Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Research Article

Neuropharmacological Characterization of Dioclea altissima Seed Lectin (DAL) in Mice: Evidence of Anxiolytic-like Effect Mediated by Serotonergic, GABAergic Receptors and NO Pathway

Author(s): João R.C. Araújo, Adriana R. Campos, Marina de Barros M.V. Damasceno, Sacha A.A.R. Santos, Maria K.A. Ferreira, Renato de Azevedo Moreira and Ana C. de O. Monteiro-Moreira*

Volume 26, Issue 31, 2020

Page: [3895 - 3904] Pages: 10

DOI: 10.2174/1381612826666200331093207

Price: $65

Abstract

Background: Plant lectins have shown promising biological activities in the central nervous system (CNS).

Objective: This study evaluated the effect of DAL, a lectin isolated from the seeds of the Dioclea altissima species, having binding affinity to D-glucose or D-mannose residues, on mice behavior.

Methods: Mice (n=6/group) were treated (i.p.) with DAL (0.25, 0.5 or 1 mg/kg) or vehicle and subjected to several tests (open field/OFT, marble-burying/MBT, hole-board/HBT, elevated plus maze/PMT, tail suspension/ TST, forced swimming/FST or rotarod/RRT). Pizotifen, cyproheptadine, flumazenil, L-NAME, 7-NI, Larginine or yohimbine were administered 15 min before DAL (0.5 mg/kg) and the animals were evaluated on PMT. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates.

Results: The results showed there were no neurobehavioral changes in the mice at the RRT, FST and locomotion in the OFT. DAL (0.25, 0.5 or 1 mg/kg) increased the behavior of grooming and rearing in the OFT, head dips in the HBT, pedalling in the TST and decreased the number of marbles hidden in the MBT. In the PMT, DAL (0.25, 0.5 and 1 mg/kg) and Diazepam increased the frequency of entries in the open arms and the time of permanence in the open arms without affecting the locomotor activity. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and it prevented by pizotifen, cyproheptadine, flumazenil, L-NAME and 7-NI, but not by L-arginine or yohimbine.

Conclusion: DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors and NO pathway.

Keywords: Lectin, Dioclea altissima, Anxiolytic-like, 5-HT receptors, GABAergic receptors, NO pathway.

« Previous
[1]
World Health Organization Depression and Other Common Mental Disorders . Global Health Estimates Global Health Estimates 2017 Available at . http://www.who.int/mental_health/management/depr ession/prevalence_global_health_estimates/en/
[2]
Spolidório PCM, Echeverry MB, Iyomasa M, Guimarães FS, Del Bel EA. Anxiolytic effects induced by inhibition of the nitric oxide-cGMP pathway in the rat dorsal hippocampus. Psychopharmacology (Berl) 2007; 195(2): 183-92.
[http://dx.doi.org/10.1007/s00213-007-0890-0] [PMID: 17661019]
[3]
Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Clin Lab Med 2010; 30(4): 865-91.
[http://dx.doi.org/10.1016/j.cll.2010.07.006] [PMID: 20832657]
[4]
Koen N, Stein DJ. Pharmacotherapy of anxiety disorders: a critical review. Dialogues Clin Neurosci 2011; 13(4): 423-37.
[PMID: 22275848]
[5]
Baldwin DS, Ajel K, Masdrakis VG, Nowak M, Rafiq R. Pregabalin for the treatment of generalized anxiety disorder: an update. Neuropsychiatr Dis Treat 2013; 9: 883-92.
[http://dx.doi.org/10.2147/NDT.S36453] [PMID: 23836974]
[6]
Sousa FCF, Melo CTV, Citó COM, Félix FHC, Vasconcelos SMM, Fonteles MMF, et al. Plantas medicinais e seus constituintes bioativos: Uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. Ver Bras Farmacogn 2008; 18(4): 642-54.
[http://dx.doi.org/10.1590/S0102-695X2008000400023]
[7]
Faustino TT, Almeida RB, Andreatini R. Medicinal plants for the treatment of generalized anxiety disorder: a review of controlled clinical studies. Br J Psychiatry 2010; 32(4): 429-36.
[http://dx.doi.org/10.1590/S1516-44462010005000026] [PMID: 21308265]
[8]
Van Dammes EJ, Fouquaert E, Lannoo N, Vandenborre G, Schouppe D, Peumans WJ. Novel concepts about the role of lectins in the plant cell. Adv Exp Med Biol 2011; 705: 271-94.
[http://dx.doi.org/10.1007/978-1-4419-7877-6_13] [PMID: 21618113]
[9]
Cavada BS, Barbosa T, Arruda S, Grangeiro TB, Barral-Netto M. Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr Protein Pept Sci 2001; 2(2): 123-35.
[http://dx.doi.org/10.2174/1389203013381152] [PMID: 12370020]
[10]
Barauna SC, Kaster MP, Heckert BT, et al. Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 2006; 85(1): 160-9.
[http://dx.doi.org/10.1016/j.pbb.2006.07.030] [PMID: 16950503]
[11]
Gonçalves FM, Freitas AE, Peres TV, et al. Vatairea macrocarpa lectin (VML) induces depressive-like behavior and expression of neuroinflammatory markers in mice. Neurochem Res 2013; 38(11): 2375-84.
[http://dx.doi.org/10.1007/s11064-013-1150-9] [PMID: 24026569]
[12]
Araújo JRC, Júnior JMAM, Damasceno MBMV, et al. Neuropharmacological characterization of frutalin in mice: Evidence of an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway. Int J Biol Macromol 2018; 112: 548-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.180] [PMID: 29408007]
[13]
Moreira RA, Monteiro AC, Horta AC, Oliveira JT, Cavada BS. Isolation and characterization of Dioclea altissima var. megacarpa seed lectin. Phytochemistry 1997; 46(1): 139-44.
[http://dx.doi.org/10.1016/S0031-9422(97)00262-8]
[14]
Bezerra LP. Glicoproteínas séricas ligantes da lectina de Dioclea altissima no estudo de doenças prostáticas [master's thesis]. Fortaleza: Universidade Federal do Ceará 2014; 120.
[15]
Gonçalves NGG, Moreno FBMB, Costa MP, Moreira RA, Monteiro-Moreira ACO. Ação da lectina de Dioclea altissima sobre a linhagem PC3M de carcinoma de próstata - Análise Proteômica diferencialAnais do 14th Encontro Pós-graduação e Pesquisa da Unifor 2014 Fortaleza Fortaleza: Universidade de Fortaleza 2014; pp 1-6.
[16]
Gonçalves NGG. Ação da lectina de Dioclea altissima sobre células tumorais: Citotoxidade e Perfil Proteômico da Linhagem PC3M [master's thesis]. Fortaleza: Universidade Federal do Ceará 2012; 107
[17]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[18]
Hall CS. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol 1934; 18(3): 385-403.
[http://dx.doi.org/10.1037/h0071444]
[19]
Dunham NW, Miya TS. A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc 1957; 46(3): 208-9.
[http://dx.doi.org/10.1002/jps.3030460322] [PMID: 13502156]
[20]
Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 1985; 85(3): 367-70.
[http://dx.doi.org/10.1007/BF00428203] [PMID: 3923523]
[21]
Berrocoso E, Gibert-Rahola J, De Benito M, Micó JP. 2.d.022 The modified Tail Suspension Test (mTST): a new paradigm to categorize antidepressants. Effects of classical and atypical opiates. Eur Neuropsychopharmacol 2006; 16: S344-5.
[http://dx.doi.org/10.1016/S0924-977X(06)70393-5]
[22]
Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977; 266(5604): 730-2.
[http://dx.doi.org/10.1038/266730a0] [PMID: 559941]
[23]
Takeda H, Tsuji M, Matsumiya T. Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic states in mice. J Pharmacol Sci 2006; 102(1): 377-86.
[24]
Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL. Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 1986; 126(3): 223-9.
[http://dx.doi.org/10.1016/0014-2999(86)90051-8] [PMID: 2875886]
[25]
Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 1987; 92(2): 180-5.
[http://dx.doi.org/10.1007/BF00177912] [PMID: 3110839]
[26]
Chioca LR, Ferro MM, Baretta IP, et al. Anxiolytic-like effect of lavender essential oil inhalation in mice: participation of serotonergic but not GABAA/benzodiazepine neurotransmission. J Ethnopharmacol 2013; 147(2): 412-8.
[http://dx.doi.org/10.1016/j.jep.2013.03.028] [PMID: 23524167]
[27]
Seigel PS. A simple electronic device for the measurement of the gross bodily activity of small animals. J Psychol 1946; 21(2): 227-36.
[http://dx.doi.org/10.1080/00223980.1946.9917283] [PMID: 21027256]
[28]
Abreu TM, Monteiro VS, Martins ABS, et al. Involvement of the dopaminergic system in the antidepressant-like effect of the lectin isolated from the red marine alga Solieria filiformis in mice. Int J Biol Macromol 2018; 111: 534-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.132] [PMID: 29289668]
[29]
Ichimaru Y, Egawa T, Sawa A. 5-HT1A-receptor subtype mediates the effect of fluvoxamine, a selective serotonin reuptake inhibitor, on marble-burying behavior in mice. Jpn J Pharmacol 1995; 68(1): 65-70.
[http://dx.doi.org/10.1254/jjp.68.65] [PMID: 7494384]
[30]
Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14(3): 149-67.
[http://dx.doi.org/10.1016/0165-0270(85)90031-7] [PMID: 2864480]
[31]
Graeff FG, Schoenfeld RI. Tryptaminergic mechanisms in punished and nonpunished behavior. J Pharmacol Exp Ther 1970; 173(2): 277-83.
[PMID: 5434014]
[32]
Cruz APM, Zagrossi Júnior H, Graeff FG, Landeira-Fernandez J. Modelos animais de ansiedade: implicações para a seleção de drogas ansiolíticas. Psicol, Teor Pesqui 1997; 13(3): 269-78.
[33]
Kosaka T, Heizmann CW. Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine. Brain Res 1989; 483(1): 158-63.
[http://dx.doi.org/10.1016/0006-8993(89)90048-6] [PMID: 2565147]
[34]
Mulligan KA, van Brederode JFM, Hendrickson AE. The lectin Vicia villosa labels a distinct subset of GABAergic cells in macaque visual cortex. Vis Neurosci 1989; 2(1): 63-72.
[http://dx.doi.org/10.1017/S0952523800004338] [PMID: 2487638]
[35]
Millan MJ. The neurobiology and control of anxious states. Prog Neurobiol 2003; 70(2): 83-244.
[http://dx.doi.org/10.1016/S0301-0082(03)00087-X] [PMID: 12927745]
[36]
Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 2009; 10(3): 211-23.
[http://dx.doi.org/10.1038/nrn2573] [PMID: 19190638]
[37]
Wultsch T, Chourbaji S, Fritzen S, Kittel S, Grünblatt E, Gerlach M, et al. Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animalsNeuropsychiatric disorders an integrative approach J Neural Transm. 1st ed. Vienna: Springer 2007; pp. 165-78.
[http://dx.doi.org/10.1007/978-3-211-73574-9_10]
[38]
de Oliveira RW, Del Bel EA, Guimarães FS. Behavioral and c-fos expression changes induced by nitric oxide donors microinjected into the dorsal periaqueductal gray. Brain Res Bull 2000; 51(6): 457-64.
[http://dx.doi.org/10.1016/S0361-9230(99)00248-8] [PMID: 10758334]
[39]
Krass M, Rünkorg K, Wegener G, Volke V. Nitric oxide is involved in the regulation of marble-burying behavior. Neurosci Lett 2010; 480(1): 55-8.
[http://dx.doi.org/10.1016/j.neulet.2010.06.002] [PMID: 20553994]
[40]
McLeod TM, López-Figueroa AL, López-Figueroa MO. Nitric oxide, stress, and depression. Psychopharmacol Bull 2001; 35(1): 24-41.
[PMID: 12397868]
[41]
Guix FX, Uribesalgo I, Coma M, Muñoz FJ. The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 2005; 76(2): 126-52.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.001] [PMID: 16115721]
[42]
Hoekstra R, Fekkes D, Pepplinkhuizen L, Loonen AJM, Tuinier S, Verhoeven WMA. Nitric oxide and neopterin in bipolar affective disorder. Neuropsychobiology 2006; 54(1): 75-81.
[http://dx.doi.org/10.1159/000096042] [PMID: 17028447]
[43]
Singh S, Dikshit M. Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res Brain Res Rev 2007; 54(2): 233-50.
[http://dx.doi.org/10.1016/j.brainresrev.2007.02.001] [PMID: 17408564]
[44]
De Oliveira RMW, Del Bel EA, Guimarães FS. Effects of excitatory amino acids and nitric oxide on flight behavior elicited from the dorsolateral periaqueductal gray. Neurosci Biobehav Rev 2001; 25(7-8): 679-85.
[http://dx.doi.org/10.1016/S0149-7634(01)00050-1] [PMID: 11801293]
[45]
Harkin A, Connor TJ, Walsh M, St John N, Kelly JP. Serotonergic mediation of the antidepressant-like effects of nitric oxide synthase inhibitors. Neuropharmacology 2003; 44(5): 616-23.
[http://dx.doi.org/10.1016/S0028-3908(03)00030-3] [PMID: 12668047]
[46]
Spiacci A Jr, Kanamaru F, Guimarães FS, Oliveira RM. Nitric oxide-mediated anxiolytic-like and antidepressant-like effects in animal models of anxiety and depression. Pharmacol Biochem Behav 2008; 88(3): 247-55.
[http://dx.doi.org/10.1016/j.pbb.2007.08.008] [PMID: 17915303]
[47]
O’Toole E, Doucet MV, Sherwin E, Harkin A. Novel Targets in the Glutamate and Nitric Oxide Neurotransmitter Systems for the Treatment of DepressionSystems Neuroscience in Depression. 1st ed. Amsterdam: Academic Press 2016; pp. 81-113.
[http://dx.doi.org/10.1016/B978-0-12-802456-0.00003-0]
[48]
Andrade JL, Arruda S, Barbosa T, et al. Lectin-induced nitric oxide production. Cell Immunol 1999; 194(1): 98-102.
[http://dx.doi.org/10.1006/cimm.1999.1494] [PMID: 10357885]
[49]
Damasceno MBMV, de Melo Júnior Jde M, Santos SA, et al. Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain. Chem Biol Interact 2016; 256: 9-15.
[http://dx.doi.org/10.1016/j.cbi.2016.06.016] [PMID: 27302204]
[50]
Rieger DK, Costa AP, Budni J, et al. Antidepressant-like effect of Canavalia brasiliensis (ConBr) lectin in mice:evidence for the involvement of the glutamatergic system. Pharmacol Biochem Behav 2014; 122: 53-60.
[http://dx.doi.org/10.1016/j.pbb.2014.03.008] [PMID: 24650588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy