Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Engineered Microbes for Pigment Production Using Waste Biomass

Author(s): Zeba Usmani, Minaxi Sharma*, Surya Sudheer, Vijai K. Gupta and Rajeev Bhat*

Volume 21, Issue 2, 2020

Page: [80 - 95] Pages: 16

DOI: 10.2174/1389202921999200330152007

Price: $65

Abstract

Agri-food waste biomass is the most abundant organic waste and has high valorisation potential for sustainable bioproducts development. These wastes are not only recyclable in nature but are also rich sources of bioactive carbohydrates, peptides, pigments, polyphenols, vitamins, natural antioxidants, etc. Bioconversion of agri-food waste to value-added products is very important towards zero waste and circular economy concepts. To reduce the environmental burden, food researchers are seeking strategies to utilize this waste for microbial pigments production and further biotechnological exploitation in functional foods or value-added products. Microbes are valuable sources for a range of bioactive molecules, including microbial pigments production through fermentation and/or utilisation of waste. Here, we have reviewed some of the recent advancements made in important bioengineering technologies to develop engineered microbial systems for enhanced pigments production using agrifood wastes biomass/by-products as substrates in a sustainable way.

Keywords: Agri-food waste, fermentation, microbial pigments, bioengineering, engineered microbes, waste biomass.

« Previous
Graphical Abstract

[1]
Sen, T.; Barrow, C.J.; Deshmukh, S.K. Microbial pigments in the food industry-challenges and the way forward. Front. Nutr., 2019, 6, 7.
[http://dx.doi.org/10.3389/fnut.2019.00007] [PMID: 30891448]
[2]
Appelhagen, I.; Wulff-Vester, A.K.; Wendell, M.; Hvoslef-Eide, A-K.; Russell, J.; Oertel, A.; Martens, S.; Mock, H.P.; Martin, C.; Matros, A. Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures. Metab. Eng., 2018, 48, 218-232.
[http://dx.doi.org/10.1016/j.ymben.2018.06.004] [PMID: 29890220]
[3]
Huccetogullari, D.; Luo, Z.W.; Lee, S.Y. Metabolic engineering of microorganisms for production of aromatic compounds. Microb. Cell Fact., 2019, 18(1), 41.
[http://dx.doi.org/10.1186/s12934-019-1090-4] [PMID: 30808357]
[4]
Panesar, R.; Kaur, S.; Panesar, P.S. Production of microbial pigments utilizing agro-industrial waste: a review. Curr. Opin. Food Sci., 2015, 1, 70-76.
[http://dx.doi.org/10.1016/j.cofs.2014.12.002]
[5]
Dufosse, L. Microbial pigments. Reference module in life sciences; Elsevier: Oxford, 2017, pp. 1-16.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.13091-2]
[6]
Dufosse, L. Microbial production of food grade pigments. Food Technol. Biotechnol., 2006, 44(3), 313-321.
[7]
Gupta, V.K.; Mach, R.; Sreenivasaprasad, P. Fungal biomolecules: sources, applications and recent developments; Wiley-Blackwell: UK, 2015. 9781118958292
[http://dx.doi.org/10.1002/9781118958308]
[8]
Gupta, V.K.; Treichel, H.; Antonio de Oliveira, L.; Shapaval, L.; Tuohy, M.G. Microbial functional foods and nutraceuticals; Wiley-Blackwell: UK, 2017.
[http://dx.doi.org/10.1002/9781119048961]
[9]
Konuray, G.; Erginkaya, Z. Antimicrobial and antioxidant properties of pigments synthesized from microorganisms. In: The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Mendez-Vilas, A., Ed.; FORMATEX, 2015; pp. 27-33.
[10]
Numan, M.; Bashir, S.; Mumtaz, R.; Tayyab, S.; Rehman, N.U.; Khan, A.L.; Shinwari, Z.K.; Al-Harrasi, A. Therapeutic applications of bacterial pigments: a review of current status and future opportunities. 3 Biotech, 2018, 8(4), 207.
[http://dx.doi.org/10.1007/s13205-018-1227-x]
[11]
Kawauchi, K.; Shibutani, K.; Yagisawa, H.; Kamata, H.; Nakatsuji, S.; Anzai, H.; Yokoyama, Y.; Ikegami, Y.; Moriyama, Y.; Hirata, H. A possible immunosuppressant, cycloprodigiosin hydrochloride, obtained from Pseudoalteromonas denitrificans. Biochem. Biophys. Res. Commun., 1997, 237(3), 543-547.
[http://dx.doi.org/10.1006/bbrc.1997.7186] [PMID: 9299400]
[12]
Asker, D.; Ohta, Y. Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl. Microbiol. Biotechnol., 2002, 58(6), 743-750.
[http://dx.doi.org/10.1007/s00253-002-0967-y] [PMID: 12021793]
[13]
Khaneja, R.; Perez-Fons, L.; Fakhry, S.; Baccigalupi, L.; Steiger, S.; To, E.; Sandmann, G.; Dong, T.C.; Ricca, E.; Fraser, P.D.; Cutting, S.M. Carotenoids found in Bacillus. J. Appl. Microbiol., 2010, 108(6), 1889-1902.
[PMID: 19878522]
[14]
Guyomarc’h, F.; Binet, A.; Dufosse, L. Production of carotenoids by Brevibacterium linens: variation among strains, kinetic aspects and HPLC profiles. J. Ind. Microbiol. Biotechnol., 2000, 24(1), 64-70.
[http://dx.doi.org/10.1038/sj.jim.2900761]
[15]
Kim, D.; Lee, J.S.; Park, Y.K.; Kim, J.F.; Jeong, H.; Oh, T.K.; Kim, B.S.; Lee, C.H. Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J. Appl. Microbiol., 2007, 102(4), 937-944.
[PMID: 17381736]
[16]
Galaup, P.; Sutthiwong, N.; Leclercq-Perlat, M.N.; Valla, A.; Caro, Y.; Fouillaud, M.; Guerard, F.; Dufosse, L. First isolation of Brevibacterium sp. pigments in the rind of an industrial red- smear-ripened soft cheese. Int. J. Dairy Technol., 2015, 68(1), 144-147.
[http://dx.doi.org/10.1111/1471-0307.12211]
[17]
Mukherjee, G.; Singh, S.K. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem., 2011, 46(1), 188-192.
[http://dx.doi.org/10.1016/j.procbio.2010.08.006]
[18]
Joshi, V.K.; Attri, D.; Bala, A.; Bhushan, S. Microbial pigments. Indian J. Biotechnol., 2003, 2, 362-369.
[19]
Herz, S.; Weber, R.W.; Anke, H.; Mucci, A.; Davoli, P. Intermediates in the oxidative pathway from torulene to torularhodin in the red yeasts Cystofilobasidium infirmominiatum and C. capitatum (Heterobasidiomycetes, Fungi). Phytochemistry, 2007, 68(20), 2503-2511.
[http://dx.doi.org/10.1016/j.phytochem.2007.05.019] [PMID: 17597170]
[20]
Gerber, N.N. Prodigiosin-like pigments. CRC Crit. Rev. Microbiol., 1975, 3(4), 469-485.
[http://dx.doi.org/10.3109/10408417509108758] [PMID: 1095305]
[21]
Mapari, S.A.; Meyer, A.S.; Thrane, U.; Frisvad, J.C. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb. Cell Fact., 2009, 8(1), 24.
[http://dx.doi.org/10.1186/1475-2859-8-24] [PMID: 19397825]
[22]
Chavez, R.; Fierro, F.; Garcia-Rico, R.O.; Laich, F. Mold-fermented foods: Penicillium spp. as ripening agents in the elaboration of cheese and meat products. Mycofactories; Bentham Science Publishers, 2011, pp. 73-98.
[23]
Yadav, S.; Manjunatha, K.; Ramachandra, B.; Suchitra, N.; Prabha, R. Characterization of pigment producing Rhodotorula from dairy environmental samples. Asian. J. Dairying Foods. Res., 2014, 33(1), 1-4.
[http://dx.doi.org/10.5958/j.0976-0563.33.1.001]
[24]
Carreira, A.; Ferreira, L.M.; Loureiro, V. Production of brown tyrosine pigments by the yeast Yarrowia lipolytica. J. Appl. Microbiol., 2001, 90(3), 372-379.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01256.x] [PMID: 11298232]
[25]
Arun, N.; Singh, D. Differential response of Dunaliella salina and Dunaliella tertiolecta isolated from brines of Sambhar Salt Lake of Rajasthan (India) to salinities: a study on growth, pigment and glycerol synthesis. J. Mar. Biol. Assoc. India, 2013, 55(1), 65-70.
[http://dx.doi.org/10.6024/jmbai.2013.55.1.01758-11]
[26]
Davoli, P.; Weber, R.W. Carotenoid pigments from the red mirror yeast Sporobolomyces roseus. Mycologist, 2002, 16(3), 102-108.
[http://dx.doi.org/10.1017/S0269915X02001027]
[27]
Houbraken, J.; Frisvad, J.C.; Seifert, K.A.; Overy, D.P.; Tuthill, D.M.; Valdez, J.G.; Samson, R.A. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia, 2012, 29, 78-100.
[http://dx.doi.org/10.3767/003158512X660571] [PMID: 23606767]
[28]
Gupta, C.; Garg, A.P.; Prakash, D.; Goyal, S.; Gupta, S. Microbes as potential source of biocolours. Pharmacologyonline, 2011, 2, 1309-1318.
[29]
Malisorn, C.; Suntornsuk, W. Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour. Technol., 2008, 99(7), 2281-2287.
[http://dx.doi.org/10.1016/j.biortech.2007.05.019] [PMID: 17587568]
[30]
Libkind, D.; Sommaruga, R.; Zagarese, H.; van Broock, M. Mycosporines in carotenogenic yeasts. Syst. Appl. Microbiol., 2005, 28(8), 749-754.
[http://dx.doi.org/10.1016/j.syapm.2005.05.005] [PMID: 16261865]
[31]
Marova, I.; Certik, M.; Breierov, E. Production of enriched biomass by carotenogenic yeasts - application of whole-cell yeast biomass to production of pigments and other lipid compounds. In: Biomass - Detection, Production and Usage; IntechOpen, 2011; pp. 345-384.
[http://dx.doi.org/10.5772/19235]
[32]
Pattanagul, P.; Pinthong, R.; Phianmongkhol, A.; Leksawasdi, N. Review of angkak production (Monascus purpureus). Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 2007, 34(3), 319-328.
[33]
Babitha, S. Microbial pigments. Biotechnology for Agroindustrial Utilization; Singh-Nee Nigam, P; Pandey, A., Ed.; Springer: Netherlands, 2009, pp. 147-162.
[34]
Ruffing, A.; Chen, R.R. Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb. Cell Fact., 2006, 5, 25-33.
[http://dx.doi.org/10.1186/1475-2859-5-25] [PMID: 16859553]
[35]
Niu, F.X.; Lu, Q.; Bu, Y.F.; Liu, J.Z. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synth Syst Biotechnol, 2017, 2(3), 167-175.
[http://dx.doi.org/10.1016/j.synbio.2017.08.001] [PMID: 29318197]
[36]
Wang, C.; Zada, B.; Wei, G.; Kim, S.W. Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresour. Technol., 2017, 241, 430-438.
[http://dx.doi.org/10.1016/j.biortech.2017.05.168] [PMID: 28599221]
[37]
Ray, R.C.; Shetty, K.; Ward, O.P. Solid-state fermentation and value-added utilization of horticultural processing wastes.Microbial biotechnology in horticulture; Ray, R.C.; Ward, O.P., Eds.; Science Publishers: New Hampshire, USA, 2008, 3, pp. 231-272.
[http://dx.doi.org/10.1201/b10764-9]
[38]
Buzzini, P. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J. Appl. Microbiol., 2001, 90(5), 843-847.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01319.x] [PMID: 11348447]
[39]
Kantifedaki, A.; Kachrimanidou, V.; Mallouchos, A.; Papanikolaou, S.; Koutinas, A.A. Orange processing waste valorisation for the production of biobased pigments using the fungal strains Monascus purpureus and Penicillium purpurogenum. J. Clean. Prod., 2018, 185, 882-890.
[http://dx.doi.org/10.1016/j.jclepro.2018.03.032]
[40]
Taskin, M.; Erdal, S. Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate. J. Sci. Food Agric., 2011, 91(8), 1440-1445.
[http://dx.doi.org/10.1002/jsfa.4329] [PMID: 21384376]
[41]
Miura, Y.; Kondo, K.; Saito, T.; Shimada, H.; Fraser, P.D.; Misawa, N. Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol., 1998, 64(4), 1226-1229.
[http://dx.doi.org/10.1128/AEM.64.4.1226-1229.1998] [PMID: 9546156]
[42]
Frengova, G.I.; Beshkova, D.M. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J. Ind. Microbiol. Biotechnol., 2009, 36(2), 163-180.
[http://dx.doi.org/10.1007/s10295-008-0492-9] [PMID: 18982370]
[43]
Bhosale, P. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol., 2004, 63(4), 351-361.
[http://dx.doi.org/10.1007/s00253-003-1441-1] [PMID: 14566431]
[44]
Lukacs, G.; Linka, B.; Nyilasi, I. Phaffia rhodozyma and Xanthophyllomyces dendrorhous: Astaxanthin-producing yeasts of biotechnological importance. Acta Aliment., 2006, 5, 99-107.
[http://dx.doi.org/10.1556/AAlim.35.2006.1.11]
[45]
Sakaki, H.; Nakanishi, T.; Tada, A.; Miki, W.; Komemushi, S. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J. Biosci. Bioeng., 2001, 92(3), 294-297.
[http://dx.doi.org/10.1016/S1389-1723(01)80265-6] [PMID: 16233099]
[46]
Zha, J.; Koffas, M.A.G. Anthocyanin production in engineered microorganisms. Biotechnol. Natural Products; Springer Cham, 2017, pp. 81-97.
[http://dx.doi.org/10.1007/978-3-319-67903-7_4]
[47]
Latha, B.V.; Jeevaratnam, K. Purification and characterization of the pigments from Rhodotorula glutinis DFR-PDY isolated from natural source. Global J. Biotechnol. Biochem., 2010, 5(3), 166-174.
[48]
Cerdá-Olmedo, E. Phycomyces and the biology of light and color. FEMS Microbiol. Rev., 2001, 25(5), 503-512.
[http://dx.doi.org/10.1111/j.1574-6976.2001.tb00588.x] [PMID: 11742688]
[49]
Ajikumar, P.K.; Xiao, W-H.; Tyo, K.E.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T.H.; Pfeifer, B.; Stephanopoulos, G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000), 70-74.
[http://dx.doi.org/10.1126/science.1191652] [PMID: 20929806]
[50]
Yadav, V.G.; De Mey, M.; Lim, C.G.; Ajikumar, P.K.; Stephanopoulos, G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab. Eng., 2012, 14(3), 233-241.
[http://dx.doi.org/10.1016/j.ymben.2012.02.001] [PMID: 22629571]
[51]
Zhang, C.; Seow, V.Y.; Chen, X.; Too, H-P. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli. Nat. Commun., 2018, 9(1), 1858.
[http://dx.doi.org/10.1038/s41467-018-04211-x] [PMID: 29752432]
[52]
Li, C.; Swofford, C.A.; Sinskey, A.J. Modular engineering for microbial production of carotenoids. Metab. Eng. Commun., 2019, 10 e00118
[http://dx.doi.org/10.1016/j.mec.2019.e00118] [PMID: 31908924]
[53]
Liao, P.; Hemmerlin, A.; Bach, T.J.; Chye, M.L. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol. Adv., 2016, 34(5), 697-713.
[http://dx.doi.org/10.1016/j.biotechadv.2016.03.005] [PMID: 26995109]
[54]
Yoon, S.H.; Lee, S.H.; Das, A.; Ryu, H.K.; Jang, H.J.; Kim, J.Y.; Oh, D.K.; Keasling, J.D.; Kim, S.W. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J. Biotechnol., 2009, 140(3-4), 218-226.
[http://dx.doi.org/10.1016/j.jbiotec.2009.01.008] [PMID: 19428716]
[55]
Li, Q.; Fan, F.; Gao, X.; Yang, C.; Bi, C.; Tang, J.; Liu, T.; Zhang, X. Balanced activation of IspG and IspH to eliminate MEP intermediate accumulation and improve isoprenoids production in Escherichia coli. Metab. Eng., 2017, 44, 13-21.
[http://dx.doi.org/10.1016/j.ymben.2017.08.005] [PMID: 28864262]
[56]
Coussement, P.; Bauwens, D.; Maertens, J.; De Mey, M. Direct combinatorial pathway optimization. ACS Synth. Biol., 2017, 6(2), 224-232.
[http://dx.doi.org/10.1021/acssynbio.6b00122] [PMID: 27672702]
[57]
Wu, Y.; Zhu, R.Y.; Mitchell, L.A.; Ma, L.; Liu, R.; Zhao, M.; Jia, B.; Xu, H.; Li, Y.X.; Yang, Z.M.; Ma, Y.; Li, X.; Liu, H.; Liu, D.; Xiao, W-H.; Zhou, X.; Li, B-Z.; Yuan, Y-J.; Boeke, J.D. In vitro DNA SCRaMbLE. Nat. Commun., 2018, 9(1), 1935.
[http://dx.doi.org/10.1038/s41467-018-03743-6] [PMID: 29789594]
[58]
Wang, H.H.; Isaacs, F.J.; Carr, P.A.; Sun, Z.Z.; Xu, G.; Forest, C.R.; Church, G.M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257), 894-898.
[http://dx.doi.org/10.1038/nature08187] [PMID: 19633652]
[59]
Zhao, J.; Li, Q.; Sun, T.; Zhu, X.; Xu, H.; Tang, J.; Zhang, X.; Ma, Y. Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab. Eng., 2013, 17, 42-50.
[http://dx.doi.org/10.1016/j.ymben.2013.02.002] [PMID: 23500001]
[60]
Kogure, T.; Inui, M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products. Appl. Microbiol. Biotechnol., 2018, 102(20), 8685-8705.
[http://dx.doi.org/10.1007/s00253-018-9289-6] [PMID: 30109397]
[61]
Henke, N.A.; Wiebe, D.; Pérez-García, F.; Peters-Wendisch, P.; Wendisch, V.F. Coproduction of cell-bound and secreted value-added compounds: Simultaneous production of carotenoids and amino acids by Corynebacterium glutamicum. Bioresour. Technol., 2018, 247, 744-752.
[http://dx.doi.org/10.1016/j.biortech.2017.09.167] [PMID: 30060409]
[62]
Taniguchi, H.; Henke, N.A.; Heider, S.A.E.; Wendisch, V.F. Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metab. Eng. Commun., 2017, 4, 1-11.
[http://dx.doi.org/10.1016/j.meteno.2017.01.001] [PMID: 29142827]
[63]
Naylor, G.W.; Addlesee, H.A.; Gibson, L.C.D.; Hunter, C. The photosynthesis gene cluster of Rhodobacter sphaeroides. Photosynth. Res., 1999, 62, 121-139.
[http://dx.doi.org/10.1023/A:1006350405674]
[64]
Chi, S.C.; Mothersole, D.J.; Dilbeck, P.; Niedzwiedzki, D.M.; Zhang, H.; Qian, P.; Vasilev, C.; Grayson, K.J.; Jackson, P.J.; Martin, E.C.; Li, Y.; Holten, D.; Neil Hunter, C. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. Biochim. Biophys. Acta, 2015, 1847(2), 189-201.
[http://dx.doi.org/10.1016/j.bbabio.2014.10.004] [PMID: 25449968]
[65]
Su, A.; Chi, S.; Li, Y.; Tan, S.; Qiang, S.; Chen, Z.; Meng, Y. Metabolic redesign of Rhodobacter sphaeroides for lycopene production. J. Agric. Food Chem., 2018, 66(23), 5879-5885.
[http://dx.doi.org/10.1021/acs.jafc.8b00855] [PMID: 29806774]
[66]
Hara, K.Y.; Morita, T.; Endo, Y.; Mochizuki, M.; Araki, M.; Kondo, A. Evaluation and screening of efficient promoters to improve astaxanthin production in Xanthophyllomyces dendrorhous. Appl. Microbiol. Biotechnol., 2014, 98(15), 6787-6793.
[http://dx.doi.org/10.1007/s00253-014-5727-2] [PMID: 24737060]
[67]
Yamamoto, K.; Hara, K.Y.; Morita, T.; Nishimura, A.; Sasaki, D.; Ishii, J.; Ogino, C.; Kizaki, N.; Kondo, A. Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Microb. Cell Fact., 2016, 15(1), 155.
[http://dx.doi.org/10.1186/s12934-016-0556-x] [PMID: 27624332]
[68]
Pollmann, H.; Breitenbach, J.; Sandmann, G. Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin. Appl. Microbiol. Biotechnol., 2017, 101(1), 103-111.
[http://dx.doi.org/10.1007/s00253-016-7769-0] [PMID: 27527661]
[69]
Zhu, Q.; Jackson, E.N. Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr. Opin. Biotechnol., 2015, 36, 65-72.
[http://dx.doi.org/10.1016/j.copbio.2015.08.010] [PMID: 26319895]
[70]
Darvishi, F.; Ariana, M.; Marella, E.R.; Borodina, I. Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals. Appl. Microbiol. Biotechnol., 2018, 102(14), 5925-5938.
[http://dx.doi.org/10.1007/s00253-018-9099-x] [PMID: 29808327]
[71]
Matthäus, F.; Ketelhot, M.; Gatter, M.; Barth, G. Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl. Environ. Microbiol., 2014, 80(5), 1660-1669.
[http://dx.doi.org/10.1128/AEM.03167-13] [PMID: 24375130]
[72]
Schwartz, C.; Frogue, K.; Misa, J.; Wheeldon, I. Host and pathway engineering for enhanced lycopene biosynthesis in Yarrowia lipolytica. Front. Microbiol., 2017, 8, 2233.
[http://dx.doi.org/10.3389/fmicb.2017.02233] [PMID: 29276501]
[73]
Gao, S.; Tong, Y.; Zhu, L.; Ge, M.; Zhang, Y.; Chen, D.; Jiang, Y.; Yang, S. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab. Eng., 2017, 41, 192-201.
[http://dx.doi.org/10.1016/j.ymben.2017.04.004] [PMID: 28414174]
[74]
Larroude, M.; Celinska, E.; Back, A.; Thomas, S.; Nicaud, J.M.; Ledesma-Amaro, R. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene. Biotechnol. Bioeng., 2018, 115(2), 464-472.
[http://dx.doi.org/10.1002/bit.26473] [PMID: 28986998]
[75]
Mantzouridou, F.T.; Naziri, E. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions. Appl. Microbiol. Biotechnol., 2017, 101(5), 1845-1856.
[http://dx.doi.org/10.1007/s00253-016-7943-4] [PMID: 27822738]
[76]
Mantzouridou, F.; Roukas, T.; Achatz, B. Effect of oxygen rate on β-carotene production from synthetic medium by Blakeslea trispora in shake flask culture. Enzyme Microb. Technol., 2005, 37, 687-694.
[http://dx.doi.org/10.1016/j.enzmictec.2005.02.020]
[77]
Chatzivasileiou, A.O.; Ward, V.; Edgar, S.M.; Stephanopoulos, G. Two-step pathway for isoprenoid synthesis. Proc. Natl. Acad. Sci. USA, 2018, 1-6.
[PMID: 30584096]
[78]
Jin, J.; Wang, Y.; Yao, M.; Gu, X.; Li, B.; Liu, H.; Ding, M.; Xiao, W.; Yuan, Y. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. Biotechnol. Biofuels, 2018, 11, 230.
[http://dx.doi.org/10.1186/s13068-018-1227-4] [PMID: 30159030]
[79]
Chen, Y.; Xiao, W.; Wang, Y.; Liu, H.; Li, X.; Yuan, Y. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb. Cell Fact., 2016, 15(1), 113.
[http://dx.doi.org/10.1186/s12934-016-0509-4] [PMID: 27329233]
[80]
Kang, C.W.; Lim, H.G.; Yang, J.; Noh, M.H.; Seo, S.W.; Jung, G.Y. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metab. Eng., 2018, 48, 121-128.
[http://dx.doi.org/10.1016/j.ymben.2018.05.020] [PMID: 29864582]
[81]
Ma, T.; Shi, B.; Ye, Z.; Li, X.; Liu, M.; Chen, Y.; Xia, J.; Nielsen, J.; Deng, Z.; Liu, T. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab. Eng., 2019, 52, 134-142.
[http://dx.doi.org/10.1016/j.ymben.2018.11.009] [PMID: 30471360]
[82]
Zha, J.; Koffas, M.A.G. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives. Synth Syst Biotechnol, 2017, 2(4), 259-266.
[http://dx.doi.org/10.1016/j.synbio.2017.10.005] [PMID: 29552650]
[83]
Gulani, C.; Bhattacharya, S.; Das, A. Assessment of process parameters influencing the enhanced production of prodigiosin from Serratia marcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malays. J. Microbiol., 2012, 8(2), 116-122.
[http://dx.doi.org/10.21161/mjm.03612]
[84]
Petroni, K.; Tonelli, C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci., 2011, 181(3), 219-229.
[http://dx.doi.org/10.1016/j.plantsci.2011.05.009] [PMID: 21763532]
[85]
Lim, C.G.; Wong, L.; Bhan, N.; Dvora, H.; Xu, P.; Venkiteswaran, S.; Koffas, M.A. Development of a recombinant Escherichia coli strain for overproduction of plant pigment, anthocyanin. Appl. Environ. Microbiol., 2015, 81(18), 6276-6284.
[http://dx.doi.org/10.1128/AEM.01448-15] [PMID: 26150456]
[86]
Jones, J.A.; Vernacchio, V.R.; Collins, S.M.; Shirke, A.N.; Xiu, Y.; Englaender, J.A.; Cress, B.F.; McCutcheon, C.C.; Linhardt, R.J.; Gross, R.A.; Koffas, M.A.G. Complete biosynthesis of anthocyanins using E. coli polycultures. MBio, 2017, 8(3), e00617-e00621.
[http://dx.doi.org/10.1128/mBio.00621-17] [PMID: 28588129]
[87]
Levisson, M.; Patinios, C.; Hein, S.; de Groot, P.A.; Daran, J-M.; Hall, R.D.; Martens, S.; Beekwilder, J. Engineering de novo anthocyanin production in Saccharomyces cerevisiae. Microb. Cell Fact., 2018, 17(1), 103.
[http://dx.doi.org/10.1186/s12934-018-0951-6] [PMID: 29970082]
[88]
Zhao, S.; Jones, J.A.; Lachance, D.M.; Bhan, N.; Khalidi, O.; Venkataraman, S.; Wang, Z.; Koffas, M.A.G. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metab. Eng., 2015, 28, 43-53.
[http://dx.doi.org/10.1016/j.ymben.2014.12.002] [PMID: 25527438]
[89]
Springob, K.; Nakajima, J.; Yamazaki, M.; Saito, K. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat. Prod. Rep., 2003, 20(3), 288-303.
[http://dx.doi.org/10.1039/b109542k] [PMID: 12828368]
[90]
Yan, Y.; Li, Z.; Koffas, M.A.G. High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol. Bioeng., 2008, 100(1), 126-140.
[http://dx.doi.org/10.1002/bit.21721] [PMID: 18023053]
[91]
Cress, B.F.; Leitz, Q.D.; Kim, D.C.; Amore, T.D.; Suzuki, J.Y.; Linhardt, R.J.; Koffas, M.A.G. CRISPRi-mediated metabolic engineering of E. coli for O-methylated anthocyanin production. Microb. Cell Fact., 2017, 16(1), 10.
[http://dx.doi.org/10.1186/s12934-016-0623-3] [PMID: 28095853]
[92]
Abbas, M.; Ali, A.; Arshad, M.; Atta, A.; Mehmood, Z.; Tahir, I.M.; Iqbal, M. Mutagenicity, cytotoxic and antioxidant activities of Ricinus communis different parts. Chem. Cent. J., 2018, 12(1), 3.
[http://dx.doi.org/10.1186/s13065-018-0370-0] [PMID: 29350299]
[93]
Mishra, B.; Varjani, S.; Varma, G.K.S. Agro-industrial by-products in the synthesis of food grade microbial pigments: An eco-friendly alternative. Green Bio-processes; Springer: Singapore, 2019, pp. 245-265.
[http://dx.doi.org/10.1007/978-981-13-3263-0_13]
[94]
Rodrigues, D.B.; Flores, E.M.M.; Barin, J.S.; Mercadante, A.Z.; Jacob-Lopes, E.; Zepka, L.Q. Production of carotenoids from microalgae cultivated using agroindustrial wastes. Food Res. Int., 2014, 65, 144-148.
[http://dx.doi.org/10.1016/j.foodres.2014.06.037]
[95]
Bhaskar, N.; Suresh, P.V.; Sakhare, P.Z.; Sachindra, N.M. Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme Microb. Technol., 2007, 40(5), 1427-1434.
[http://dx.doi.org/10.1016/j.enzmictec.2006.10.019]
[96]
Joshi, V.K.; Attri, D.; Rana, M.S. Optimization of apple pomace based medium and fermentation conditions for pigment production by Sarcina sp. Indian J. Nat. Prod. Resour., 2011, 2(4), 421-427.
[97]
Korumilli, T.; Mishra, S. Carotenoid production by Bacillus clausii using rice powder as the sole substrate: pigment analyses and optimization of key production parameters. J. Biochem. Technol., 2014, 5(4), 788-794.
[98]
Elsanhoty, R.M.; Al-Turki, I.A.; Ramdan, M.F. Screening of medium components by Plackettt-Burman design for carotenoid production using date (Phoenix dactylifera) wastes. Ind. Crops Prod., 2012, 36, 313-320.
[http://dx.doi.org/10.1016/j.indcrop.2011.10.013]
[99]
Aruldass, C.A.; Aziz, A.; Venil, C.K.; Khasim, A.R.; Ahmad, W.A. Utilization of agro-industrial waste for the production of yellowish orange pigment from Chryseobacteirum artocarpi CECT 8497. Int. Biodeter. Biodegrad., 2016, 113, 342-349.
[http://dx.doi.org/10.1016/j.ibiod.2016.01.024]
[100]
Vidyalakshmi, R.; Paranthaman, R.; Murugesh, S.; Singaravadivel, K. Microbial bioconversion of rice broken to food grade pigments. Global J. Biotechnol. Biochem., 2009, 4, 84-87.
[101]
Sopandi, T.; Wardah, A.; Surtiningsih, T.; Suwandi, A.; Smith, J.J. Utilization and optimization of a waste stream cellulose culture medium for pigment production by Penicillium spp. J. Appl. Microbiol., 2013, 114(3), 733-745.
[http://dx.doi.org/10.1111/jam.12110] [PMID: 23279152]
[102]
Aksu, Z.; Eren, A.T. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agriculture wastes as a carbon source. Process Biochem., 2005, 40(9), 2985-2991.
[http://dx.doi.org/10.1016/j.procbio.2005.01.011]
[103]
Marova, I.; Carnecka, M.; Halienova, A.; Certik, M.; Dvorakova, T.; Haronikova, A. Use of several waste substrates for carotenoid-rich yeast biomass production. J. Environ. Manage., 2012, 95(Suppl.), S338-S342.
[http://dx.doi.org/10.1016/j.jenvman.2011.06.018] [PMID: 21741756]
[104]
Tinoi, J.; Rakariyatham, N.; Deming, R.L. Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochem., 2005, 40(7), 2551-2557.
[http://dx.doi.org/10.1016/j.procbio.2004.11.005]
[105]
Subhasree, R.S.; Babu, P.D.; Vidyalakshmi, R.; Mohan, V.P. Effect of carbon and nitrogen sources on stimulation of pigment production by Monascus purpureus on Jackfruit Seeds. Int. J Microbiol. Res., 2011, 2(2), 184-187.
[106]
Panesar, R. Bioutilization of kinnow waste for the production of biopigments using submerged fermentation. Int. J. Food Sci. Nutr., 2012, 3(1), 9-13.
[107]
Bhosale, P.; Gadre, R.V. β-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant. J. Ind. Microbiol. Biotechnol., 2001, 26(6), 327-332.
[http://dx.doi.org/10.1038/sj.jim.7000138] [PMID: 11571614]
[108]
Frengova, G.; Simova, E.; Beshkova, D. Use of whey ultrafiltrate as a substrate for production of carotenoids by the yeast Rhodotorula rubra. Appl. Biochem. Biotechnol., 2004, 112(3), 133-141.
[http://dx.doi.org/10.1385/ABAB:112:3:133] [PMID: 15007181]
[109]
Valduga, E.; Rausch Ribeiro, A.H.; Cence, K.; Colet, R.; Tiggemann, L.; Zeni, J.; Toniazzo, G. Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatal. Agric. Biotechnol., 2014, 3(2), 207-213.
[http://dx.doi.org/10.1016/j.bcab.2013.10.001]
[110]
Tarangini, K.; Mishra, S. Carotenoid production by Rhodotorula sp. on fruit waste extract as a sole carbon source and optimization of key parameters. Iran. J. Chem. Chem. Eng., (IJCCE), 2014, 33(3), 89-99.
[111]
Jixian, G.; Yanfei, R.; Jianfei, Z.; Zheng, L.; Qiujin, L.; Huiqin, L. Microbial synthesis preparation and application of red nanopigment dye liquor for cotton. Faming Zhuanli Shenqing., CN106434757 A 20170222, 2017.
[112]
Lin, C-H.; Lin, T-H.; Pan, T-M. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods. Food Funct., 2017, 8(6), 2102-2109.
[http://dx.doi.org/10.1039/C7FO00406K] [PMID: 28608901]
[113]
He, X.; Li, Y.; Lawson, D.; Xie, D.Y. Metabolic engineering of anthocyanins in dark tobacco varieties. Physiol. Plant., 2017, 159(1), 2-12.
[http://dx.doi.org/10.1111/ppl.12475] [PMID: 27229540]
[114]
Venil, C.K.; Zakaria, Z.A.; Ahmad, W.A. Bacterial pigments and their applications. Process Biochem., 2013, 48, 1065-1079.
[http://dx.doi.org/10.1016/j.procbio.2013.06.006]
[115]
Kot, A.M.; Błażejak, S.; Kieliszek, M.; Gientka, I.; Bryś, J. Simultaneous production of lipids and carotenoids by the red yeast Rhodotorula from waste glycerol fraction and potato wastewater. Appl. Biochem. Biotechnol., 2019, 189(2), 589-607.
[http://dx.doi.org/10.1007/s12010-019-03023-z] [PMID: 31073981]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy