Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In Vitro Characteristics of Glioma Cells Targeting by OX26-modified Liposomal Cisplatin

Author(s): Maryam Sadat Ashrafzadeh, Amir Heydarinasab*, Azim Akbarzadeh and Mehdi Ardjmand

Volume 17, Issue 9, 2020

Page: [1126 - 1138] Pages: 13

DOI: 10.2174/1570180817999200330165213

Price: $65

Abstract

Background: Drug delivery to the brain tumor is limited due to the presence of the blood-brain barrier (BBB).

Objective: This study aimed to evaluate the therapeutic effects of cisplatin-loaded PEGylated liposomes, targeted with the OX26 antibody (targeted liposomal cisplatin) against transferrin receptor expressing rat glioma C6 cells in vitro.

Methods: The liposomes were synthesized using reverse phase evaporation method and were conjugated to the OX26 monoclonal antibody. They were characterized in terms of size, drug encapsulation efficiency, morphology and drug release experiments using dynamic light scattering, atomic absorption spectrometry, scanning electron microscopy, and dialysis membrane methods. Then, their biological activities were evaluated on targeting the BBB.

Results and Discussion: The characterization results showed that spherical nanodrug with a size of 157 nm and drug loading efficiency of 24% was synthesized, which released 64% of the loaded cisplatin after 72 h in a controlled release manner. The nanoparticles caused an increase in the cisplatin cytotoxicity effects by 1.7-, 1.8- and 1.8-fold, compared to cisplatin-loaded PEGylated liposomes (liposomal cisplatin) after 24, 48 and 72h incubation, respectively against C6 cells. Moreover, targeted liposomal cisplatin showed promising results in the transport of cisplatin across the BBB, in which it caused an increase in the cisplatin cytotoxicity on C6 cells by 2.7- and 2.4-fold, compared to cisplatin and liposomal cisplatin, respectively.

Conclusion: Regarding the properties of the targeted liposomal cisplatin, it suggests that the potency of the formulation, to be evaluated, for the transport of cisplatin across the BBB, delivers it to the brain tumor in vivo.

Keywords: Brain tumor, OX26 monoclonal antibody, transferrin receptor, cisplatin, immunoliposome, glioma cells.

Graphical Abstract

[1]
Lalatsa, A.; Leite, D.M.; Figueiredo, M.F.; O’Connor, M. Nanotechnology in Brain Tumor Targeting: Efficacy and Safety of Nanoenabled Carriers Undergoing Clinical Testing. Nanotechnology-based targeted drug delivery systems for brain tumors; Elsevier, 2018, pp. 111-145.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00005-1]
[2]
Gothwal, A.; Khan, I.; Kesharwani, P.; Chourasia, M.K.; Gupta, U. Micelle-Based Drug Delivery for Brain Tumors. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors; Elsevier, 2018, pp. 307-326.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00011-7]
[3]
Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; Curschmann, J.; Janzer, R.C.; Ludwin, S.K.; Gorlia, T.; Allgeier, A.; Lacombe, D.; Cairncross, J.G.; Eisenhauer, E.; Mirimanoff, R.O. european organisation for research and treatment of cancer brain tumor and radiotherapy groups; national cancer institute of canada clinical trials group. radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med., 2005, 352(10), 987-996.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[4]
Ebrahimi Shahmabadi, H.; Movahedi , F.; Koohi Moftakhari Esfahani, M. Alavi, S.E.; Eslamifar, A.; Mohammadi Anaraki, G.; Akbarzadeh, A.. Efficacy of cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumour Biol.,, 2014 , 35(5), 4799-4806.
[http://dx.doi.org/10.1007/s13277-014-1630-9] [PMID: 24443270]
[5]
Begley, D.J. The blood-brain barrier: Principles for targeting peptides and drugs to the central nervous system. J. Pharm. Pharmacol., 1996, 48(2), 136-146.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb07112.x] [PMID: 8935161]
[6]
Pardridge, W.M.; Buciak, J.L.; Friden, P.M. Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther., 1991, 259(1), 66-70.
[PMID: 1920136]
[7]
Garcia-Garcia, E.; Andrieux, K.; Gil, S.; Couvreur, P. Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm., 2005, 298(2), 274-292.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.031] [PMID: 15896933]
[8]
Huwyler, J.; Wu, D.; Pardridge, W.M. Brain drug delivery of small molecules using immunoliposomes. Proc. Natl. Acad. Sci. USA, 1996, 93(24), 14164-14169.
[http://dx.doi.org/10.1073/pnas.93.24.14164] [PMID: 8943078]
[9]
Johnsen, K.B.; Burkhart, A.; Melander, F.; Kempen, P.J.; Vejlebo, J.B.; Siupka, P.; Nielsen, M.S.; Andresen, T.L.; Moos, T. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci. Rep., 2017, 7(1), 10396.
[http://dx.doi.org/10.1038/s41598-017-11220-1] [PMID: 28871203]
[10]
Yue, P.J.; He, L.; Qiu, S.W.; Li, Y.; Liao, Y.J.; Li, X.P.; Xie, D.; Peng, Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol. Cancer, 2014, 13(1), 191.
[http://dx.doi.org/10.1186/1476-4598-13-191] [PMID: 25128329]
[11]
Sezgin-bayindir, Z.; Ergin, A.D.; Parmaksiz, M.; Elcin, A.E.; Elcin, Y.M.; Yuksel, N. Evaluation of various block copolymers for micelle formation and brain drug delivery: In vitro characterization and cellular uptake studies. J. Drug Deliv. Sci. Technol., 2016, 36, 120-129.
[http://dx.doi.org/10.1016/j.jddst.2016.10.003]
[12]
Alavi, S.E.; Cabot, P.J.; Moyle, P.M. Glucagon-like peptide-1 receptor agonists and strategies to improve their efficiency. Mol. Pharm., 2019, 16(6), 2278-2295.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00308] [PMID: 31050435]
[13]
Ghaferi, M.; Asadollahzadeh, M.J.; Akbarzadeh, A.; Ebrahimi Shahmabadi, H.; Alavi, S.E. Enhanced efficacy of pegylated liposomal cisplatin: In Vitro and in vivo evaluation. Int. J. Mol. Sci., 2020, 21(2), 559.
[http://dx.doi.org/10.3390/ijms21020559] [PMID: 31952316]
[14]
Suzuki, R.; Takizawa, T.; Kuwata, Y.; Mutoh, M.; Ishiguro, N.; Utoguchi, N.; Shinohara, A.; Eriguchi, M.; Yanagie, H.; Maruyama, K. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int. J. Pharm., 2008, 346(1-2), 143-150.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.010] [PMID: 17640835]
[15]
Iinuma, H.; Maruyama, K.; Okinaga, K.; Sasaki, K.; Sekine, T.; Ishida, O.; Ogiwara, N.; Johkura, K.; Yonemura, Y. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer, 2002, 99(1), 130-137.
[http://dx.doi.org/10.1002/ijc.10242] [PMID: 11948504]
[16]
Paszko, E.; Senge, M.O. Immunoliposomes. Curr. Med. Chem., 2012, 19(31), 5239-5277.
[http://dx.doi.org/10.2174/092986712803833362] [PMID: 22934774]
[17]
Eavarone, D.A.; Yu, X.; Bellamkonda, R.V. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J. Biomed. Mater. Res., 2000, 51(1), 10-14.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200007)51:1<10::AID-JBM2>3.0.CO;2-R] [PMID: 10813739]
[18]
Ji, B.; Maeda, J.; Higuchi, M.; Inoue, K.; Akita, H.; Harashima, H.; Suhara, T. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci., 2006, 78(8), 851-855.
[http://dx.doi.org/10.1016/j.lfs.2005.05.085] [PMID: 16165165]
[19]
Gosk, S.; Vermehren, C.; Storm, G.; Moos, T. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J. Cereb. Blood Flow Metab., 2004, 24(11), 1193-1204.
[http://dx.doi.org/10.1097/01.WCB.0000135592.28823.47] [PMID: 15545912]
[20]
Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; Campone, M.; Clement, P.M.; Stupp, R.; Fabbro, M.; Le Rhun, E.; Dubois, F.; Weller, M.; von Deimling, A.; Golfinopoulos, V.; Bromberg, J.C.; Platten, M.; Klein, M.; van den Bent, M.J. Lomustine and bevacizumab in progressive glioblastoma. N. Engl. J. Med., 2017, 377(20), 1954-1963.
[http://dx.doi.org/10.1056/NEJMoa1707358] [PMID: 29141164]
[21]
Coluccia, D.; Figueiredo, C.A.; Wu, M.Y.; Riemenschneider, A.N.; Diaz, R.; Luck, A.; Smith, C.; Das, S.; Ackerley, C.; O’Reilly, M.; Hynynen, K.; Rutka, J.T. Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine (Lond.), 2018, 14(4), 1137-1148.
[http://dx.doi.org/10.1016/j.nano.2018.01.021] [PMID: 29471172]
[22]
Bagherpour Doun, S.K.; Alavi, S.E.; Koohi Moftakhari Esfahani, M.; Ebrahimi Shahmabadi, H.; Alavi, F.; Hamzei, S. Efficacy of Cisplatin-loaded poly butyl cyanoacrylate nanoparticles on the ovarian cancer: An in vitro study. Tumour Biol., 2014, 35(8), 7491-7497.
[http://dx.doi.org/10.1007/s13277-014-1996-8] [PMID: 24789433]
[23]
Wang, Y.; Zhou, J.; Qiu, L.; Wang, X.; Chen, L.; Liu, T.; Di, W. Cisplatin-alginate conjugate liposomes for targeted delivery to EGFR-positive ovarian cancer cells. Biomaterials, 2014, 35(14), 4297-4309.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.035] [PMID: 24565522]
[24]
Wang, F.; Chen, L.; Zhang, R.; Chen, Z.; Zhu, L. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J. Control. Release, 2014, 196, 222-233.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.012] [PMID: 25456829]
[25]
Alavi, S.E.; Muflih Al Harthi, S.; Ebrahimi Shahmabadi, H.; Akbarzadeh, A. Cisplatin-loaded polybutylcyanoacrylate nanoparticles with improved properties as an anticancer agent. Int. J. Mol. Sci., 2019, 20(7), 1531.
[http://dx.doi.org/10.3390/ijms20071531] [PMID: 30934689]
[26]
Esfahani, M.K.; Alavi, S.E.; Movahedi, F.; Alavi, F.; Akbarzadeh, A. Cytotoxicity of liposomal Paclitaxel in breast cancer cell line mcf-7. Indian J. Clin. Biochem., 2013, 28(4), 358-360.
[http://dx.doi.org/10.1007/s12291-013-0296-1] [PMID: 24426237]
[27]
Carland, M.; Tan, K.J.; White, J.M.; Stephenson, J.; Murray, V.; Denny, W.A.; McFadyen, W.D. Syntheses, crystal structure and cytotoxicity of diamine platinum(II) complexes containing maltol. J. Inorg. Biochem., 2005, 99(8), 1738-1743.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.06.003] [PMID: 16038978]
[28]
Lu, W.; Tan, Y-Z.; Hu, K-L.; Jiang, X-G. Cationic albumin conjugated pegylated nanoparticle with its transcytosis ability and little toxicity against blood-brain barrier. Int. J. Pharm., 2005, 295(1-2), 247-260.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.043] [PMID: 15848009]
[29]
Du, J.; Lu, W-L.; Ying, X.; Liu, Y.; Du, P.; Tian, W.; Men, Y.; Guo, J.; Zhang, Y.; Li, R-J.; Zhou, J.; Lou, J.N.; Wang, J.C.; Zhang, X.; Zhang, Q. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood-brain barrier and survival of brain tumor-bearing animals. Mol. Pharm., 2009, 6(3), 905-917.
[http://dx.doi.org/10.1021/mp800218q] [PMID: 19344115]
[30]
Alavi, S.E.; Esfahani, M.K.; Alavi, F.; Movahedi, F.; Akbarzadeh, A. Drug delivery of hydroxyurea to breast cancer using liposomes. Indian J. Clin. Biochem., 2013, 28(3), 299-302.
[http://dx.doi.org/10.1007/s12291-012-0291-y] [PMID: 24426227]
[31]
Alavi, S.E.; Esfahani, M.K.; Ghassemi, S.; Akbarzadeh, A.; Hassanshahi, G. In vitro evaluation of the efficacy of liposomal and pegylated liposomal hydroxyurea. Indian J. Clin. Biochem., 2014, 29(1), 84-88.
[http://dx.doi.org/10.1007/s12291-013-0315-2] [PMID: 24478555]
[32]
Al Harthi, S.; Alavi, S.E.; Radwan, M.A.; El Khatib, M.M.; AlSarra, I.A. Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease. Sci. Rep., 2019, 9(1), 9563.
[http://dx.doi.org/10.1038/s41598-019-46032-y] [PMID: 31266990]
[33]
Song, H.; Su, X.; Yang, K.; Niu, F.; Li, J.; Song, J.; Chen, H.; Li, B.; Li, W.; Qian, W.; Cao, X.; Guo, S.; Dai, J.; Feng, S.S.; Guo, Y.; Yin, C.; Gao, J. CD20 antibody-conjugated immunoliposomes for targeted chemotherapy of melanoma cancer initiating cells. J. Biomed. Nanotechnol., 2015, 11(11), 1927-1946.
[http://dx.doi.org/10.1166/jbn.2015.2129] [PMID: 26554153]
[34]
Zhong, J.; Huang, H-L.; Li, J.; Qian, F-C.; Li, L-Q.; Niu, P-P.; Dai, L-C. Development of hybrid-type modified chitosan derivative nanoparticles for the intracellular delivery of midkine-siRNA in hepatocellular carcinoma cells. HBPD INT, 2015, 14(1), 82-89.
[http://dx.doi.org/10.1016/S1499-3872(15)60336-8] [PMID: 25655295]
[35]
Liu, M.; Zhang, X.; Yang, B.; Deng, F.; Ji, J.; Yang, Y.; Huang, Z.; Zhang, X.; Wei, Y. Luminescence tunable fluorescent organic nanoparticles from polyethyleneimine and maltose: Facile preparation and bioimaging applications. RSC Advances, 2014, 4(43), 22294-22298.
[http://dx.doi.org/10.1039/c4ra03103b]
[36]
Kim, J.S.; Shin, D.H.; Kim, J.S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release, 2018, 269, 245-257.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.026] [PMID: 29162480]
[37]
Tian, J.; Pang, X.; Yu, K.; Liu, L.; Zhou, J. Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with cisplatin. Pharmazie, 2008, 63(8), 593-597.
[PMID: 18771008]
[38]
Huang, C-Y.; Chen, C-M.; Lee, Y-D. Synthesis of high loading and encapsulation efficient paclitaxel-loaded poly(n-butyl cyanoacrylate) nanoparticles via miniemulsion. Int. J. Pharm., 2007, 338(1-2), 267-275.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.052] [PMID: 17368981]
[39]
Ponchel, G.; Cauchois, O. Shape-controlled nanoparticles for drug delivery and targeting applications. Polymer Nanoparticles for Nanomedicines; Springer, 2016, pp. 159-184.
[http://dx.doi.org/10.1007/978-3-319-41421-8_6]
[40]
Alavizadeh, S.H.; Badiee, A.; Golmohammadzadeh, S.; Jaafari, M.R. The influence of phospholipid on the physicochemical properties and anti-tumor efficacy of liposomes encapsulating cisplatin in mice bearing C26 colon carcinoma. Int. J. Pharm., 2014, 473(1-2), 326-333.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.020] [PMID: 25051111]
[41]
Dou, Y.N.; Zheng, J.; Foltz, W.D.; Weersink, R.; Chaudary, N.; Jaffray, D.A.; Allen, C. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice. J. Control. Release, 2014, 178, 69-78.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.009] [PMID: 24440663]
[42]
Duan, X.; He, C.; Kron, S.J.; Lin, W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(5), 776-791.
[http://dx.doi.org/10.1002/wnan.1390] [PMID: 26848041]
[43]
Poy, D.; Akbarzadeh, A.; Ebrahimi Shahmabadi, H.; Ebrahimifar, M.; Farhangi, A.; Farahnak Zarabi, M.; Akbari, A.; Saffari, Z.; Siami, F. Preparation, characterization, and cytotoxic effects of liposomal nanoparticles containing cisplatin: An in vitro study. Chem. Biol. Drug Des., 2016, 88(4), 568-573.
[http://dx.doi.org/10.1111/cbdd.12786] [PMID: 27178305]
[44]
Luechtefeld, T.; Marsh, D.; Rowlands, C.; Hartung, T. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicol. Sci., 2018, 165(1), 198-212.
[http://dx.doi.org/10.1093/toxsci/kfy152] [PMID: 30007363]
[45]
McDaid, H.M.; Bhattacharya, S.K.; Chen, X-T.; He, L.; Shen, H-J.; Gutteridge, C.E.; Horwitz, S.B.; Danishefsky, S.J. Structure-activity profiles of eleutherobin analogs and their cross-resistance in Taxol-resistant cell lines. Cancer Chemother. Pharmacol., 1999, 44(2), 131-137.
[http://dx.doi.org/10.1007/s002800050957] [PMID: 10412947]
[46]
Bhavsar, D.; Subramanian, K.; Sethuraman, S.; Krishnan, U.M. ‘Nano-in-nano’ hybrid liposomes increase target specificity and gene silencing efficiency in breast cancer induced SCID mice. Eur. J. Pharm. Biopharm., 2017, 119, 96-106.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.006] [PMID: 28600223]
[47]
Zadeh Mehrizi, T.; Shafiee Ardestani, M.; Haji Molla Hoseini, M.; Khamesipour, A.; Mosaffa, N.; Ramezani, A. Novel nanosized chitosan-betulinic acid against resistant leishmania major and first clinical observation of such parasite in kidney. Sci. Rep., 2018, 8(1), 11759.
[http://dx.doi.org/10.1038/s41598-018-30103-7] [PMID: 30082741]
[48]
Vázquez-Becerra, H.; Pérez-Cárdenas, E.; Muñiz-Hernández, S.; Izquierdo-Sánchez, V.; Medina, L.A. Characterization and in vitro evaluation of nimotuzumab conjugated with cisplatin-loaded liposomes. J. Liposome Res., 2017, 27(4), 274-282.
[http://dx.doi.org/10.1080/08982104.2016.1207665] [PMID: 27367153]
[49]
Ou, H.; Cheng, T.; Zhang, Y.; Liu, J.; Ding, Y.; Zhen, J.; Shen, W.; Xu, Y.; Yang, W.; Niu, P.; Liu, J.; An, Y.; Liu, Y.; Shi, L. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater., 2018, 65, 339-348.
[http://dx.doi.org/10.1016/j.actbio.2017.10.034] [PMID: 29079515]
[50]
Liu, J.; Boonkaew, B.; Arora, J.; Mandava, S.H.; Maddox, M.M.; Chava, S.; Callaghan, C.; He, J.; Dash, S.; John, V.T.; Lee, B.R. Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma. J. Pharm. Sci., 2015, 104(3), 1187-1196.
[http://dx.doi.org/10.1002/jps.24318] [PMID: 25573425]
[51]
Mandriota, G.; Di Corato, R.; Benedetti, M.; De Castro, F.; Fanizzi, F.P.; Rinaldi, R. Design and application of cisplatin-loaded magnetic nanoparticle clusters for smart chemotherapy. ACS Appl. Mater. Interfaces, 2019, 11(2), 1864-1875.
[http://dx.doi.org/10.1021/acsami.8b18717] [PMID: 30580523]
[52]
Yalcin, T.E.; Ilbasmis-Tamer, S.; Ibisoglu, B.; Özdemir, A.; Ark, M.; Takka, S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm. Dev. Technol., 2018, 23(1), 76-86.
[http://dx.doi.org/10.1080/10837450.2017.1357733] [PMID: 28724327]
[53]
Liu, G.; Mao, J.; Jiang, Z.; Sun, T.; Hu, Y.; Jiang, Z.; Zhang, C.; Dong, J.; Huang, Q.; Lan, Q. Transferrin-modified Doxorubicin-loaded biodegradable nanoparticles exhibit enhanced efficacy in treating brain glioma-bearing rats. Cancer Biother. Radiopharm., 2013, 28(9), 691-696.
[http://dx.doi.org/10.1089/cbr.2013.1480] [PMID: 23786401]
[54]
Markoutsa, E.; Pampalakis, G.; Niarakis, A.; Romero, I.A.; Weksler, B.; Couraud, P-O.; Antimisiaris, S.G. Uptake and permeability studies of BBB-targeting immunoliposomes using the hCMEC/D3 cell line. Eur. J. Pharm. Biopharm., 2011, 77(2), 265-274.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.015] [PMID: 21118722]
[55]
Shah, N.; Chaudhari, K.; Dantuluri, P.; Murthy, R.S.; Das, S. Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic((R))P85, an in vitro cell line and in vivo biodistribution studies on rat model. J. Drug Target., 2009, 17(7), 533-542.
[http://dx.doi.org/10.1080/10611860903046628] [PMID: 19530913]
[56]
Nance, E. A.; Woodworth, G. F.; Sailor, K. A.; Shih, T.-Y.; Xu, Q.; Swaminathan, G.; Xiang, D.; Eberhart, C.; Hanes, J. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Trans. Med., 2012, 4(149), 149ra119-149ra119.
[57]
Ulbrich, K.; Hekmatara, T.; Herbert, E.; Kreuter, J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur. J. Pharm. Biopharm., 2009, 71(2), 251-256.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.021] [PMID: 18805484]
[58]
Ryu, J-H.; Chacko, R.T.; Jiwpanich, S.; Bickerton, S.; Babu, R.P.; Thayumanavan, S. Self-cross-linked polymer nanogels: A versatile nanoscopic drug delivery platform. J. Am. Chem. Soc., 2010, 132(48), 17227-17235.
[http://dx.doi.org/10.1021/ja1069932] [PMID: 21077674]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy