardi, L.; Villa, C.; Fantucci, P.; De Gioia, L. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family. Biochim. Biophys. Acta, 2006, 1764(8), 1397-1406.
[http://dx.doi.org/10.1016/j.bbapap.2006.06.005] [PMID: 16920043]
[38]
Szilágyi, A.; Závodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 2000, 8(5), 493-504.
[39]
Panja, A.S.; Maiti, S.; Bandyopadhyay, B. Protein stability governed by its structural plasticity is inferred by physicochemical factors and salt bridges. Sci. Rep., 2020, 10(1), 1822.
[http://dx.doi.org/10.1038/s41598-020-58825-7] [PMID: 32020026]
[40]
Jaenicke, R.; Böhm, G. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol., 1998, 8(6), 738-748.
[http://dx.doi.org/10.1016/S0959-440X(98)80094-8] [PMID: 9914256]
[41]
Haney, P.J.; Badger, J.H.; Buldak, G.L.; Reich, C.I.; Woese, C.R.; Olsen, G.J. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 3578-3583.
[http://dx.doi.org/10.1073/pnas.96.7.3578] [PMID: 10097079]
[42]
Chakravarty, S.; Varadarajan, R. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry, 2002, 41(25), 8152-8161.
[http://dx.doi.org/10.1021/bi025523t] [PMID: 12069608]
[43]
Zhou, H.X.; Dong, F. Electrostatic contributions to the stability of a thermophilic cold shock protein. Biophys. J., 2003, 84(4), 2216-2222.
[http://dx.doi.org/10.1016/S0006-3495(03)75027-9] [PMID: 12668430]
[44]
Violot, S.; Aghajari, N.; Czjzek, M.; Feller, G.; Sonan, G.K.; Gouet, P.; Gerday, C.; Haser, R.; Receveur-Bréchot, V. Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J. Mol. Biol., 2005, 348(5), 1211-1224.
[http://dx.doi.org/10.1016/j.jmb.2005.03.026] [PMID: 15854656]
[45]
Metpally, R.P.R.; Reddy, B.V.B. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins. BMC Genomics, 2009, 10, 11.
[http://dx.doi.org/10.1186/1471-2164-10-11] [PMID: 19133128]
[46]
Berger, F.; Morellet, N.; Menu, F.; Potier, P. Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J. Bacteriol., 1996, 178(11), 2999-3007.
[http://dx.doi.org/10.1128/JB.178.11.2999-3007.1996] [PMID: 8655472]
[47]
Stepanov, V.G.; Nyborg, J. Thermal stability of aminoacyl-tRNAs in aqueous solutions. Extremophiles, 2002, 6(6), 485-490.
[http://dx.doi.org/10.1007/s00792-002-0285-4] [PMID: 12486457]
[48]
Khachane, A.N.; Timmis, K.N.; dos Santos, V.A.P.M. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucleic Acids Res., 2005, 33(13), 4016-4022.
[http://dx.doi.org/10.1093/nar/gki714] [PMID: 16030352]
[49]
Varani, G.; Mcclain, W.H. The G-U wobble base pair diverse biological systems. EMBO Rep., 2000, 1, 18-23.
[http://dx.doi.org/10.1093/embo-reports/kvd001] [PMID: 11256617]
[50]
Poole, A.M.; Jeffares, D.C.; Penny, D. The path from the RNA world. J. Mol. Evol., 1998, 46(1), 1-17.
[http://dx.doi.org/10.1007/PL00006275] [PMID: 9419221]
[51]
Dalluge, J.J.; Hamamoto, T.; Horikoshi, K.; Morita, R.Y.; Stetter, K.O.; McCloskey, J.A. Posttranscriptional modification of tRNA in psychrophilic bacteria. J. Bacteriol., 1997, 179(6), 1918-1923.
[http://dx.doi.org/10.1128/JB.179.6.1918-1923.1997] [PMID: 9068636]
[52]
Michel, V.; Lehoux, I.; Depret, G.; Anglade, P.; Labadie, J.; Hebraud, M. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J. Bacteriol., 1997, 179(23), 7331-7342.
[http://dx.doi.org/10.1128/JB.179.23.7331-7342.1997] [PMID: 9393697]
[53]
Podar, M.; Reysenbach, A.L. New opportunities revealed by biotechnological explorations of extremophiles. Curr. Opin. Biotechnol., 2006, 17(3), 250-255.
[http://dx.doi.org/10.1016/j.copbio.2006.05.002] [PMID: 16701993]
[54]
Dhaked, R.K.; Alam, S.I.; Singh, L. Characterization of β-galactosidase from an Antarctic Bacillus sp. Indian J. Biotechnol., 2005, 4, 227-231.
[55]
Kohli, I.; Rakesh Tuli, V.P.S. Purification and characterization of maltose forming thermostable alkaline α-Amylase from Bacillus gibsonii S213. Int. J. Adv. Res., 2016, 4, 356-366.
[56]
Elleuche, S.; Schröder, C.; Sahm, K.; Antranikian, G. Extremozymes--biocatalysts with unique properties from extremophilic microorganisms. Curr. Opin. Biotechnol., 2014, 29, 116-123.
[http://dx.doi.org/10.1016/j.copbio.2014.04.003] [PMID: 24780224]
[57]
Raja, A.; Prabakaran, P.; Gajalakshmi, P. Isolation and screening of antibiotic producing psychrophilic actinomycetes and its nature from rothang hill soil against viridans Streptococcus sp. Res. J. Microbiol., 2010, 5, 44-49.
[http://dx.doi.org/10.3923/jm.2010.44.49]
[58]
Tung, H.C.; Bramall, N.E.; Price, P.B. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18292-18296.
[http://dx.doi.org/10.1073/pnas.0507601102] [PMID: 16339015]
[59]
Steven, B.; Léveillé, R.; Pollard, W.H.; Whyte, L.G. Microbial ecology and biodiversity in permafrost. Extremophiles, 2006, 10(4), 259-267.
[http://dx.doi.org/10.1007/s00792-006-0506-3] [PMID: 16550305]
[60]
Zuridah, H. Identification of lipase producing thermophilic bacteria from Malaysian hot springs. Afr. J. Microbiol. Res., 2011, 5, 3569-3573.
[http://dx.doi.org/10.5897/AJMR11.777]
[61]
Sifour, M.; Saeed, H.M.; Zaghloul, T.L. Isolation of lipase gene of the thermophilic Geobacillus stearothermophilus strain-5. Biotechnology (Faisalabad), 2010, 9, 55-60.
[http://dx.doi.org/10.3923/biotech.2010.55.60]
[62]
Tayyab, M.; Rashid, N.; Akhtar, M. Isolation and identification of lipase producing thermophilic Geobacillus sp. SBS-4S: cloning and characterization of the lipase. J. Biosci. Bioeng., 2011, 111(3), 272-278.
[http://dx.doi.org/10.1016/j.jbiosc.2010.11.015] [PMID: 21185780]
[63]
Abd Rahman, R.N.; Leow, T.C.; Salleh, A.B.; Basri, M. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiol., 2007, 7, 77.
[http://dx.doi.org/10.1186/1471-2180-7-77] [PMID: 17692114]
[64]
Kanwar, S.S.; Gupta, M.; Gupta, R. Properties of hydrogel-entrapped lipase of thermophilic Pseudomonas aeruginosa BTS-2. Indian J. Biotechnol., 2006, 5, 292-297.
[65]
Salameh, M.A.; Wiegel, J. Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl. Environ. Microbiol., 2007, 73(23), 7725-7731.
[http://dx.doi.org/10.1128/AEM.01509-07] [PMID: 17933930]
[66]
Banerjee, U.C.; Sani, R.K.; Azmi, W.; Soni, R. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry detergent additive. Process Biochem., 1999, 35, 213-219.
[http://dx.doi.org/10.1016/S0032-9592(99)00053-9]
[67]
Program, S.; Arabia, S. Phenotypic and protease purification of two different thermophilic Bacillus strains HUTBS71 and HUTBS62. Ann. Biol. Res., 2012, 3(4), 1747-1756.
[68]
Johnvesly, B.; Naik, G.R. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochem., 2001, 37, 139-144.
[http://dx.doi.org/10.1016/S0032-9592(01)00191-1]
[69]
do Nascimento, W.C.A.; Martins, M.L.L. Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz. J. Microbiol., 2004, 35, 91-96.
[http://dx.doi.org/10.1590/S1517-83822004000100015]
[70]
Li, A.N.; Li, D.C. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J. Appl. Microbiol., 2009, 106(2), 369-380.
[http://dx.doi.org/10.1111/j.1365-2672.2008.04042.x] [PMID: 19200305]
[71]
Itoi, Y.; Horinaka, M.; Tsujimoto, Y.; Matsui, H.; Watanabe, K. Characteristic features in the structure and collagen-binding ability of a thermophilic collagenolytic protease from the thermophile Geobacillus collagenovorans MO-1. J. Bacteriol., 2006, 188(18), 6572-6579.
[http://dx.doi.org/10.1128/JB.00767-06] [PMID: 16952949]
[72]
Rai, S.K.; Roy, J.K.; Mukherjee, A.K. Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl. Microbiol. Biotechnol., 2010, 85(5), 1437-1450.
[http://dx.doi.org/10.1007/s00253-009-2145-y] [PMID: 19669756]
[73]
Antranikian, G.; Bertoldo, C. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol., 2002, 6(2), 151-160.
[http://dx.doi.org/10.1016/S1367-5931(02)00311-3]
[74]
Choi, S.Y.C.; Oh, S.; Yeol, K. Enrichment and proteome analysis of a hyperthermostable protein set of archaeon Thermococcus onnurineus NA1. 2011, 15, 451-461.
[http://dx.doi.org/10.1007/s00792-011-0376-1]
[75]
Sakaguchi, M.; Takezawa, M.; Nakazawa, R.; Nozawa, K.; Kusakawa, T.; Nagasawa, T.; Sugahara, Y.; Kawakita, M. Role of disulphide bonds in a thermophilic serine protease aqualysin I from Thermus aquaticus YT-1. J. Biochem., 2008, 143(5), 625-632.
[http://dx.doi.org/10.1093/jb/mvn007] [PMID: 18216068]
[76]
Taibi, Z.; Saoudi, B.; Boudelaa, M.; Trigui, H.; Belghith, H.; Gargouri, A.; Ladjama, A. Purification and biochemical characterization of a highly thermostable xylanase from Actinomadura sp. strain Cpt20 isolated from poultry compost. Appl. Biochem. Biotechnol., 2012, 166(3), 663-679.
[http://dx.doi.org/10.1007/s12010-011-9457-y] [PMID: 22161140]
[77]
Inan, K.; Belduz, A.O.; Canakci, S. Anoxybacillus kaynarcensis sp. nov., a moderately thermophilic, xylanase producing bacterium. J. Basic Microbiol., 2013, 53(5), 410-419.
[http://dx.doi.org/10.1002/jobm.201100638] [PMID: 22736500]
[78]
Kumar, V.; Satyanarayana, T. Applicability of thermo-alkali-stable and cellulase-free xylanase from a novel thermo-halo-alkaliphilic Bacillus halodurans in producing xylooligosaccharides. Biotechnol. Lett., 2011, 33(11), 2279-2285.
[http://dx.doi.org/10.1007/s10529-011-0698-1] [PMID: 21750994]
[79]
Annamalai, N.; Thavasi, R.; Jayalakshmi, S.; Balasubramanian, T. Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated form marine environment. Indian J. Biotechnol., 2009, 8, 291-297.
[80]
Lüthi, E.; Reif, K.; Jasmat, N.B.; Bergquist, P.L. In vitro mutagenesis of a xylanase from the extreme thermophile Caldocellum saccharolyticum. Appl. Microbiol. Biotechnol., 1992, 36(4), 503-506.
[http://dx.doi.org/10.1007/BF00170192] [PMID: 1368204]
[81]
Borkhardt, B.; Harholt, J.; Ulvskov, P.; Ahring, B.K.; Jørgensen, B.; Brinch-Pedersen, H. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases. Plant Biotechnol. J., 2010, 8(3), 363-374.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00506.x] [PMID: 20384855]
[82]
Zhang, W.; Lou, K.; Li, G. Expression and characterization of the Dictyoglomus thermophilum Rt46B.1 xylanase gene (xynB) in Bacillus subtilis. Appl. Biochem. Biotechnol., 2010, 160(5), 1484-1495.
[http://dx.doi.org/10.1007/s12010-009-8634-8] [PMID: 19430737]
[83]
Wu, S.; Liu, B.; Zhang, X. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol., 2006, 72(6), 1210-1216.
[http://dx.doi.org/10.1007/s00253-006-0416-4] [PMID: 16607523]
[84]
Hung, K.S.; Liu, S.M.; Fang, T.Y.; Tzou, W.S.; Lin, F.P.; Sun, K.H.; Tang, S.J. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol. Lett., 2011, 33(7), 1441-1447.
[http://dx.doi.org/10.1007/s10529-011-0579-7] [PMID: 21380775]
[85]
Khucharoenphaisan, K.; Tokuyama, S.; Kitpreechavanich, V. Characterization of the thermostability of xylanase produced by new isolates of Thermomyces lanuginosus. Sci. Asia, 2008, 34, 187-192.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2008.34.187]
[86]
Arikan, B. Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3-15. Bioresour. Technol., 2008, 99(8), 3071-3076.
[http://dx.doi.org/10.1016/j.biortech.2007.06.019] [PMID: 17689242]
[87]
Malhotra, R.; Noorwez, S.M.; Satyanarayana, T. Production and partial characterization of thermostable and calcium-independent α-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol., 2000, 31(5), 378-384.
[http://dx.doi.org/10.1046/j.1472-765x.2000.00830.x] [PMID: 11069641]
[88]
Tsukagoshi, N.; Iritani, S.; Sasaki, T.; Takemura, T.; Ihara, H.; Idota, Y.; Yamagata, H.; Udaka, S. Efficient synthesis and secretion of a thermophilic α-amylase by protein-producing Bacillus brevis 47 carrying the Bacillus stearothermophilus amylase gene. J. Bacteriol., 1985, 164(3), 1182-1187.
[http://dx.doi.org/10.1128/JB.164.3.1182-1187.1985] [PMID: 2999073]
[89]
Al-Qodah, Z. Production and characterization of thermostable α-amylase by thermophilic Geobacillus stearothermophilus. Biotechnol. J., 2006, 1(7-8), 850-857.
[http://dx.doi.org/10.1002/biot.200600033] [PMID: 16927263]
[90]
Mijts, B.N.; Patel, B.K.C. Cloning, sequencing and expression of an α-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology, 2002, 148(Pt 8), 2343-2349.
[http://dx.doi.org/10.1099/00221287-148-8-2343] [PMID: 12177328]
[91]
Mellouli, L.; Ghorbel, R.; Virolle, M.J.; Bejar, S. alpha-Amylase gene of thermophilic Streptomyces sp. TO1: nucleotide sequence, transcriptional and amino acid sequence analysis. FEMS Microbiol. Lett., 1998, 160(1), 17-23.
[http://dx.doi.org/10.1111/j.1574-6968.1998.tb12884.x] [PMID: 9495007]
[92]
Saha, B.C.; Freer, S.N.; Bothast, R.J. Production, purification, and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl. Environ. Microbiol., 1994, 60(10), 3774-3780.
[http://dx.doi.org/10.1128/AEM.60.10.3774-3780.1994] [PMID: 16349415]
[93]
Papalazaridou, A.; Charitidou, L.; Sivropoulou, A. β-glucosidase enzymatic activity of crystal polypeptide of the Bacillus thuringiensis strain 1.1. J. Endotoxin Res., 2003, 9(4), 215-224.
[http://dx.doi.org/10.1177/09680519030090040201] [PMID: 12935352]
[94]
Jabbour, D.; Klippel, B.; Antranikian, G. A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum. Appl. Microbiol. Biotechnol., 2012, 93(5), 1947-1956.
[http://dx.doi.org/10.1007/s00253-011-3406-0] [PMID: 22146852]
[95]
Breves, R.; Bronnenmeier, K.; Wild, N.; Lottspeich, F.; Staudenbauer, W.L.; Hofemeister, J. Genes encoding two different β-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl. Environ. Microbiol., 1997, 63(10), 3902-3910.
[http://dx.doi.org/10.1128/AEM.63.10.3902-3910.1997] [PMID: 9327554]
[96]
Lien, T.S.; Yu, S.T.; Wu, S.T.; Too, J.R. Induction and purification of a thermophilic chitinase produced by Aeromonas sp. DYU-Too7 using glucosamine. Biotechnol. Bioprocess Eng.; BBE, 2007, 12, 610-617.
[http://dx.doi.org/10.1007/BF02931076]
[97]
Songsiriritthigul, C.; Lapboonrueng, S.; Pechsrichuang, P.; Pesatcha, P.; Yamabhai, M. Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioresour. Technol., 2010, 101(11), 4096-4103.
[http://dx.doi.org/10.1016/j.biortech.2010.01.036] [PMID: 20133129]
[98]
Natsir, H.; Patong, A.R.; Suhartono, M.T.; Ahmad, A. Production and characterization of chitinase enzymes from sulili hot spring in south sulawesi, Bacillus sp. HSA,3-1a. Indones. J. Chem., 2010, 10, 256-260.
[http://dx.doi.org/10.22146/ijc.21470]
[99]
Dai, D.H.; Hu, W.L.; Huang, G.R.; Li, W. Purification and characterization of a novel extracellular chitinase from thermophilic Bacillus sp. Hu1. Afr. J. Biotechnol., 2011, 10, 2476-2485.
[http://dx.doi.org/10.5897/AJB10.1029]
[100]
Nawani, N.N.; Kapadnis, B.P.; Das, A.D.; Rao, A.S.; Mahajan, S.K. Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J. Appl. Microbiol., 2002, 93(6), 965-975.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01766.x] [PMID: 12452952]
[101]
Ueda, M.; Kotani, Y.; Sutrisno, A.; Nakazawa, M.; Miyatake, K. Purification and characterization of chitinase B from moderately thermophilic bacterium Ralstonia sp. A-471. Biosci. Biotechnol. Biochem., 2005, 69(4), 842-844.
[http://dx.doi.org/10.1271/bbb.69.842] [PMID: 15849428]
[102]
Manucharova, N.A.; Vlasenko, A.N.; Turova, T.P.; Panteleeva, A.N.; Stepanov, A.L.; Zenova, G.M. [Thermophilic chitinolytic microorganisms of brown semidesert soil]. Mikrobiologiia, 2008, 77(5), 683-688.
[http://dx.doi.org/10.1134/S0026261708050159] [PMID: 19004351]
[103]
Mohagheghi, A.; Grohmann, K.; Himmel, M. Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int. J. Syst. Bacteriol., 1986, 36, 435-443.
[http://dx.doi.org/10.1099/00207713-36-3-435]
[104]
Ji, S.; Wang, S.; Tan, Y.; Chen, X.; Schwarz, W.; Li, F. An untapped bacterial cellulolytic community enriched from coastal marine sediment under anaerobic and thermophilic conditions. FEMS Microbiol. Lett., 2012, 335(1), 39-46.
[http://dx.doi.org/10.1111/j.1574-6968.2012.02636.x] [PMID: 22788522]
[105]
Mingardon, F.; Bagert, J.D.; Maisonnier, C.; Trudeau, D.L.; Arnold, F.H. Comparison of family 9 cellulases from mesophilic and thermophilic bacteria. Appl. Environ. Microbiol., 2011, 77(4), 1436-1442.
[http://dx.doi.org/10.1128/AEM.01802-10] [PMID: 21169454]
[106]
Baharuddin, A.S.; Razak, M.N.A.; Hock, L.S. Isolation and characterization of thermophilic cellulase-producing bacteria from empty fruit bunches-palm oil mill effluent compost. Am. J. Appl. Sci., 2010, 7, 56-62.
[http://dx.doi.org/10.3844/ajassp.2010.56.62]
[107]
Karita, S.; Nakayama, K.; Goto, M.; Sakka, K.; Kim, W.J.; Ogawa, S. A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21. Biosci. Biotechnol. Biochem., 2003, 67(1), 183-185.
[http://dx.doi.org/10.1271/bbb.67.183] [PMID: 12619693]
[108]
Hreggvidsson, G.O.; Kaiste, E.; Holst, O. An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Appl. Environ. Microbiol., 1996, 62, 3047-3049.
[http://dx.doi.org/10.1128/.62.8.3047-3049.1996]
[109]
Agafonov, D.E.; Rabe, K.S.; Grote, M.; Huang, Y.; Sprinzl, M. The esterase from Alicyclobacillus acidocaldarius as a reporter enzyme and affinity tag for protein biosynthesis. FEBS Lett., 2005, 579(10), 2082-2086.
[http://dx.doi.org/10.1016/j.febslet.2005.02.059] [PMID: 15811322]
[110]
Faiz, O.; Colak, A.; Saglam, N.; Canakçi, S.; Beldüz, A.O. Determination and characterization of thermostable esterolytic activity from a novel thermophilic bacterium Anoxybacillus gonensis A4. J. Biochem. Mol. Biol., 2007, 40(4), 588-594.
[http://dx.doi.org/10.5483/bmbrep.2007.40.4.588] [PMID: 17669276]
[111]
Çolak, A.; Sişik, D.; Saglam, N.; Güner, S.; Canakçi, S.; Beldüz, A.O. Characterization of a thermoalkalophilic esterase from a novel thermophilic bacterium, Anoxybacillus gonensis G2. Bioresour. Technol., 2005, 96(5), 625-631.
[http://dx.doi.org/10.1016/j.biortech.2004.06.003] [PMID: 15501671]
[112]
Kademi, A.; Aït-Abdelkader, N.; Fakhreddine, L.; Baratti, J.C. Characterization of a new thermostable esterase from the moderate thermophilic bacterium Bacillus circulans. J. Mol. Catal., B Enzym., 2000, 10, 395-401.
[http://dx.doi.org/10.1016/S1381-1177(99)00111-3]
[113]
Lüthi, E.; Jasmat, N.B.; Bergquist, P.L. Xylanase from the extremely thermophilic bacterium “Caldocellum saccharolyticum”: overexpression of the gene in Escherichia coli and characterization of the gene product. Appl. Environ. Microbiol., 1990, 56(9), 2677-2683.
[http://dx.doi.org/10.1128/AEM.56.9.2677-2683.1990] [PMID: 2275529]
[114]
Yu, S.; Zheng, B.; Zhao, X.; Feng, Y. Gene cloning and characterization of a novel thermophilic esterase from Fervidobacterium nodosum Rt17-B1. Acta Biochim. Biophys. Sin. (Shanghai), 2010, 42(4), 288-295.
[http://dx.doi.org/10.1093/abbs/gmq020] [PMID: 20383468]
[115]
Rakotoarivonina, H.; Hermant, B.; Chabbert, B.; Touzel, J.P.; Remond, C. A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls. Appl. Microbiol. Biotechnol., 2011, 90(2), 541-552.
[http://dx.doi.org/10.1007/s00253-011-3103-z] [PMID: 21279344]
[116]
Lagarde, D.; Nguyen, H.K.; Ravot, G. High-throughput screening of thermostable esterases for industrial bioconversions. Org. Process Res. Dev., 2002, 6, 441-445.
[http://dx.doi.org/10.1021/op020019h]
[117]
Fuciños, P.; González, R.; Atanes, E. Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol. Biol., 861, 239-266.
[http://dx.doi.org/10.1007/978-1-61779-600-5]
[118]
Maeda, M.; Hidaka, M.; Nakamura, A.; Masaki, H.; Uozumi, T. Cloning, sequencing, and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coli. J. Bacteriol., 1994, 176(2), 432-442.
[http://dx.doi.org/10.1128/JB.176.2.432-442.1994] [PMID: 8288539]
[119]
Mégraud, F.; Chevrier, D.; Desplaces, N.; Sedallian, A.; Guesdon, J.L. Urease-positive thermophilic Campylobacter (Campylobacter laridis variant) isolated from an appendix and from human feces. J. Clin. Microbiol., 1988, 26(5), 1050-1051.
[http://dx.doi.org/10.1128/JCM.26.5.1050-1051.1988] [PMID: 3384898]
[120]
Kaneko, A.; Matsuda, M.; Miyajima, M.; Moore, J.E.; Murphy, P.G. Urease-positive thermophilic strains of Campylobacter isolated from seagulls (Larus spp.). Lett. Appl. Microbiol., 1999, 29(1), 7-9.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00565.x] [PMID: 10432626]
[121]
Kakinuma, Y.; Hayashi, K.; Tazumi, A.; Hirayama, J.; Moore, J.E.; Millar, B.C.; Kuribayashi, T.; Matsuda, M. Molecular analysis and characterization of a urease gene operon from Campylobacter sputorum biovar paraureolyticus. Folia Microbiol. (Praha), 2011, 56(2), 159-165.
[http://dx.doi.org/10.1007/s12223-011-0020-6] [PMID: 21431911]
[122]
Matsuda, M.; Moore, J.E. Urease-positive thermophilic Campylobacter species. Appl. Environ. Microbiol., 2004, 70(8), 4415-4418.
[http://dx.doi.org/10.1128/AEM.70.8.4415-4418.2004] [PMID: 15294767]
[123]
Zotta, T.; Ricciardi, A.; Rossano, R.; Parente, E. Urease production by Streptococcus thermophilus. Food Microbiol., 2008, 25(1), 113-119.
[http://dx.doi.org/10.1016/j.fm.2007.07.001] [PMID: 17993384]
[124]
Pratuangdejkul, J.; Dharmsthiti, S. Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009. Microbiol. Res., 2000, 155(2), 95-100.
[http://dx.doi.org/10.1016/S0944-5013(00)80043-9] [PMID: 10950191]
[125]
Snellman, E.A.; Sullivan, E.R.; Colwell, R.R. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem., 2002, 269(23), 5771-5779.
[http://dx.doi.org/10.1046/j.1432-1033.2002.03235.x] [PMID: 12444965]
[126]
Arpigny, J.L.; Zekhnini, Z.; Swings, J. Temperature dependence of growth, enzyme secretion and activity of psychrophilic Antarctic bacteria. Appl. Microbiol. Biotechnol., 1994, 41, 477-479.
[http://dx.doi.org/10.1007/s002530050176]
[127]
Suryavanshi, M.V.; Ghosh, J.S. Spoilage of white unsalted butter by psychrophilic lipolysis of Pseudomonas aeruginosa NCIM 2036. British J. Dairy Sci., 2010, 1, 26-29.
[128]
Choo, D.W.; Kurihara, T.; Suzuki, T.; Soda, K.; Esaki, N. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol., 1998, 64(2), 486-491.
[http://dx.doi.org/10.1128/AEM.64.2.486-491.1998] [PMID: 9464382]
[129]
Bowman, J.P.; Nichols, D.S.; McMeekin, T.A. Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic Sea ice. Syst. Appl. Microbiol., 1997, 20, 209-215.
[http://dx.doi.org/10.1016/S0723-2020(97)80067-7]
[130]
Arpigny, J.L.; Feller, G.; Gerday, C. Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. BBA - Gene Struct. Expr., 1993, 1171, 331-333.
[http://dx.doi.org/10.1016/0167-4781(93)90078-R]
[131]
De Santi, C.; Tutino, M.L.; Mandrich, L.; Giuliani, M.; Parrilli, E.; Del Vecchio, P.; de Pascale, D. The hormone-sensitive lipase from Psychrobacter sp. TA144: new insight in the structural/functional characterization. Biochimie, 2010, 92(8), 949-957.
[http://dx.doi.org/10.1016/j.biochi.2010.04.001] [PMID: 20382198]
[132]
Yumoto, I.; Hirota, K.; Sogabe, Y.; Nodasaka, Y.; Yokota, Y.; Hoshino, T. Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int. J. Syst. Evol. Microbiol., 2003, 53(Pt 6), 1985-1989.
[http://dx.doi.org/10.1099/ijs.0.02686-0] [PMID: 14657134]
[133]
Samie, N.; Noghabi, K.A.; Gharegozloo, Z. Psychrophilic α-amylase from Aeromonas veronii NS07 isolated from farm soils. Process Biochem., 2012, 47, 1381-1387.
[http://dx.doi.org/10.1016/j.procbio.2012.05.007]
[134]
Aghajari, N.; Feller, G.; Gerday, C.; Haser, R. Crystal structures of the psychrophilic α-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci., 1998, 7(3), 564-572.
[http://dx.doi.org/10.1002/pro.5560070304] [PMID: 9541387]
[135]
Claverie, P.; Vigano, C.; Ruysschaert, J.M.; Gerday, C.; Feller, G. The precursor of a psychrophilic α-amylase: structural characterization and insights into cold adaptation. Biochim. Biophys. Acta, 2003, 1649(2), 119-122.
[http://dx.doi.org/10.1016/S1570-9639(03)00184-5] [PMID: 12878029]
[136]
Parrilli, E.; Giuliani, M.; Pezzella, C.; Danchin, A.; Marino, G.; Tutino, M.L. PssA is required for α-amylase secretion in Antarctic Pseudoalteromonas haloplanktis. Microbiology, 2010, 156(Pt 1), 211-219.
[http://dx.doi.org/10.1099/mic.0.032342-0] [PMID: 19778966]
[137]
Tutino, M.L.; Duilio, A.; Parrilli, R.; Remaut, E.; Sannia, G.; Marino, G. A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles, 2001, 5(4), 257-264.
[http://dx.doi.org/10.1007/s007920100203] [PMID: 11523895]
[138]
Zhou, M.Y.; Chen, X.L.; Zhao, H.L.; Dang, H.Y.; Luan, X.W.; Zhang, X.Y.; He, H.L.; Zhou, B.C.; Zhang, Y.Z. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China sea. Microb. Ecol., 2009, 58(3), 582-590.
[http://dx.doi.org/10.1007/s00248-009-9506-z] [PMID: 19301066]
[139]
Pawar, R.; Zambare, V.; Barve, S.; Paratkar, G. Protease as cleansing of contact lenses. Asian Netw. Sci. Inf., 2009, 8, 276-280.
[http://dx.doi.org/10.3923/biotech.2009.276.280]
[140]
Alam, S.I.; Dixit, A.; Reddy, G.S.N.; Dube, S.; Palit, M.; Shivaji, S.; Singh, L. Clostridium schirmacherense sp. nov., an obligately anaerobic, proteolytic, psychrophilic bacterium isolated from lake sediment of Schirmacher Oasis, Antarctica. Int. J. Syst. Evol. Microbiol., 2006, 56(Pt 4), 715-720.
[http://dx.doi.org/10.1099/ijs.0.63808-0] [PMID: 16585682]
[141]
Wang, Q.; Hou, Y.; Xu, Z.; Miao, J.; Li, G. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology. Bioresour. Technol., 2008, 99(6), 1926-1931.
[http://dx.doi.org/10.1016/j.biortech.2007.03.028] [PMID: 17499500]
[142]
Zhang, S.C.; Sun, M.; Li, T.; Wang, Q.H.; Hao, J.H.; Han, Y.; Hu, X.J.; Zhou, M.; Lin, S.X. Structure analysis of a new psychrophilic marine protease. PLoS One, 2011, 6(11) e26939
[http://dx.doi.org/10.1371/journal.pone.0026939] [PMID: 22132082]
[143]
Zeng, R.; Zhang, R.; Zhao, J.; Lin, N. Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles, 2003, 7(4), 335-337.
[http://dx.doi.org/10.1007/s00792-003-0323-x] [PMID: 12910392]
[144]
Hamamoto, T.; Kaneda, M.; Horikoshi, K.; Kudo, T. Characterization of a protease from a psychrotroph, Pseudomonas fluorescens 114. Appl. Environ. Microbiol., 1994, 60(10), 3878-3880.
[PMID: 16349422]
[145]
Cotârlet, M.; Negoitâ, T.; Bahrim, G.; Stougaard, P. Cold adapted amylase and protease from new Streptomyces 4alga antarctic strain. Polar Res., 2009, 5(12), 23-30.
[146]
Nakagawa, T.; Fujimoto, Y.; Uchino, M.; Miyaji, T.; Takano, K.; Tomizuka, N. Isolation and characterization of psychrophiles producing cold-active β-galactosidase. Lett. Appl. Microbiol., 2003, 37(2), 154-157.
[http://dx.doi.org/10.1046/j.1472-765X.2003.01369.x] [PMID: 12859659]
[147]
Coker, J.A.; Brenchley, J.E. Protein engineering of a cold-active β-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low temperature activity. Extremophiles, 2006, 10(6), 515-524.
[http://dx.doi.org/10.1007/s00792-006-0526-z] [PMID: 16736094]
[148]
Nam, E.; Ahn, J. Antarctic marine bacterium Pseudoalteromonas sp. KNOUC808 as a source of cold-adapted lactose hydrolyzing enzyme. Braz. J. Microbiol., 2011, 42(3), 927-936.
[http://dx.doi.org/10.1590/S1517-83822011000300011] [PMID: 24031708]
[149]
Coombs, J.; Brenchley, J.E. Characterization of two new glycosyl hydrolases from the lactic acid bacterium Carnobacterium piscicola strain BA. Appl. Environ. Microbiol., 2001, 67(11), 5094-5099.
[http://dx.doi.org/10.1128/AEM.67.11.5094-5099.2001] [PMID: 11679331]
[150]
Shipkowski, S.; Brenchley, J.E. Characterization of an unusual cold-active β-glucosidase belonging to family 3 of the glycoside hydrolases from the psychrophilic isolate Paenibacillus sp. strain C7. Appl. Environ. Microbiol., 2005, 71(8), 4225-4232.
[http://dx.doi.org/10.1128/AEM.71.8.4225-4232.2005] [PMID: 16085807]
[151]
Margesin, R.; Spröer, C.; Schumann, P.; Schinner, F. Pedobacter cryoconitis sp. nov., a facultative psychrophile from alpine glacier cryoconite. Int. J. Syst. Evol. Microbiol., 2003, 53(Pt 5), 1291-1296.
[http://dx.doi.org/10.1099/ijs.0.02436-0] [PMID: 13130009]
[152]
Hoyoux, A.; Jennes, I.; Dubois, P.; Genicot, S.; Dubail, F.; François, J.M.; Baise, E.; Feller, G.; Gerday, C. Cold-adapted β-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl. Environ. Microbiol., 2001, 67(4), 1529-1535.
[http://dx.doi.org/10.1128/AEM.67.4.1529-1535.2001] [PMID: 11282601]
[153]
Zhao, J.S.; Manno, D.; Thiboutot, S.; Ampleman, G.; Hawari, J. Shewanella canadensis sp. nov. and Shewanella atlantica sp. nov., manganese dioxide- and hexahydro-1,3,5-trinitro-1,3,5-triazine-reducing, psychrophilic marine bacteria. Int. J. Syst. Evol. Microbiol., 2007, 57(Pt 9), 2155-2162.
[http://dx.doi.org/10.1099/ijs.0.64596-0] [PMID: 17766891]
[154]
Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev., 2005, 29(1), 3-23.
[http://dx.doi.org/10.1016/j.femsre.2004.06.005] [PMID: 15652973]
[155]
Lee, C.C.; Smith, M.; Kibblewhite-Accinelli, R.E.; Williams, T.G.; Wagschal, K.; Robertson, G.H.; Wong, D.W. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol., 2006, 52(2), 112-116.
[http://dx.doi.org/10.1007/s00284-005-4583-9] [PMID: 16450065]
[156]
Humphry, D.R.; George, A.; Black, G.W.; Cummings, S.P. Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica. Int. J. Syst. Evol. Microbiol., 2001, 51(Pt 4), 1235-1243.
[http://dx.doi.org/10.1099/00207713-51-4-1235] [PMID: 11491319]
[157]
Guo, B.; Chen, X.L.; Sun, C.Y.; Zhou, B.C.; Zhang, Y.Z. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol., 2009, 84(6), 1107-1115.
[http://dx.doi.org/10.1007/s00253-009-2056-y] [PMID: 19506861]
[158]
Waeonukul, R.; Pason, P.; Kyu, K.L.; Sakka, K.; Kosugi, A.; Mori, Y.; Ratanakhanokchai, K. Cloning, sequencing, and expression of the gene encoding a multidomain endo-β-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol., 2009, 19(3), 277-285.
[http://dx.doi.org/10.4014/jmb.0804.293] [PMID: 19349753]
[159]
Park, I.; Cho, J. Partial characterization of extracellular xylanolytic activity derived from Paenibacillus sp. KIJ1. Afr. J. Microbiol. Res., 2010, 4, 1257-1264.
[160]
Dornez, E.; Verjans, P.; Arnaut, F.; Delcour, J.A.; Courtin, C.M. Use of psychrophilic xylanases provides insight into the xylanase functionality in bread making. J. Agric. Food Chem., 2011, 59(17), 9553-9562.
[http://dx.doi.org/10.1021/jf201752g] [PMID: 21806059]
[161]
Benešová, E.; Marková, M.; Králová, B. α-glucosidase and β-glucosidase from psychrotrophic strain Arthrobacter sp. C2-2. Czech J. Food Sci., 2005, 23, 116-120.
[http://dx.doi.org/10.17221/3380-CJFS]
[162]
Li, L.; Wang, Y.; Shen, W. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals, 2012, 25(3), 617-631.
[http://dx.doi.org/10.1007/s10534-012-9551-9] [PMID: 22538639]
[163]
Kasana, R.C.; Gulati, A. Cellulases from psychrophilic microorganisms: a review. J. Basic Microbiol., 2011, 51(6), 572-579.
[http://dx.doi.org/10.1002/jobm.201000385] [PMID: 21656807]
[164]
Liu, Y.; Zhou, Z.; Miao, W.; Zhang, Y.; Cao, Y.; He, S.; Bai, D.; Yao, B. A Chitinase from Aeromonas veronii CD3 with the potential to control myxozoan disease. PLoS One, 2011, 6(12) e29091
[http://dx.doi.org/10.1371/journal.pone.0029091] [PMID: 22205999]
[165]
Orikoshi, H.; Baba, N.; Nakayama, S.; Kashu, H.; Miyamoto, K.; Yasuda, M.; Inamori, Y.; Tsujibo, H. Molecular analysis of the gene encoding a novel cold-adapted chitinase (ChiB) from a marine bacterium, Alteromonas sp. strain O-7. J. Bacteriol., 2003, 185(4), 1153-1160.
[http://dx.doi.org/10.1128/JB.185.4.1153-1160.2003] [PMID: 12562783]
[166]
Mavromatis, K.; Feller, G.; Kokkinidis, M.; Bouriotis, V. Cold adaptation of a psychrophilic chitinase: a mutagenesis study. Protein Eng., 2003, 16(7), 497-503.
[http://dx.doi.org/10.1093/protein/gzg069] [PMID: 12915727]
[167]
Ramli, A.N.M.; Mahadi, N.M.; Shamsir, M.S.; Rabu, A.; Joyce-Tan, K.H.; Murad, A.M.; Illias, R.M. Structural prediction of a novel chitinase from the psychrophilic Glaciozyma antarctica PI12 and an analysis of its structural properties and function. J. Comput. Aided Mol. Des., 2012, 26(8), 947-961.
[http://dx.doi.org/10.1007/s10822-012-9585-7] [PMID: 22710891]
[168]
Stefanidi, E.; Vorgias, C.E. Molecular analysis of the gene encoding a new chitinase from the marine psychrophilic bacterium Moritella marina and biochemical characterization of the recombinant enzyme. Extremophiles, 2008, 12(4), 541-552.
[http://dx.doi.org/10.1007/s00792-008-0155-9] [PMID: 18368288]
[169]
Fenice, M.; Selbmann, L.; Di Giambattista, R.; Federici, F. Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res. Microbiol., 1998, 149(4), 289-300.
[http://dx.doi.org/10.1016/S0923-2508(98)80304-5] [PMID: 9766230]
[170]
Bendt, A.; Hüller, H.; Kammel, U.; Helmke, E.; Schweder, T. Cloning, expression, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7. Extremophiles, 2001, 5(2), 119-126.
[http://dx.doi.org/10.1007/s007920100179] [PMID: 11354455]
[171]
Ferrer, M.; Chernikova, T.N.; Timmis, K.N.; Golyshin, P.N. Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl. Environ. Microbiol., 2004, 70(8), 4499-4504.
[http://dx.doi.org/10.1128/AEM.70.8.4499-4504.2004] [PMID: 15294778]
[172]
Lemak, S.; Tchigvintsev, A.; Petit, P.; Flick, R.; Singer, A.U.; Brown, G.; Evdokimova, E.; Egorova, O.; Gonzalez, C.F.; Chernikova, T.N.; Yakimov, M.M.; Kube, M.; Reinhardt, R.; Golyshin, P.N.; Savchenko, A.; Yakunin, A.F. Structure and activity of the cold-active and anion-activated carboxyl esterase OLEI01171 from the oil-degrading marine bacterium Oleispira antarctica. Biochem. J., 2012, 445(2), 193-203.
[http://dx.doi.org/10.1042/BJ20112113] [PMID: 22519667]
[173]
Al Khudary, R.; Venkatachalam, R.; Katzer, M.; Elleuche, S.; Antranikian, G. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles, 2010, 14(3), 273-285.
[http://dx.doi.org/10.1007/s00792-010-0306-7] [PMID: 20217440]
[174]
Suzuki, T.; Nakayama, T.; Choo, D.W.; Hirano, Y.; Kurihara, T.; Nishino, T.; Esaki, N. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr. Purif., 2003, 30(2), 171-178.
[http://dx.doi.org/10.1016/S1046-5928(03)00128-1] [PMID: 12880765]
[175]
Kulakova, L.; Galkin, A.; Nakayama, T.; Nishino, T.; Esaki, N. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Biochim. Biophys. Acta, 2004, 1696(1), 59-65.
[http://dx.doi.org/10.1016/j.bbapap.2003.09.008] [PMID: 14726205]
[176]
Brault, G.; Shareck, F.; Hurtubise, Y.; Lépine, F.; Doucet, N. Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3(2). PLoS One, 2012, 7(3) e32041
[http://dx.doi.org/10.1371/journal.pone.0032041] [PMID: 22396747]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy