Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanoparticles as a Tool for Broadening Antifungal Activities

Author(s): Daniele Fernanda Renzi, Laís de Almeida Campos, Eduardo Hösel Miranda, Rubiana Mara Mainardes, Wolf-Rainer Abraham, Diana Fortkamp Grigoletto and Najeh Maissar Khalil*

Volume 28, Issue 9, 2021

Published on: 30 March, 2020

Page: [1841 - 1873] Pages: 33

DOI: 10.2174/0929867327666200330143338

Price: $65

Abstract

Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.

Keywords: Azoles, echinocandins, fungal infection, nanotechnology, polyenes, nano partice drug delivery, infectious disease.

« Previous
[1]
Cole, D.C.; Govender, N.P.; Chakrabarti, A.; Sacarlal, J.; Denning, D.W. Improvement of fungal disease identification and management: combined health systems and public health approaches. Lancet Infect. Dis., 2017, 17(12), e412-e419.
[http://dx.doi.org/10.1016/S1473-3099(17)30308-0] [PMID: 28774694 ]
[2]
Suleyman, G.; Alangaden, G.J. Nosocomial fungal infections: epidemiology, infection control and prevention. Infect. Dis. Clin. North Am., 2016, 30(4), 1023-1052.
[http://dx.doi.org/10.1016/j.idc.2016.07.008] [PMID: 27816138]
[3]
Tudela, J.L.R.; Denning, D.W. Recovery from serious fungal infections should be realisable for everyone. Lancet Infect. Dis., 2017, 17(11), 1111-1113.
[http://dx.doi.org/10.1016/S1473-3099(17)30319-5] [PMID: 28774695]
[4]
Kidd, S.E.; Chen, S.C.; Meyer, W.; Halliday, C.L. A new age in molecular diagnostics for invasive fungal disease: are we ready? Front. Microbiol., 2020, 10, 2903.
[http://dx.doi.org/10.3389/fmicb.2019.02903] [PMID: 31993022]
[5]
Omrani, A.S.; Almaghrabi, R.S. Complications of hematopoietic stem transplantation: fungal infections. Hematol. Oncol. Stem Cell Ther., 2017, 10(4), 239-244.
[http://dx.doi.org/10.1016/j.hemonc.2017.05.013] [PMID: 28636889]
[6]
Calley, J.L.; Warris, A. Recognition and diagnosis of invasive fungal infections in neonates. J. Infect., 2017, 74(Suppl. 1), S108-S113.
[http://dx.doi.org/10.1016/S0163-4453(17)30200-1] [PMID: 28646949]
[7]
Mousset, S.; Buchheidt, D.; Heinz, W.; Ruhnke, M.; Cornely, O.A.; Egerer, G.; Krüger, W.; Link, H.; Neumann, S.; Ostermann, H.; Panse, J.; Penack, O.; Rieger, C.; Schmidt-Hieber, M.; Silling, G.; Südhoff, T.; Ullmann, A.J.; Wolf, H-H.; Maschmeyer, G.; Böhme, A. Treatment of invasive fungal infections in cancer patients-updated recommendations of the infectious diseases working party (AGIHO) of the German society of hematology and oncology (DGHO). Ann. Hematol., 2014, 93(1), 13-32.
[http://dx.doi.org/10.1007/s00277-013-1867-1] [PMID: 24026426]
[8]
Renau, A.I.; García-Vidal, C.; Salavert, M. [Invasive yeast infections in severely burned patients]. Rev. Iberoam. Micol., 2016, 33(3), 160-169.
[http://dx.doi.org/10.1016/j.riam.2016.02.002] [PMID: 27395025]
[9]
Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis., 2017, 17(11), e334-e343.
[http://dx.doi.org/10.1016/S1473-3099(17)30303-1] [PMID: 28774701]
[10]
Rodríguez-Cerdeira, C.; Arenas, R.; Moreno-Coutiño, G.; Vásquez, E.; Fernández, R.; Chang, P. Systemic fungal infections in patients with human inmunodeficiency virus. Actas Dermosifiliogr., 2014, 105(1), 5-17.
[http://dx.doi.org/10.1016/j.ad.2012.06.017] [PMID: 23107866]
[11]
Richardson, M.; Lass-Flörl, C. Changing epidemiology of systemic fungal infections. Clin. Microbiol. Infect., 2008, 14(Suppl. 4), 5-24.
[http://dx.doi.org/10.1111/j.1469-0691.2008.01978.x] [PMID: 18430126]
[12]
Schmiedez, Y.; Zimmerli, S. Common invasive fungal disease: an overview of invasive candidiasis, aspergillosis, cryptococcosis and pneumocystis pneumonia. Swiss Med. Wkly., 2016, 146, w14281.
[http://dx.doi.org/10.4414/smw.2016.14281] [PMID: 26901377]
[13]
Dong, D.; Li, Z.; Zhang, L.; Jiang, C.; Mao, E.; Wang, X.; Peng, Y. Clinical and microbiological investigation of fungemia from four hospitals in China. Mycopathologia, 2015, 179(5-6), 407-414.
[http://dx.doi.org/10.1007/s11046-014-9855-0] [PMID: 25720562]
[14]
Ghosh, A.; Magar, D.G.; Thapa, S.; Nayak, N.; Talwar, O.P. Histopathology of important fungal infections- a summary. J. Pathol. Nepal, 2019, 9, 1490-1496.
[http://dx.doi.org/10.3126/jpn.v9i1.23377]
[15]
Salzer, H.J.F.; Burchard, G.; Cornely, O.A.; Lange, C.; Rolling, T.; Schmiedel, S.; Libman, M.; Capone, D.; Le, T.; Dalcolmo, M.P.; Heyckendorf, J. Diagnosis and management of systemic endemic mycoses causing pulmonar disease. Respiration, 2018, 96(3), 283-301.
[http://dx.doi.org/10.1159/000489501] [PMID: 29953992]
[16]
Kauffman, C.A. Endemic mycoses: blastomycosis, histoplasmosis and sporotrichosis. Infect. Dis. Clin. North Am., 2006, 20(3), 645-662. [vii.].
[http://dx.doi.org/10.1016/j.idc.2006.07.002] [PMID: 16984873]
[17]
Colombo, A.L.; Tobón, A.; Restrepo, A.; Queiroz-Telles, F.; Nucci, M. Epidemiology of endemic systemic fungal infections in Latin America. Med. Mycol., 2011, 49(8), 785-798.
[http://dx.doi.org/10.3109/13693786.2011.577821] [PMID: 21539506]
[18]
Queiroz-Telles, F.; Buccheri, R.; Benard, G. Sporotrichosis in immunicompromised hosts. J. Fungi (Basel), 2019, 5(1), 1-23.
[http://dx.doi.org/10.3390/jof5010008] [PMID: 30641918]
[19]
Magalhães, Y.C.; Bomfim, M.R.Q.; Melônio, L.C.; Ribeiro, P.C.S.; Cosme, L.M.; Rhoden, C.R.; Marques, S.G. Clinical significance of the isolation of Candida species from hospitalized patients. Braz. J. Microbiol., 2015, 46(1), 117-123.
[http://dx.doi.org/10.1590/S1517-838246120120296] [PMID: 26221096]
[20]
Shirkhani, K.; Teo, I.; Armstrong-James, D.; Shaunak, S. Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis. Nanomedicine (Lond.), 2015, 11(5), 1217-1226.
[http://dx.doi.org/10.1016/j.nano.2015.02.012] [PMID: 25791815]
[21]
Fornari, G.; Vicente, V.A.; Gomes, R.R.; Muro, M.D.; Pinheiro, R.L.; Ferrari, C.; Herkert, P.F.; Takimura, M.; Carvalho, N.S.; Queiroz-Telles, F. Susceptibility and molecular characterization of Candida species from patients with vulvovaginitis. Braz. J. Microbiol., 2016, 47(2), 373-380.
[http://dx.doi.org/10.1016/j.bjm.2016.01.005] [PMID: 26991298]
[22]
Brandolt, T.M.; Klafke, G.B.; Gonçalves, C.V.; Bitencourt, L.R.; Martinez, A.M.B.; Mendes, J.F.; Meireles, M.C.A.; Xavier, M.O. Prevalence of Candida spp. in cervical-vaginal samples and the in vitro susceptibility of isolates. Braz. J. Microbiol., 2017, 48(1), 145-150.
[http://dx.doi.org/10.1016/j.bjm.2016.09.006] [PMID: 27756539]
[23]
Fernández-García, R.; de Pablo, E.; Ballesteros, M.P.; Serrano, D.R. Unmet clinical needs in the treatment of systemic fungal infections: The role of amphotericin B and drug targeting. Int. J. Pharm., 2017, 525(1), 139-148.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.013] [PMID: 28400291]
[24]
Maschmeyer, G.; Patterson, T.F. Our 2014 approach to breakthrough invasive fungal infections. Mycoses, 2014, 57(11), 645-651.
[http://dx.doi.org/10.1111/myc.12213] [PMID: 24963554]
[25]
Kupferschmidt, K. New drugs target growing threat of fatal fungi. Science, 2019, 366(6464), 407.
[http://dx.doi.org/10.1126/science.366.6464.407] [PMID: 31649174]
[26]
Voltan, A.R.; Quindós, G.; Alarcón, K.P.M.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S.; Chorilli, M. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy? Int. J. Nanomedicine, 2016, 11, 3715-3730.
[http://dx.doi.org/10.2147/IJN.S93105] [PMID: 27540288]
[27]
Vásquez Marcano, R.G.D.J.; Tominaga, T.T.; Khalil, N.M.; Pedroso, L.S.; Mainardes, R.M. Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydr. Polym., 2018, 202, 345-354.
[http://dx.doi.org/10.1016/j.carbpol.2018.08.142] [PMID: 30287009]
[28]
Li, H.; Wang, L.; Chai, Y.; Cao, Y.; Lu, F. Synergistic effect between silver nanoparticles and antifungal agents on Candida albicans revealed by dynamic surface-enhanced Raman spectroscopy. Nanotoxicology, 2018, 12(10), 1230-1240.
[http://dx.doi.org/10.1080/17435390.2018.1540729] [PMID: 30501538]
[29]
Pham, D.C.; Nguyen, T.H.; Ngoc, U.T.P.; Le, N.T.T.; Tran, T.V.; Nguyen, D.H. Preparation, characterization and antifungal properties of chitosan-silver nanoparticles synergize fungicide against Pyricularia oryzae. J. Nanosci. Nanotechnol., 2018, 18(8), 5299-5305.
[http://dx.doi.org/10.1166/jnn.2018.15400] [PMID: 29458580]
[30]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[31]
Scheffel, U.; Rhodes, B.A.; Natarajan, T.K.; Wagner, H.N., Jr Albumin microspheres for study of the reticuloendothelial system. J. Nucl. Med., 1972, 13(7), 498-503.
[PMID: 5033902]
[32]
Athar, M.; Das, A.J. Therapeutic nanoparticles: state-of-the-art of nanomedicine. Adv. Mat. Res., 2014, 1(1), 25-37.
[http://dx.doi.org/10.5185/amr.2014.1005 ]
[33]
Barratt, G.M. Therapeutic applications of colloidal drug carriers. Pharm. Sci. Technol. Today, 2000, 3(5), 163-171.
[http://dx.doi.org/10.1016/S1461-5347(00)00255-8] [PMID: 10785658]
[34]
Nilewar, G.; Mute, P.B.; Talhan, P.P.; Thakre, S. Nanocapsules: Nano novel drug delivery system. PharmaTutor, 2017, 5(6), 14-16.
[35]
Pathak, C.; Vaidya, F.U.; Pandey, S.M. Chapter 3- Mechanism for development of nanobased drug delivery system.In Applications of Targeted Nano Drugs and Delivery Systems; Mohapatra, S.S.; Ranjan, S.; Dasgupta, N.; Mishra, R.K.; Thomas, S., Eds.; Elviser, United Kingdom, 2019, pp. 35-67.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00003-X]
[36]
Singh, D.; Singh, S.; Sahu, J.; Srivastava, S.; Singh, M.R. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 401-409.
[http://dx.doi.org/10.3109/21691401.2014.955106] [PMID: 25229834]
[37]
Patil, M.P.; Kim, G-D. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf. B Biointerfaces, 2018, 172, 487-495.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.007] [PMID: 30205339]
[38]
Yoon, H.Y.; Jeon, S.; You, D.G.; Park, J.H.; Kwon, I.C.; Koo, H.; Kim, K. Inorganic nanoparticles for image-guided therapy. Bioconjug. Chem., 2017, 28(1), 124-134.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00512] [PMID: 27788580]
[39]
Chen, S.; Liu, M-X.; Yu, Y-L.; Wang, J-H. Room-temperature synthesis of fluorescent carbon-based nanoparticles and their application in multidimensional sensing. Sens. Actuators B Chem., 2019, 288, 749-756.
[http://dx.doi.org/10.1016/j.snb.2019.03.067]
[40]
Rani, S.; Sahoo, R.K.; Nakhate, K.T. Ajazuddin; Gupta, U. Biotinylated HPMA centered polymeric nanoparticles for Bortezomib delivery. Int. J. Pharm., 2020, 579, 119173.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119173] [PMID: 32097684]
[41]
Carvalho, I.P.S.; Miranda, M.A.; Silva, L.B.; Chrysostomo-Massaro, T.N.; Paschoal, J.A.R.; Bastos, J.K.; Marcato, P.D. In vitro anticancer activity and physicochemical properties of Solanum lycocarpum alkaloidic extract loaded in natural lipid-based nanoparticles. Colloid. Interface Sci. Commun, 2019, 28, 5-14.
[http://dx.doi.org/10.1016/j.colcom.2018.11.001]
[42]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[43]
Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep., 2012, 64(5), 1020-1037.
[http://dx.doi.org/10.1016/S1734-1140(12)70901-5] [PMID: 23238461]
[44]
Hu, X.; Chai, Z.; Lu, L.; Ruan, H.; Wang, R.; Zhan, C. Bortezomib dendrimer prodrug-based nanoparticle system. Adv. Funct. Mater., 2019, 29(14), 1807941.
[http://dx.doi.org/10.1002/adfm.201807941]
[45]
Pereverzeva, E.; Treschalin, I.; Bodyagin, D.; Maksimenko, O.; Langer, K.; Dreis, S.; Asmussen, B.; Kreuter, J.; Gelperina, S. Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio- and testicular toxicity. Int. J. Pharm., 2007, 337(1-2), 346-356.
[http://dx.doi.org/10.1016/j.ijpharm.2007.01.031] [PMID: 17306479]
[46]
Ray, L.; Karthik, R.; Shrivastava, V.; Singh, S.P.; Pant, A.B.; Goyal, N.; Gupta, K.C. Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Deliv. Transl. Res., 2021, 11(1), 118-130.
[http://dx.doi.org/10.1007/s13346-020-00712-9] [PMID: 32016707]
[47]
de Assis, D.N.; Araújo, R.S.; Fuscaldi, L.L.; Fernandes, S.O.A.; Mosqueira, V.C.F.; Cardoso, V.N. Biodistribution of free and encapsulated 99mTc-fluconazole in an infection model induced by 29665644. Biomed. Pharmacother., 2018, 99, 438-444.
[http://dx.doi.org/10.1016/j.biopha.2018.01.021] [PMID: 29665644]
[48]
Pathak, M.K.; Chhabra, G.; Pathak, K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev. Ind. Pharm., 2013, 39(5), 780-790.
[http://dx.doi.org/10.3109/03639045.2012.707203] [PMID: 22873799]
[49]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[50]
Spadari, C.C.; Lopes, L.B.; Ishida, K. Potential use of alginate-based carriers as antifungal delivery system. Front. Microbiol., 2017, 8, 97.
[http://dx.doi.org/10.3389/fmicb.2017.00097] [PMID: 28194145]
[51]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[52]
Ren, T.; Xu, N.; Cao, C.; Yuan, W.; Yu, X.; Chen, J.; Ren, J. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J. Biomater. Sci. Polym. Ed., 2009, 20(10), 1369-1380.
[http://dx.doi.org/10.1163/092050609X12457418779185] [PMID: 19622277]
[53]
Sinha, B.; Mukherjee, B.; Pattnaik, G. Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: in vitro and in vivo study. Nanomedicine (Lond.), 2013, 9(1), 94-104.
[http://dx.doi.org/10.1016/j.nano.2012.04.005] [PMID: 22633899]
[54]
Kumar, R.; Sinha, V.R. Fabrication of voriconazol solid lipid nanoparticle for effective ocular delivery. Value Health, 2014, 17, 613.
[http://dx.doi.org/10.1016/j.jval.2014.08.2153]
[55]
Santos, R.S.; Loureiro, K.; Rezende, P.; Nalone, L.; Barbosa, R.M.; Santini, A.; Santos, A.C.; Silva, C.F.; Souto, E.B.; Souza, D.P.; Amaral, R.G.; Severino, P. Innovative nanocompounds for cutaneous administration of classical antifungal drugs: a systematic review. J. Dermatolog. Treat., 2018, 1, 1-37.
[PMID: 29856232]
[56]
Czajkowska-Kośnik, A.; Szekalska, M.; Winnicka, K. Nanostructured lipid carriers: A potential use for skin drug delivery systems. Pharmacol. Rep., 2019, 71(1), 156-166.
[http://dx.doi.org/10.1016/j.pharep.2018.10.008] [PMID: 30550996]
[57]
Ruttala, H.B.; Ramasamy, T.; Madeshwaran, T.; Hiep, T.T.; Kandasamy, U.; Oh, K.T.; Choi, H.G.; Yong, C.S.; Kim, J.O. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch. Pharm. Res., 2018, 41(2), 111-129.
[http://dx.doi.org/10.1007/s12272-017-0995-x] [PMID: 29214601]
[58]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36, 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[59]
Stella, B.; Marengo, A.; Arpicco, S. Nanoparticles: an overview of the preparation methods from preformed polymers; Istituto Lombardo - Accademia Di Scienze e Lettere - Incontri Di Studio, 2017.
[http://dx.doi.org/10.4081/incontri.2017.266]
[60]
Albernaz, V.L.; Bach, M.; Weber, A.; Southan, A.; Tovar, G.E.M. Active ester containing surfmer for one-stage polymer nanoparticle surface functionalization in mini-emulsion polymerization. Polymers (Basel), 2018, 10(4), 408.
[http://dx.doi.org/10.3390/polym10040408] [PMID: 30966443]
[61]
Liu, B.; Fu, Z.; Meng, W.; Chen, M.; Wu, G.; Zhang, M.; Zhang, H. New insights on in situ charge neutralization governing particle size distribution in macroemulsion polymerization. Colloids Surf. A Physicochem. Eng. Asp., 2018, 540, 242-248.
[http://dx.doi.org/10.1016/j.colsurfa.2018.01.020]
[62]
Inagaki, C.S.; Oliveira, M.M.; Zarbin, A.J.G. Direct and one-step synthesis of polythiophene/gold nanoparticles thin films through liquid/liquid interfacial polymerization. J. Colloid Interface Sci., 2018, 516, 498-510.
[http://dx.doi.org/10.1016/j.jcis.2018.01.076] [PMID: 29408140]
[63]
Desgouilles, S.; Vauthier, C.; Bazile, D.; Vacus, J.; Grossiord, J-L.; Veillard, M.; Couvreur, P. The design of nanoparticles obtained by solvent evaporation: a comprehensive study. Langmuir, 2003, 19, 9504-9510.
[http://dx.doi.org/10.1021/la034999q]
[64]
Deng, Y.; Yang, F.; Zhao, X.; Wang, L.; Wu, W.; Zu, C.; Wu, M. Improving the skin penetration and antifebrile activity of ibuprofen by preparing nanoparticles using emulsion solvent evaporation method. Eur. J. Pharm. Sci., 2018, 114, 293-302.
[http://dx.doi.org/10.1016/j.ejps.2017.12.024] [PMID: 29288707]
[65]
Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-based nanoparticle preparation via nanoprecipitation method. Materials (Basel), 2018, 11(3), 394.
[http://dx.doi.org/10.3390/ma11030394] [PMID: 29518919]
[66]
Esmaeili, F.; Atyabi, F.; Dinarvand, R. Preparation and characterization of estradiol-loaded PLGA nanoparticles using homogenization-solvent diffusion method. Daru, 2008, 16, 196-202.
[67]
Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm., 2015, 496(2), 173-190.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.057] [PMID: 26522982]
[68]
Martinez, N.Y.; Andrade, P.F.; Durán, N.; Cavalitto, S. Development of double emulsion nanoparticles for the encapsulation of bovine serum albumin. Colloids Surf. B Biointerfaces, 2017, 158, 190-196.
[http://dx.doi.org/10.1016/j.colsurfb.2017.06.033] [PMID: 28692874]
[69]
Nah, J-W.; Paek, Y-W.; Jeong, Y-I.; Kim, D-W.; Cho, C-S.; Kim, S-H.; Kim, M-Y. Clonazepam release from poly(DL-lactide-co-glycolide) nanoparticles prepared by dialysis method. Arch. Pharm. Res., 1998, 21(4), 418-422.
[http://dx.doi.org/10.1007/BF02974636] [PMID: 9875469]
[70]
Wong, T.W.; John, P. Advances in spray drying technology for nanoparticle formation. Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer: Cham, 2015, pp. 329-346.
[http://dx.doi.org/10.1007/978-3-319-13188-7_18-1]
[71]
Montes, A.; Gordillo, M.D.; Pereyra, C.; Martinez de la Ossa, E.J. Particles formation using supercritical fluids. Mass Transfer - Advanced Aspects; Nakajima, H., Ed.; InTech, 2011, pp. 461-480.
[http://dx.doi.org/10.5772/21271]
[72]
Saad, W.S.; Prud’homme, R.K. Principles of nanoparticle formation by flash nanoprecipitation. Nano Today, 2016, 11, 212-227.
[http://dx.doi.org/10.1016/j.nantod.2016.04.006]
[73]
Pant, A.; Negi, J.S. Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex. Eur. J. Pharm. Sci., 2018, 112, 180-185.
[http://dx.doi.org/10.1016/j.ejps.2017.11.020] [PMID: 29191520]
[74]
Helttunen, K.; Galán, A.; Ballester, P.; Bergenholtz, J.; Nissinen, M. Solid lipid nanoparticles from amphiphilic calixpyrroles. J. Colloid Interface Sci., 2016, 464, 59-65.
[http://dx.doi.org/10.1016/j.jcis.2015.11.012] [PMID: 26609923]
[75]
Amasya, G.; Aksu, B.; Badilli, U.; Onay-Besikci, A.; Tarimci, N. QbD guided early pharmaceutical development study: Production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. Int. J. Pharm., 2019, 563, 110-121.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.056] [PMID: 30935913]
[76]
Mendes, A.I.; Silva, A.C.; Catita, J.A.; Cerqueira, F.; Gabriel, C.; Lopes, C.M. Miconazole-loaded nanostructured lipid carriers (NLC) for local delivery to the oral mucosa: improving antifungal activity. Colloids Surf. B Biointerfaces, 2013, 111, 755-763.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.041] [PMID: 23954816]
[77]
Kotler-Brajtburg, J.; Price, H.D.; Medoff, G.; Schlessinger, D.; Kobayashi, G.S. Molecular basis for the selective toxicity of amphotericin B for yeast and filipin for animal cells. Antimicrob. Agents Chemother., 1974, 5(4), 377-382.
[http://dx.doi.org/10.1128/AAC.5.4.377] [PMID: 15825391]
[78]
Scorzoni, L.; de Paula, E. Silva, A.C.; Marcos, C.M.; Assato, P.A.; de Melo, W.C.; de Oliveira, H.C.; Costa-Orlandi, C.B.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front. Microbiol., 2017, 8, 36.
[http://dx.doi.org/10.3389/fmicb.2017.00036] [PMID: 28167935]
[79]
Anderson, T.M.; Clay, M.C.; Cioffi, A.G.; Diaz, K.A.; Hisao, G.S.; Tuttle, M.D.; Nieuwkoop, A.J.; Comellas, G.; Maryum, N.; Wang, S.; Uno, B.E.; Wildeman, E.L.; Gonen, T.; Rienstra, C.M.; Burke, M.D. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol., 2014, 10(5), 400-406.
[http://dx.doi.org/10.1038/nchembio.1496] [PMID: 24681535]
[80]
Bolard, J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta, 1986, 864(3-4), 257-304.
[http://dx.doi.org/10.1016/0304-4157(86)90002-X] [PMID: 3539192]
[81]
Holz, R.W. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann. N. Y. Acad. Sci., 1974, 235(0), 469-479.
[http://dx.doi.org/10.1111/j.1749-6632.1974.tb43284.x] [PMID: 4528030]
[82]
Jukic, E.; Blatzer, M.; Posch, W.; Steger, M.; Binder, U.; Lass-Flörl, C.; Wilflingseder, D. Oxidative stress response tips the balance in Aspergillus terreus amphotericin B resistance. Antimicrob. Agents Chemother., 2017, 61(10), 1-14.
[http://dx.doi.org/10.1128/AAC.00670-17] [PMID: 28739793]
[83]
Vriens, K.; Kumar, P.T.; Struyfs, C.; Cools, T.L.; Spincemaille, P.; Kokalj, T.; Sampaio-Marques, B.; Ludovico, P.; Lammertyn, J.; Cammue, B.P.A.; Thevissen, K. Increasing the fungicidal action of amphotericin B by inhibiting the nitric oxide-dependent tolerance pathway. Oxid. Med. Cell. Longev., 2017., 20174064628.
[http://dx.doi.org/10.1155/2017/4064628] [PMID: 29129987]
[84]
Jambor, W.P.; Steinberg, B.A.; Suydam, L.O. Amphotericins A and B: two new antifungal antibiotics possessing high activity against deep-seated and superficial mycoses. Antibiot. Annu., 1955-1956, 3, 574-578.
[PMID: 13355329]
[85]
Caffrey, P.; Lynch, S.; Flood, E.; Finnan, S.; Oliynyk, M. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem. Biol., 2001, 8(7), 713-723.
[http://dx.doi.org/10.1016/S1074-5521(01)00046-1] [PMID: 11451671]
[86]
Odds, F.C.; Brown, A.J.; Gow, N.A. Antifungal agents: mechanisms of action. Trends Microbiol., 2003, 11(6), 272-279.
[http://dx.doi.org/10.1016/S0966-842X(03)00117-3] [PMID: 12823944]
[87]
Silva, A.E.; Barratt, G.; Chéron, M.; Egito, E.S. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int. J. Pharm., 2013, 454(2), 641-648.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.044] [PMID: 23726904]
[88]
Halperin, A.; Shadkchan, Y.; Pisarevsky, E.; Szpilman, A.M.; Sandovsky, H.; Osherov, N.; Benhar, I. Novel water-soluble amphotericin B-PEG conjugates with low toxicity and potent in vivo efficacy. J. Med. Chem., 2016, 59(3), 1197-1206.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01862] [PMID: 26816333]
[89]
Ling, J.T.S.; Roberts, C.J.; Billa, N. Antifungal and mucoadhesive properties of an orally administered chitosan-coated amphotericin B nanostructured lipid carrier (NLC). AAPS PharmSciTech, 2019, 20(3), 136.
[http://dx.doi.org/10.1208/s12249-019-1346-7] [PMID: 30838459]
[90]
Krishnan, R.A.; Pant, T.; Sankaranarayan, S.; Stenberg, J.; Jain, R.; Dandekar, P. Protective nature of low molecular weight chitosan in a chitosan-Amphotericin B nanocomplex - A physicochemical study. Mater. Sci. Eng. C, 2018, 93, 472-482.
[http://dx.doi.org/10.1016/j.msec.2018.08.016] [PMID: 30274080]
[91]
Senna, J.P.; Barradas, T.N.; Cardoso, S.; Castiglione, T.C.; Serpe, M.J.; Silva, K.G.H.E.; Mansur, C.R.E. Dual alginate-lipid nanocarriers as oral delivery systems for amphotericin B. Colloids Surf. B Biointerfaces, 2018, 166, 187-194.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.015] [PMID: 29602077]
[92]
Azanza, J.R.; Sádada, B.; Reis, J. Liposomal formulations of amphotericin B: differences according to the scientific evidence. Rev. Esp. Quimioter., 2015, 28(6), 275-281.
[PMID: 26621170]
[93]
Rivnay, B.; Wakim, J.; Avery, K.; Petrochenko, P.; Myung, J.H.; Kozak, D.; Yoon, S.; Landrau, N.; Nivorozhkin, A. Critical process parameters in manufacturing of liposomal formulations of amphotericin B. Int. J. Pharm., 2019, 565, 447-457.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.052] [PMID: 31071418]
[94]
Aversa, F.; Busca, A.; Candoni, A.; Cesaro, S.; Girmenia, C.; Luppi, M.; Nosari, A.M.; Pagano, L.; Romani, L.; Rossi, G.; Venditti, A.; Novelli, A. Liposomal amphotericin B (AmBisome®) at beginning of its third decade of clinical use. J. Chemother., 2017, 29(3), 131-143.
[http://dx.doi.org/10.1080/1120009X.2017.1306183] [PMID: 28335692]
[95]
Bekersky, I.; Fielding, R.M.; Dressler, D.E.; Lee, J.W.; Buell, D.N.; Walsh, T.J. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob. Agents Chemother., 2002, 46(3), 834-840.
[http://dx.doi.org/10.1128/AAC.46.3.834-840.2002] [PMID: 11850269]
[96]
Collette, N.; van der Auwera, P.; Lopez, A.P.; Heymans, C.; Meunier, F. Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B-deoxycholate. Antimicrob. Agents Chemother., 1989, 33(3), 362-368.
[http://dx.doi.org/10.1128/AAC.33.3.362] [PMID: 2658785]
[97]
Atkinson, A.J., Jr; Bennett, J.E. Amphotericin B pharmacokinetics in humans. Antimicrob. Agents Chemother., 1978, 13(2), 271-276.
[http://dx.doi.org/10.1128/AAC.13.2.271] [PMID: 646348]
[98]
Goodwin, S.D.; Cleary, J.D.; Walawander, C.A.; Taylor, J.W.; Grasela, T.H.J. Jr Pretreatment regimens for adverse events related to infusion of amphotericin B. Clin. Infect. Dis., 1995, 20(4), 755-761.
[http://dx.doi.org/10.1093/clinids/20.4.755] [PMID: 7795069]
[99]
Cleary, J.D.; Rogers, P.D.; Chapman, S.W. Variability in polyene content and cellular toxicity among deoxycholate amphotericin B formulations. Pharmacotherapy, 2003, 23(5), 572-578.
[http://dx.doi.org/10.1592/phco.23.5.572.32209] [PMID: 12741430]
[100]
Mathpal, D.; Garg, T.; Rath, G.; Goyal, A.K. Development and characterization of spray dried microparticles for pulmonary delivery of antifungal drug. Curr. Drug Deliv., 2015, 12(4), 464-471.
[http://dx.doi.org/10.2174/1567201812666150326110821] [PMID: 25808185]
[101]
Jansook, P.; Fülöp, Z.; Ritthidej, G.C. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev. Ind. Pharm., 2019, 45(4), 560-567.
[http://dx.doi.org/10.1080/03639045.2019.1569023] [PMID: 30632399]
[102]
Kaur, I.P.; Kakkar, S. Topical delivery of antifungal agents. Expert Opin. Drug Deliv., 2010, 7(11), 1303-1327.
[http://dx.doi.org/10.1517/17425247.2010.525230] [PMID: 20961206]
[103]
Bodin, M.B.; Godoy, G.; Philips, J.B. III Topical nystatin for the prevention of catheter-associated candidiasis in ELBW infants. Adv. Neonatal Care, 2015, 15(3), 220-224.
[http://dx.doi.org/10.1097/ANC.0000000000000170] [PMID: 25938952]
[104]
Samaranayake, L.P.; Keung Leung, W.; Jin, L. Oral mucosal fungal infections. Periodontol. 2000, 2009, 49, 39-59.
[http://dx.doi.org/10.1111/j.1600-0757.2008.00291.x] [PMID: 19152525]
[105]
Razonable, R.R.; Henault, M.; Watson, H.L.; Paya, C.V. Nystatin induces secretion of interleukin (IL)-1β, IL-8 and tumor necrosis factor alpha by a toll-like receptor-dependent mechanism. Antimicrob. Agents Chemother., 2005, 49(8), 3546-3549.
[http://dx.doi.org/10.1128/AAC.49.8.3546-3549.2005] [PMID: 16048981]
[106]
Greene, C.; Jones, R.; Hollis, L. Biopsticides registration action document: natamycin; Environmental Protection Agency: United States, 2012. https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-051102_14-May-12.pdf Accessed at April 09, 2019.
[107]
Rosa, P.D.; Sheid, K.; Locatelli, C.; Marinho, D.; Goldani, L. Fusarium solani keratitis: role of antifungal susceptibility testing and identification to the species level for proper management. Braz. J. Infect. Dis., 2019, 23(3), 197-199.
[http://dx.doi.org/10.1016/j.bjid.2019.05.002] [PMID: 31129063]
[108]
Garnier, L.; Mounier, J.; Lê, S.; Pawtowski, A.; Pinon, N.; Camier, B.; Chatel, M.; Garric, G.; Thierry, A.; Coton, E.; Valence, F. Development of antifungal ingredients for dairy products: From in vitro screening to pilot scale application. Food Microbiol., 2019, 81, 97-107.
[http://dx.doi.org/10.1016/j.fm.2018.11.003] [PMID: 30910092]
[109]
Jain, A.; Shah, S.G.; Chugh, A. Cell penetrating peptides as efficient nanocarriers for delivery of antifungal compound, natamycin for the treatment of fungal keratitis. Pharm. Res., 2015, 32(6), 1920-1930.
[http://dx.doi.org/10.1007/s11095-014-1586-x] [PMID: 25467959]
[110]
Kovačević, N.; Kokalj, A. DFT Study of interaction of azoles with Cu(111) and Al(111) surfaces: role of azole nitrogen atoms and dipole–dipole interactions. J. Phys. Chem. C, 2011, 115, 24189-24197.
[http://dx.doi.org/10.1021/jp207076w]
[111]
Vanden Bossche, H.; Marichal, P.; Odds, F.C. Molecular mechanisms of drug resistance in fungi. Trends Microbiol., 1994, 2(10), 393-400.
[http://dx.doi.org/10.1016/0966-842X(94)90618-1] [PMID: 7850208]
[112]
Ha, K.C.; White, T.C. Effects of azole antifungal drugs on the transition from yeast cells to hyphae in susceptible and resistant isolates of the pathogenic yeast Candida albicans. Antimicrob. Agents Chemother., 1999, 43(4), 763-768.
[http://dx.doi.org/10.1128/AAC.43.4.763] [PMID: 10103178]
[113]
Kauffman, C.A.; Pappas, P.G.; McKinsey, D.S.; Greenfield, R.A.; Perfect, J.R.; Cloud, G.A.; Thomas, C.J.; Dismukes, W.E. Treatment of lymphocutaneous and visceral sporotrichosis with fluconazole. Clin. Infect. Dis., 1996, 22(1), 46-50.
[http://dx.doi.org/10.1093/clinids/22.1.46] [PMID: 8824965]
[114]
Carrillo-Muñoz, A.J.; Quindós, G.; Tur, C.; Ruesga, M.; Alonso, R.; del Valle, O.; Rodriguez, V.; Arévalo, M.P.; Salgado, J.; Martin-Mazuelos, E.; Bornay-Llinares, F.J.; del Palacio, A.; Cuétara, M.; Gasser, I.; Hernández-Molina, J.M.; Pemán, J. Comparative in vitro antifungal activity of amphotericin B lipid complex, amphotericin B and fluconazole. Chemotherapy, 2000, 46(4), 235-244.
[http://dx.doi.org/10.1159/000007295] [PMID: 10859429]
[115]
Sholam, S.; Groll, A.H.; Petraitis, V.; Walsh, T.J. Systemic antifungal agents. Infect. Dis., 2017, 2, 1333-1344.
[116]
Arndt, C.A.; Walsh, T.J.; McCully, C.L.; Balis, F.M.; Pizzo, P.A.; Poplack, D.G. Fluconazole penetration into cerebrospinal fluid: implications for treating fungal infections of the central nervous system. J. Infect. Dis., 1988, 157(1), 178-180.
[http://dx.doi.org/10.1093/infdis/157.1.178] [PMID: 2826606]
[117]
Perry, C.M.; Whittington, R.; McTavish, D. Fluconazole. An update of its antimicrobial activity, pharmacokinetic properties and therapeutic use in vaginal candidiasis. Drugs, 1995, 49(6), 984-1006.
[http://dx.doi.org/10.2165/00003495-199549060-00009] [PMID: 7641607]
[118]
Uchida, K.; Shimogawara, K.; Yamaguchi, H. Correlation of in vitro activity and in vivo efficacy of itraconazole intravenous and oral solubilized formulations by testing Candida strains with various itraconazole susceptibilities in a murine invasive infection. J. Antimicrob. Chemother., 2011, 66(3), 626-634.
[http://dx.doi.org/10.1093/jac/dkq475] [PMID: 21172782]
[119]
Poirier, J.M.; Cheymol, G. Optimisation of itraconazole therapy using target drug concentrations. Clin. Pharmacokinet., 1998, 35(6), 461-473.
[http://dx.doi.org/10.2165/00003088-199835060-00004] [PMID: 9884817]
[120]
Domínguez-Gil Hurlé, A.; Sánchez Navarro, A.; Garcia Sanchez, M.J. Therapeutic drug monitoring of itraconazole and the relevance of pharmacokinetic interactions. Clin. Microbiol. Infect., 2006, 12, 97-106.
[http://dx.doi.org/10.1111/j.1469-0691.2006.01611.x]
[121]
Heykants, J.; Van Peer, A.; Van de Velde, V.; Van Rooy, P.; Meuldermans, W.; Lavrijsen, K.; Woestenborghs, R.; Van Cutsem, J.; Cauwenbergh, G. The clinical pharmacokinetics of itraconazole: an overview. Mycoses, 1989, 32(Suppl. 1), 67-87.
[http://dx.doi.org/10.1111/j.1439-0507.1989.tb02296.x] [PMID: 2561187]
[122]
Akhtar, S.; Masood, S.; Tabassum, S.; Rizvi, D.A. Efficacy of itraconazole versus fluconazole in vaginal candidiasis. J. Pak. Med. Assoc., 2012, 62(10), 1049-1052.
[PMID: 23866445]
[123]
Jennings, T.S.; Hardin, T.C. Treatment of aspergillosis with itraconazole. Ann. Pharmacother., 1993, 27(10), 1206-1211.
[http://dx.doi.org/10.1177/106002809302701011] [PMID: 8251691]
[124]
Sabatelli, F.; Patel, R.; Mann, P.A.; Mendrick, C.A.; Norris, C.C.; Hare, R.; Loebenberg, D.; Black, T.A.; McNicholas, P.M. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob. Agents Chemother., 2006, 50(6), 2009-2015.
[http://dx.doi.org/10.1128/AAC.00163-06] [PMID: 16723559]
[125]
Borman, A.M.; Fraser, M.; Palmer, M.D.; Szekely, A.; Houldsworth, M.; Patterson, Z.; Johnson, E.M. MIC Distributions and evaluation of fungicidal activity for amphotericin B, itraconazole, voriconazole, posaconazole and caspofungin and 20 species of pathogenic filamentous fungi determined using the CLSI broth microdilution method. J. Fungi (Basel), 2017, 3(2), 27.
[http://dx.doi.org/10.3390/jof3020027] [PMID: 29371545]
[126]
Johnson, E.M.; Szekely, A.; Warnock, D.W. In-vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J. Antimicrob. Chemother., 1998, 42(6), 741-745.
[http://dx.doi.org/10.1093/jac/42.6.741] [PMID: 10052897]
[127]
Miller, D.A.; DiNunzio, J.C.; Yang, W.; McGinity, J.W.; Williams, R.O. III. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev. Ind. Pharm., 2008, 34(8), 890-902.
[http://dx.doi.org/10.1080/03639040801929273] [PMID: 18608468]
[128]
Brüggemann, R.J.M.; Alffenaar, J.W.C.; Blijlevens, N.M.A.; Billaud, E.M.; Kosterink, J.G.W.; Verweij, P.E.; Burger, D.M.; Saravolatz, L.D. Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin. Infect. Dis., 2009, 48(10), 1441-1458.
[http://dx.doi.org/10.1086/598327] [PMID: 19361301]
[129]
Pfaller, M.A.; Messer, S.A.; Boyken, L.; Hollis, R.J.; Rice, C.; Tendolkar, S.; Diekema, D.J. In vitro activities of voriconazole, posaconazole and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn. Microbiol. Infect. Dis., 2004, 48(3), 201-205.
[http://dx.doi.org/10.1016/j.diagmicrobio.2003.09.008] [PMID: 15023430]
[130]
Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontpyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Segal, M.H.N.B.H.; Steinbach, W.J.; Stevens, D.A.; Walsh, T.J.; Wingard, J.R.; Young, J.H.; Bennett, J.E. Practice guidelines for the diagnosis and management of aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2016, 63(4), 1-60.
[http://dx.doi.org/10.1093/cid/ciw326] [PMID: 27365388]
[131]
Maertens, J.A. History of the development of azole derivatives. Clin. Microbiol. Infect., 2004, 10(Suppl. 1), 1-10.
[http://dx.doi.org/10.1111/j.1470-9465.2004.00841.x] [PMID: 14748798]
[132]
Espinel-Ingroff, A.; Boyle, K.; Sheehan, D.J. In vitro antifungal activities of voriconazole and reference agents as determined by NCCLS methods: review of the literature. Mycopathologia, 2001, 150(3), 101-115.
[http://dx.doi.org/10.1023/A:1010954803886] [PMID: 11469757]
[133]
Purkins, L.; Wood, N.; Greenhalgh, K.; Allen, M.J.; Oliver, S.D. Voriconazole, a novel wide-spectrum triazole: oral pharmacokinetics and safety. Br. J. Clin. Pharmacol., 2003, 56(Suppl. 1), 10-16.
[http://dx.doi.org/10.1046/j.1365-2125.2003.01993.x] [PMID: 14616408]
[134]
Slain, D.; Rogers, P.D.; Cleary, J.D.; Chapman, S.W. Intravenous itraconazole. Ann. Pharmacother., 2001, 35(6), 720-729.
[http://dx.doi.org/10.1345/aph.10262] [PMID: 11408991]
[135]
Hyland, R.; Jones, B.C.; Smith, D.A. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab. Dispos., 2003, 31(5), 540-547.
[http://dx.doi.org/10.1124/dmd.31.5.540] [PMID: 12695341]
[136]
Krishna, G.; Moton, A.; Ma, L.; Medlock, M.M.; McLeod, J. Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob. Agents Chemother., 2009, 53(3), 958-966.
[http://dx.doi.org/10.1128/AAC.01034-08] [PMID: 19075045]
[137]
Wexler, D.; Courtney, R.; Richards, W.; Banfield, C.; Lim, J.; Laughlin, M. Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur. J. Pharm. Sci., 2004, 21(5), 645-653.
[http://dx.doi.org/10.1016/j.ejps.2004.01.005] [PMID: 15066665]
[138]
Dolton, M.J.; Ray, J.E.; Chen, S.C.A.; Ng, K.; Pont, L.; McLachlan, A.J. Multicenter study of posaconazole therapeutic drug monitoring: exposure-response relationship and factors affecting concentration. Antimicrob. Agents Chemother., 2012, 56(11), 5503-5510.
[http://dx.doi.org/10.1128/AAC.00802-12] [PMID: 22890761]
[139]
Krieter, P.; Flannery, B.; Musick, T.; Gohdes, M.; Martinho, M.; Courtney, R. Disposition of posaconazole following single-dose oral administration in healthy subjects. Antimicrob. Agents Chemother., 2004, 48(9), 3543-3551.
[http://dx.doi.org/10.1128/AAC.48.9.3543-3551.2004] [PMID: 15328123]
[140]
Odds, F.C.; Milne, L.J.; Gentles, J.C.; Ball, E.H. The activity in vitro and in vivo of a new imidazole antifungal, ketoconazole. J. Antimicrob. Chemother., 1980, 6(1), 97-104.
[http://dx.doi.org/10.1093/jac/6.1.97] [PMID: 6244258]
[141]
Gupta, A.K.; Lyons, D.C.A. The rise and fall of oral ketoconazole. J. Cutan. Med. Surg., 2015, 19(4), 352-357.
[http://dx.doi.org/10.1177/1203475415574970] [PMID: 25775613]
[142]
Limits usage of nizoral (ketoconazole) oral tablets due to potentially fatal liver injury and risk of drug interactions and adrenal gland problems. FDA Drug Safety Communication., https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-limits-usage-nizoral-ketoconazole-oral-tablets-due-potentially Accessed on June 21, 2019.
[143]
Kim, J.H.; Choi, W.G.; Lee, S.; Lee, H.S. Revisiting the metabolism and bioativation of ketoconazole in human and mouse using liquid chromatography-mass spectrometry-based metabolomics. Int. J. Mol. Sci., 2017, 18(3), 621.
[http://dx.doi.org/10.3390/ijms18030621] [PMID: 28335386]
[144]
Sagir, A.; Schmitt, M.; Dilger, K.; Häussinger, D. Inhibition of cytochrome P450 3A: relevant drug interactions in gastroenterology. Digestion, 2003, 68(1), 41-48.
[http://dx.doi.org/10.1159/000073224] [PMID: 12949438]
[145]
Ning, M.; Gu, Z.; Pan, H.; Yu, H.; Xiao, K. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antifungal drug clotrimazole. Indian J. Exp. Biol., 2005, 43(2), 150-157.
[PMID: 15782815]
[146]
Sawyer, P.R.; Brogden, R.N.; Pinder, R.M.; Speight, T.M.; Avery, G.S. Clotrimazole: a review of its antifungal activity and therapeutic efficacy. Drugs, 1975, 9(6), 424-447.
[http://dx.doi.org/10.2165/00003495-197509060-00003] [PMID: 1097234]
[147]
Chang, C.C.; Slavin, M.A.; Chen, S.C. New developments and directions in the clinical application of the echinocandins. Arch. Toxicol., 2017, 91(4), 1613-1621.
[http://dx.doi.org/10.1007/s00204-016-1916-3] [PMID: 28180946]
[148]
Patil, A.; Majumdar, S. Echinocandins in antifungal pharmacotherapy. J. Pharm. Pharmacol., 2017, 69(12), 1635-1660.
[http://dx.doi.org/10.1111/jphp.12780] [PMID: 28744860]
[149]
Grover, N.D. Echinocandins: A ray of hope in antifungal drug therapy. Indian J. Pharmacol., 2010, 42(1), 9-11.
[http://dx.doi.org/10.4103/0253-7613.62396] [PMID: 20606829]
[150]
Azanza Perea, J.R. [Echinocandins: Applied pharmacology]. Rev. Iberoam. Micol., 2016, 33(3), 140-144.
[http://dx.doi.org/10.1016/j.riam.2016.02.004] [PMID: 27395024]
[151]
Ben-Ami, R. Treatment of invasive candidiasis: A narrative review. J. Fungi (Basel), 2018, 4(3), 97.
[http://dx.doi.org/10.3390/jof4030097] [PMID: 30115843]
[152]
Develoux, M. [Griseofulvin] Ann. Dermatol. Venereol., 2001, 128(12), 1317-1325.
[PMID: 11908134]
[153]
Chandra, J.; Ghannoum, M.A. Flucytosine treatment and resistance mechanisms Antimicrob; Drug. Resist, 2009, pp. 407-413.
[http://dx.doi.org/10.1007/978-3-319-46718-4_28]
[154]
Polak, A.; Grenson, M. Evidence for a common transport system for cytosine, adenine and hypoxanthine in Saccharomyces cerevisiae and Candida albicans. Eur. J. Biochem., 1973, 32(2), 276-282.
[http://dx.doi.org/10.1111/j.1432-1033.1973.tb02608.x] [PMID: 4569075]
[155]
Cutler, R.E.; Blair, A.D.; Kelly, M.R. Flucytosine kinetics in subjects with normal and impaired renal function. Clin. Pharmacol. Ther., 1978, 24(3), 333-342.
[http://dx.doi.org/10.1002/cpt1978243333] [PMID: 688726]
[156]
Francis, P.; Walsh, T.J. Evolving role of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics and antifungal therapy. Clin. Infect. Dis., 1992, 15(6), 1003-1018.
[http://dx.doi.org/10.1093/clind/15.6.1003] [PMID: 1457631]
[157]
Bennet, J.E. Flucytosine. Ann. Intern. Med., 1977, 86(3), 319-321.
[http://dx.doi.org/10.7326/0003-4819-86-3-319] [PMID: 320931]
[158]
Denning, D.W.; Stevens, D.A. Antifungal and surgical treatment of invasive aspergillosis: review of 2,121 published cases. Rev. Infect. Dis., 1990, 12(6), 1147-1201.
[http://dx.doi.org/10.1093/clinids/12.6.1147] [PMID: 2267490]
[159]
Lewis, R.E. Current concepts in antifungal pharmacology. Mayo Clin. Proc., 2011, 86(8), 805-817.
[http://dx.doi.org/10.4065/mcp.2011.0247] [PMID: 21803962]
[160]
Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm., 2017, 523(1), 15-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.019] [PMID: 28323096]
[161]
Zhang, L.; Pornpattananangku, D.; Hu, C.M.; Huang, C.M. Development of nanoparticles for antimicrobial drug delivery. Curr. Med. Chem., 2010, 17(6), 585-594.
[http://dx.doi.org/10.2174/092986710790416290] [PMID: 20015030]
[162]
Ghannoum, M.A.; Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[163]
Lee, H.; Lee, D.G. Novel approaches for efficient antifungal drug action. J. Microbiol. Biotechnol., 2018, 28(11), 1771-1781.
[http://dx.doi.org/10.4014/jmb.1807.07002] [PMID: 30178649]
[164]
Tverdek, F.P.; Kofteridis, D.; Kontoyiannis, D.P. Antifungal agents and liver toxicity: a complex interaction. Expert Rev. Anti Infect. Ther., 2016, 14(8), 765-776.
[http://dx.doi.org/10.1080/14787210.2016.1199272] [PMID: 27275514]
[165]
Amigues, I.; Cohen, N.; Chung, D.; Seo, S.K.; Plescia, C.; Jakubowski, A.; Barker, J.; Papanicolaou, G.A. Hepatic safety of voriconazole after allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant., 2010, 16(1), 46-52.
[http://dx.doi.org/10.1016/j.bbmt.2009.08.015] [PMID: 20053331]
[166]
Kontoyiannis, D.P. Invasive mycoses: strategies for effective management. Am. J. Med., 2012, 125(1)(Suppl.), S25-S38.
[http://dx.doi.org/10.1016/j.amjmed.2011.10.009] [PMID: 22196206]
[167]
Wang, J.L.; Chang, C.H.; Young-Xu, Y.; Chan, K.A. Systematic review and meta-analysis of the tolerability and hepatotoxicity of antifungals in empirical and definitive therapy for invasive fungal infection. Antimicrob. Agents Chemother., 2010, 54(6), 2409-2419.
[http://dx.doi.org/10.1128/AAC.01657-09] [PMID: 20308378]
[168]
Vermes, A.; Guchelaar, H.J.; Dankert, J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother., 2000, 46(2), 171-179.
[http://dx.doi.org/10.1093/jac/46.2.171] [PMID: 10933638]
[169]
Yokoo, H.; Craig, R.M.; Harwood, T.R.; Cochrane, C. Griseofulvin-induced cholestasis in Swiss albino mice. Gastroenterology, 1979, 77(5), 1082-1087.
[http://dx.doi.org/10.1016/S0016-5085(79)80081-5] [PMID: 488635]
[170]
Wessely, Z.; Shapiro, S.H.; Klavins, J.V. Light and electron microscopy of hepatocellular changes in griseofulvin fed mice. Particular reference to Mallory bodies. Ann. Clin. Lab. Sci., 1979, 9(1), 24-36.
[PMID: 420510]
[171]
Matilla, A.; Molland, E.A. A light and electron microscopic study of the liver in case of erythrohepatic protoporphyria and in griseofulvin-induced porphyria in mice. J. Clin. Pathol., 1974, 27(9), 698-709.
[http://dx.doi.org/10.1136/jcp.27.9.698] [PMID: 4372253]
[172]
Jadeja, D.; Jaiswal, C.S.; Panchasra, A.; Tripathi, C.B. Griseofulvin and/or terbinafine induced toxic epidermal necrolysis in an adult female patient-A case report. Curr. Drug Saf., 2016, 11(2), 192-194.
[http://dx.doi.org/10.2174/1574886311666151223112645] [PMID: 26695069]
[173]
Xing, Y.; Chen, L.; Feng, Y.; Zhou, Y.; Zhai, Y.; Lu, J. Meta-analysis of the safety of voriconazole in definitive, empirical and prophylactic therapies for invasive fungal infections. BMC Infect. Dis., 2017, 17(1), 798.
[http://dx.doi.org/10.1186/s12879-017-2913-8] [PMID: 29281997]
[174]
Greer, N.D. Posaconazole (Noxafil): a new triazole antifungal agent. Proc. Bayl. Univ. Med. Cent., 2007, 20(2), 188-196.
[http://dx.doi.org/10.1080/08998280.2007.11928283] [PMID: 17431456]
[175]
Wingard, J.R.; White, M.H.; Anaissie, E.; Raffalli, J.; Goodman, J.; Arrieta, A. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin. Infect. Dis., 2000, 31(5), 1155-1163.
[http://dx.doi.org/10.1086/317451] [PMID: 11073745]
[176]
Laniado-Laborín, R.; Cabrales-Vargas, M.N. Amphotericin B: side effects and toxicity. Rev. Iberoam. Micol., 2009, 26(4), 223-227.
[http://dx.doi.org/10.1016/j.riam.2009.06.003] [PMID: 19836985]
[177]
Maximova.; Schillani, G.; Simeone, R. Comparison of efficacy and safety of caspofungin versus micafungin in pedriatric allogeneic stem cell. Adv. Ther., 2017, 34, 1184-1199.
[http://dx.doi.org/10.1007/s12325-017-0534-7]
[178]
Roden, M.M.; Nelson, L.D.; Knudsen, T.A.; Jarosinski, P.F.; Starling, J.M.; Shiflett, S.E.; Calis, K.; DeChristoforo, R.; Donowitz, G.R.; Buell, D.; Walsh, T.J. Triad of acute infusion-related reactions associated with liposomal amphotericin B: analysis of clinical and epidemiological characteristics. Clin. Infect. Dis., 2003, 36(10), 1213-1220.
[http://dx.doi.org/10.1086/374553] [PMID: 12746764]
[179]
Hamill, R.J. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs, 2013, 73(9), 919-934.
[http://dx.doi.org/10.1007/s40265-013-0069-4] [PMID: 23729001]
[180]
Lyu, X.; Zhao, C.; Yan, Z.M.; Hua, H. Efficacy of nystatin for the treatment of oral candidiasis: a systematic review and meta-analysis. Drug Des. Devel. Ther., 2016, 10, 1161-1171.
[http://dx.doi.org/10.2147/DDDT.S100795] [PMID: 27042008]
[181]
França, F.D.; Tagliati, C.A.; Ferreira, A.; Chaves, M.M. Amphotericin B nephrotoxicity in vitro: Differential profile of PKC signaling in VERO and MDCK cell lines. Curr. Topics Toxicol., 2013, 9, 15-19.
[182]
Kagan, S.; Ickowicz, D.; Shmuel, M.; Altschuler, Y.; Sionov, E.; Pitusi, M.; Weiss, A.; Farber, S.; Domb, A.J.; Polacheck, I. Toxicity mechanisms of amphotericin B and its neutralization by conjugation with arabinogalactan. Antimicrob. Agents Chemother., 2012, 56(11), 5603-5611.
[http://dx.doi.org/10.1128/AAC.00612-12] [PMID: 22908154]
[183]
Szoka, F.C.; Tang, M. Amphotericin B formulated in liposomes and lipid based systems: a review. J. Liposome Res., 1993, 3, 363-375.
[http://dx.doi.org/10.3109/08982109309150726]
[184]
Espuelas, M.S.; Legrand, P.; Campanero, M.A.; Appel, M.; Chéron, M.; Gamazo, C.; Barratt, G.; Irache, J.M. Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J. Antimicrob. Chemother., 2003, 52(3), 419-427.
[http://dx.doi.org/10.1093/jac/dkg351] [PMID: 12888593]
[185]
Temboot, P.; Usman, F.; Ul-Hag, Z.; Khalil, R.; Srichana, T. Biomolecular interactions of amphotericin B nanomicells with serum albumins: a combined biophysical and molecular dacking approah. Spectrochim. Acta. Mol. Biomol. Spectroc, 2018, 205, 442-456.
[http://dx.doi.org/10.1016/j.saa.2018.07.057] [PMID: 30055454]
[186]
Zia, Q.; Khan, A.A.; Swaleha, Z.; Owais, M. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Int. J. Nanomedicine, 2015, 10, 1769-1790.
[http://dx.doi.org/10.2147/ijn.s63155] [PMID: 25784804]
[187]
Gharib, A.; Faezizadeh, Z.; Mohammad Asghari, H. Preparation and antifungal activity of spray-dried amphotericin B-loaded nanospheres. Daru, 2011, 19(5), 351-355.
[PMID: 22615681]
[188]
Randhawa, M.A.; Gondal, M.A.; Al-Zahrani, A.H.; Rashid, S.G.; Ali, A. Synthesis, morphology and antifungal activity of nanoparticulated amphotericin B, ketoconazole and thymoquinone against Candida albicans yeasts and Candida biofilm. J. Environ. Sci. Health. A. Tox. Hazar. Subst. Environ. Eng., 2015, 50, 119-124.
[http://dx.doi.org/10.1080/10934529.2015.975042] [PMID: 25560257]
[189]
Jain, S.; Valvi, P.U.; Swarnakar, N.K.; Thanki, K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol. Pharm., 2012, 9(9), 2542-2553.
[http://dx.doi.org/10.1021/mp300320d] [PMID: 22845020]
[190]
Jain, S.; Reddy, C.S.K.; Swami, R.; Kushwah, V. Amphotericin B loaded chitosan nanoparticles implication of bile salt stabilization on gastrointestinal stability, permeability and oral bioavailability. AAPS PharmSciTech, 2018, 19(7), 3152-3164.
[http://dx.doi.org/10.1208/s12249-018-1153-6] [PMID: 30136175]
[191]
Jabri, T.; Imran, M. Shafiullah.; Rao, K.; Ali, I.; Arfan, M.; Shah, M. R. Fabrication of lecithin-gum tragacanth muco-adesive hybrid nano-carrier system for in-vivo performance of amphotericin B. Carbohydr. Polym., 2018, 194, 89-96.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.013] [PMID: 29801862]
[192]
Ludwig, D.B.; de Camargo, L.E.A.; Khalil, N.M.; Auler, M.E.; Mainardes, R.M. Antifungal activity of chitosan-coated Poly (lactic-co-glycolic) acid nanoparticles containing amphotericin B. Mycopathologia, 2018, 183(4), 659-668.
[http://dx.doi.org/10.1007/s11046-018-0253-x] [PMID: 29497926]
[193]
Ci, T.; Yuan, L.; Bao, X.; Hou, Y.; Wu, H.; Sun, H.; Cao, D.; Ke, X. Development and anti-Candida evaluation of the vaginal delivery system of amphotericin B nanosuspension-loaded thermogel. J. Drug Target., 2018, 26(9), 829-839.
[http://dx.doi.org/10.1080/1061186X.2018.1434660] [PMID: 29378463]
[194]
Usman, F.; Khalil, R.; Ul-Haq, Z.; Nakpheng, T.; Srichana, T. Bioactivity, safety and efficacy of amphotericin B nanomicellar aerossol using sodium deoxycholate sulfate as the lipid carrier. AAPS PharmSciTech, 2018, 19(5), 2077-2086.
[http://dx.doi.org/10.1208/s12249-018-1013-4] [PMID: 29691753]
[195]
Butani, D.; Yewale, C.; Misra, A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf. B Biointerfaces, 2016, 139(139), 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.032] [PMID: 26700229]
[196]
Fu, T.; Yi, J.; Lv, S.; Zhang, B. Ocular amphotericin B delivery by chitosan-modified nanostructured lipid carriers for fungal keratitis-targeted therapy. J. Liposome Res., 2017, 27(3), 228-233.
[http://dx.doi.org/10.1080/08982104.2016.1224899] [PMID: 27601177]
[197]
Grisin, T.; Bories, C.; Bombardi, M.; Loiseau, P.M.; Rouffiac, V.; Solgadi, A.; Mallet, J.M.; Ponchel, G.; Bouchemal, K. Supramolecular chitosan micro-platelets synergistically enhance anti-Candida albicans activity of amphotericin B using an immunocompetent murine model. Pharm. Res., 2017, 34(5), 1067-1082.
[http://dx.doi.org/10.1007/s11095-017-2117-3] [PMID: 28168390]
[198]
Serrano, D.R.; Lalatsa, A.; Dea-Ayuela, M.A.; Bilbao-Ramos, P.E.; Garrett, N.L.; Moger, J.; Guarro, J.; Capilla, J.; Ballesteros, M.P.; Schätzlein, A.G.; Bolás, F.; Torrado, J.J.; Uchegbu, I.F. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol. Pharm., 2015, 12(2), 420-431.
[http://dx.doi.org/10.1021/mp500527x] [PMID: 25558881]
[199]
Xu, N.; Gu, J.; Zhu, Y.; Wen, H.; Ren, Q.; Chen, J. Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int. J. Nanomedicine, 2011, 6, 905-913.
[http://dx.doi.org/10.2147/IJN.S17503] [PMID: 21720503]
[200]
Tang, X.; Liang, Y.; Zhu, Y.; Xie, C.; Yao, A.; Chen, L.; Jiang, Q.; Liu, T.; Wang, X.; Qian, Y.; Wei, J.; Ni, W.; Dai, J.; Jiang, Z.; Hou, W. Anti-transferrin receptor-modified amphotericin B-loaded PLA-PEG nanoparticles cure candidal meningitis and reduce drug toxicity. Int. J. Nanomedicine, 2015, 10, 6227-6241.
[201]
Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Taj, R.; Khan, A.U.; Hameed, M.U.; Yuan, Q. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb. Pathog., 2016, 99, 271-281.
[http://dx.doi.org/10.1016/j.micpath.2016.08.031] [PMID: 27591110]
[202]
Xia, Z.K.; Ma, Q.H.; Li, S.Y.; Zhang, D.Q.; Cong, L.; Tian, Y.L.; Yang, R.Y. The antifungal effect of silver nanoparticles on Trichosporon asahii. J. Microbiol. Immunol. Infect., 2016, 49(2), 1-7.
[http://dx.doi.org/10.1016/j.jmii.2014.04.013] [PMID: 24877597]
[203]
Tutaj, K.; Szlazak, R.; Szalapata, K.; Starzyk, J.; Luchowski, R.; Grudzinski, W.; Osinska-Jaroszuk, M.; Jarosz-Wilkolazka, A.; Szuster-Ciesielska, A.; Gruszecki, W.I. Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity. Nanomedicine (Lond.), 2016, 12(4), 1095-1103.
[http://dx.doi.org/10.1016/j.nano.2015.12.378] [PMID: 26772425]
[204]
Saldanha, C.A.; Garcia, M.P.; Iocca, D.C.; Rebelo, L.G.; Souza, A.C.O.; Bocca, A.L. Almeida Santos, Mde.F.; Morais, P.C.; Azevedo, R.B. Antifungal activity of amphotericin B conjugated to nanosized magnetite in the treatment of Paracoccidioidomycosis. PLoS Negl. Trop. Dis., 2016, 10(6), e0004754.
[http://dx.doi.org/10.1371/journal.pntd.0004754] [PMID: 27303789]
[205]
Diaz, I.L.; Parra, C.; Linarez, M.; Perez, L.D. Design of micelle nanocontainers based on PDMAEMA-b-PCL-b-PDMAEMA triblock copolymers for the encapsulation of amphotericin B. AAPS PharmSciTech, 2015, 16(5), 1069-1078.
[http://dx.doi.org/10.1208/s12249-015-0298-9] [PMID: 25669917]
[206]
Chaudhari, M.B.; Desai, P.P.; Patel, P.A.; Patravale, V.B. Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv. Transl. Res., 2016, 6(4), 354-364.
[http://dx.doi.org/10.1007/s13346-015-0267-6] [PMID: 26712123]
[207]
Moraes Moreira Carraro, T.C.; Altmeyer, C.; Maissar Khalil, N.; Mara Mainardes, R. Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J. Mycol. Med., 2017, 27(4), 519-529.
[http://dx.doi.org/10.1016/j.mycmed.2017.07.004] [PMID: 28797532]
[208]
Rodrigues, C.D.; Khalil, N.M.; Mainardes, R.M. Determination of amphotericin B in PLA-PEG blend nanoparticles by HPLC-PDA. Braz. J. Pharm. Sci., 2014, 50(4), 2014.
[http://dx.doi.org/10.1590/S1984-82502014000400021]
[209]
Shim, Y.H.; Kim, Y.C.; Lee, H.J.; Bougard, F.; Dubois, P.; Choi, K.C.; Chung, C.W.; Kang, D.H.; Jeong, Y.I. Amphotericin B aggregation inhibition with novel nanoparticles prepared with poly(epsilon-caprolactone)/poly(n,n-dimethylamino-2-ethyl methacrylate) diblock copolymer. J. Microbiol. Biotechnol., 2011, 21(1), 28-36.
[http://dx.doi.org/10.4014/jmb.1007.07041] [PMID: 21301189]
[210]
Italia, J.L.; Sharp, A.; Carter, K.C.; Warn, P.; Kumar, M.N.V.R. Peroral amphotericin B polymer nanoparticles lead to comparable or superior in vivo antifungal activity to that of intravenous Ambisome® or Fungizone™. PLoS One, 2011, 6(10), e25744.
[http://dx.doi.org/10.1371/journal.pone.0025744] [PMID: 21998690]
[211]
Vroman, I.; Tighzert, L. Biodegradable polymers. Materials (Basel), 2009, 2(2), 307-344.
[http://dx.doi.org/10.3390/ma2020307]
[212]
Song, S.H.; Lee, K.M.; Kang, J.B.; Lee, S.G.; Kang, M.J.; Choi, Y.W. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem. Pharm. Bull. (Tokyo), 2014, 62(8), 793-798.
[http://dx.doi.org/10.1248/cpb.c14-00202] [PMID: 25087631]
[213]
El-Hadidy, G.N.; Ibrahim, H.K.; Mohamed, M.I.; El-Milligi, M.F. Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation. Drug Dev. Ind. Pharm., 2012, 38(1), 64-72.
[http://dx.doi.org/10.3109/03639045.2011.590731] [PMID: 21696340]
[214]
Khare, A.; Singh, I.; Pawar, P.; Grover, K. Design and evaluation of voriconazol loaded solid lipid nanoparticles for ophtalmic application. J. Drug Deliv., 2016, 2016, 6590361.
[http://dx.doi.org/10.1155/2016/6590361] [PMID: 27293896]
[215]
Cuming, R.S.; Abarca, E.M.; Duran, S.; Wooldridge, A.A.; Stewart, A.J.; Ravis, W.; Babu, R.J.; Lin, Y.J.; Hathcock, T. Development of a sustained-release voriconazol-containing thermogel for subconjunctival injection in horses. Invest. Ophthalmol. Vis. Sci., 2017, 58(5), 2746-2754.
[http://dx.doi.org/10.1167/iovs.16-20899] [PMID: 28549089]
[216]
Füredi, P.; Pápay, Z.E.; Kovács, K.; Kiss, B.D.; Ludányi, K.; Antal, I.; Klebovich, I. Development and characterization of the voriconazole loaded lipid-based nanoparticles. J. Pharm. Biomed. Anal., 2017, 132, 184-189.
[http://dx.doi.org/10.1016/j.jpba.2016.09.047] [PMID: 27750101]
[217]
Salem, H.F.; Kharshoum, R.M.; Abdel Hakim, L.F.; Abdelrahim, M.E. Edge activators and a polycationic polymer enhance the formulation of porous voriconazole nanoagglomerate for the use as a dry powder inhaler. J. Liposome Res., 2016, 26(4), 324-335.
[http://dx.doi.org/10.3109/08982104.2016.1140182] [PMID: 26872552]
[218]
Das, P.J.; Paul, P.; Mukherjee, B.; Mazumder, B.; Mondal, L.; Baishya, R.; Debnath, M.C.; Dey, K.S. Pulmonary delivery of voriconazol loaded nanoparticles providing a prolonged drug level in lungs- a promise for treating fungal infection. Mol. Pharm., 2015, 12(8), 2651-2664.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00064] [PMID: 25941882]
[219]
Paul, P.; Sengupta, S.; Mukherjee, B.; Shaw, T.K.; Gaonkar, R.H.; Debnath, M.C. Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine (Lond.), 2018, 13(5), 501-520.
[http://dx.doi.org/10.2217/nnm-2017-0291] [PMID: 29383985]
[220]
Gratieri, T.; Krawczyk-Santos, A.P.; Rocha, P.B.R.; Cunha-Filho, M.; Gelfuso, G.M.; Marreto, R.N.; Taveira, S.F. SLN-and NLC-encapsulating antifungal agentes: skin drug delivery and their unexplored potential for treating onychomycosis. Curr. Pharm. Des., 2017, 23(43), 6684-6695.
[http://dx.doi.org/10.2174/1381612823666171115112745] [PMID: 29141535]
[221]
Huang, J.F.; Zhong, J.; Chen, G.P.; Lin, Z.T.; Deng, Y.; Liu, Y.L.; Cao, P.Y.; Wang, B.; Wei, Y.; Wu, T.; Yuan, J.; Jiang, G.B. A hydrogel-based hybrid theranostic contact lens for fungal keratitis. ACS Nano, 2016, 10(7), 6464-6473.
[http://dx.doi.org/10.1021/acsnano.6b00601] [PMID: 27244244]
[222]
Pawar, P.; Kashyap, H.; Malhotra, S.; Sindhu, R. Hp-β-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability and antifungal activities assessment. BioMed Res. Int., 2013, 2013, 341218.
[http://dx.doi.org/10.1155/2013/341218] [PMID: 23762839]
[223]
Gupta, M.; Vyas, S.P. Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem. Phys. Lipids, 2012, 165(4), 454-461.
[http://dx.doi.org/10.1016/j.chemphyslip.2012.01.006] [PMID: 22309657]
[224]
Longhi, C.; Santos, J.P.; Morey, A.T.; Marcato, P.D.; Durán, N.; Pinge-Filho, P.; Nakazato, G.; Yamada-Ogatta, S.F.; Yamauchi, L.M. Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans. Med. Mycol., 2016, 54(4), 428-432.
[http://dx.doi.org/10.1093/mmy/myv036] [PMID: 26092103]
[225]
Moazeni, M.; Kelidari, H.R.; Saeedi, M.; Morteza-Semnani, K.; Nabili, M.; Gohar, A.A.; Akbari, J.; Lotfali, E.; Nokhodchi, A. Time to overcome fluconazole resistant Candida isolates: Solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf. B Biointerfaces, 2016, 142, 400-407.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.013] [PMID: 26974361]
[226]
Mohammed, N.; Rejinold, N.S.; Mangalathillam, S.; Biswas, R.; Nair, S.V.; Jayakumar, R. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J. Biomed. Nanotechnol., 2013, 9(9), 1521-1531.
[http://dx.doi.org/10.1166/jbn.2013.1647] [PMID: 23980500]
[227]
Zakir, F.; Vaidya, B.; Goyal, A.K.; Malik, B.; Vyas, S.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv., 2010, 17(4), 238-248.
[http://dx.doi.org/10.3109/10717541003680981] [PMID: 20235758]
[228]
Moustafa, M.A.; Elnaggar, Y.S.R.; El-Refaie, W.M.; Abdallah, O.Y. Hyalugel-integrated liposomes as a novel ocular nanosized delivery system of fluconazole with promising prolonged effect. Int. J. Pharm., 2017, 534(1-2), 14-24.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.007] [PMID: 28987453]
[229]
Kelidari, H.R.; Moazeni, M.; Babaei, R.; Saeedi, M.; Akbari, J.; Parkoohi, P.I.; Nabili, M.; Gohar, A.A.; Morteza-Semnani, K.; Nokhodchi, A. Improved yeast delivery of fluconazole with a nanostructured lipid carrier system. Biomed. Pharmacother., 2017, 89, 83-88.
[http://dx.doi.org/10.1016/j.biopha.2017.02.008] [PMID: 28222399]
[230]
Modi, J.; Joshi, G.; Sawant, K. Chitosan based mucoadhesive nanoparticles of ketoconazole for bioavailability enhancement: formulation, optimization, in vitro and ex vivo evaluation. Drug Dev. Ind. Pharm., 2013, 39(4), 540-547.
[http://dx.doi.org/10.3109/03639045.2012.666978] [PMID: 22436084]
[231]
Winnicka, K.; Wroblewska, M.; Wieczorek, P.; Sacha, P.T.; Tryniszewska, E. Hydrogel of ketoconazole and PAMAM dendrimers: formulation and antifungal activity. Molecules, 2012, 17(4), 4612-4624.
[http://dx.doi.org/10.3390/molecules17044612] [PMID: 22513487]
[232]
Martin, B.; Brouillet, F.; Franceschi, S.; Perez, E. Evaluation of organogel nanoparticles as drug delivery system for lipophilic compounds. AAPS PharmSciTech, 2017, 18(4), 1261-1269.
[http://dx.doi.org/10.1208/s12249-016-0587-y] [PMID: 27480442]
[233]
Kumar, S.; Kaur, P.; Bernela, M.; Rani, R.; Thakur, R. Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int. J. Biol. Macromol., 2016, 93(Pt A), 988-994.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.042] [PMID: 27659003]
[234]
Mahtab, A.; Anwar, M.; Mallick, N.; Naz, Z.; Jain, G.K.; Ahmad, F.J. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech, 2016, 17(6), 1477-1490.
[http://dx.doi.org/10.1208/s12249-016-0488-0] [PMID: 26857516]
[235]
Ahmed, T.A.; Aljaeid, B.M. A potential in situ gel formulation loaded with novel fabricated poly(lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. Int. J. Nanomedicine, 2017, 12, 1863-1875.
[http://dx.doi.org/10.2147/IJN.S131850] [PMID: 28331311]
[236]
Jared, S.R.; Rao, J.P.; Subramani, S. Actions of antidiuretic hormone analogues on intact and nystatin-permeabilized frog skins. Exp. Physiol., 2009, 94(12), 1174-1184.
[http://dx.doi.org/10.1113/expphysiol.2009.048934] [PMID: 19666695]
[237]
Mohammadi, G.; Shakeri, A.; Fattahi, A.; Mohammadi, P.; Mikaeili, A.; Aliabadi, A.; Adibkia, K. Preparation, physicochemical characterization and anti-fungal evaluation of nystatin-loaded PLGA-glucosamine nanoparticles. Pharm. Res., 2017, 34(2), 301-309.
[http://dx.doi.org/10.1007/s11095-016-2062-6] [PMID: 27928646]
[238]
Fernández-Campos, F.; Clares Naveros, B.; López Serrano, O.; Alonso Merino, C.; Calpena Campmany, A.C. Evaluation of novel nystatin nanoemulsion for skin candidosis infections. Mycoses, 2013, 56(1), 70-81.
[http://dx.doi.org/10.1111/j.1439-0507.2012.02202.x] [PMID: 22574899]
[239]
Khalil, R.M.; El-Rahman, A.A.A.; Kassem, M.A.; El-Ridi, S.S.; Samra, M.M.A.; Awad, G.E.A.; Mansy, S.S. Preparation and in vivo assessment of nystatin-loaded solid lipid nanoparticles for topical delivery against cutaneous candidiasis. Int. Sch. Scien. Reser. Innov, 2014, 8(7), 421-429.
[http://dx.doi.org/10.5281/zenodo.1094202]
[240]
Salem, H.F.; Ahmed, S.M.; Hassaballah, A.E.; Omar, M.M. Targeting brain cells with glutathione-modulated nanoliposomes: in vitro and in vivo study. Drug Des. Devel. Ther., 2015, 9, 3705-3727.
[http://dx.doi.org/10.2147/DDDT.S85302] [PMID: 26229435]
[241]
Tian, B.; Yan, Q.; Wang, J.; Ding, C.; Sai, S. Enhanced antifungal activity of voriconazole-loaded nanostructured lipid carriers against Candida albicans with a dimorphic switching model. Int. J. Nanomedicine, 2017, 12, 7131-7141.
[http://dx.doi.org/10.2147/IJN.S145695] [PMID: 29026306]
[242]
de Sá, F.A.; Taveira, S.F.; Gelfuso, G.M.; Lima, E.M.; Gratieri, T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf. B Biointerfaces, 2015, 133, 331-338.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.036] [PMID: 26123854]
[243]
Pandurangan, D.K.; Bodagala, P.; Palanirajan, V.K.; Govindaraj, S. Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int. J. Pharm. Investig., 2016, 6(1), 56-62.
[http://dx.doi.org/10.4103/2230-973X.176488] [PMID: 27014620]
[244]
Kumar, R.; Sinha, V.R. Solid lipid nanoparticle: an efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[http://dx.doi.org/10.1080/03639045.2016.1185437] [PMID: 27143048]
[245]
Takalkar, D.; Desai, N. Nanolipid gel of an antimycotic drug for treating vulvovaginal candidiasis – development and evaluation. AAPS PharmSciTech, 2018, 19(3), 1297-1307.
[http://dx.doi.org/10.1208/s12249-017-0918-7] [PMID: 29340981]
[246]
Gómez-Sequeda, N.; Torres, R.; Ortiz, C. Synthesis, characterization and in vitro activity against Candida spp. of fluconazole encapsulated on cationic and conventional nanoparticles of poly(lactic-co-glycolic acid). Nanotechnol. Sci. Appl., 2017, 10, 95-104.
[http://dx.doi.org/10.2147/NSA.S96018] [PMID: 28572725]
[247]
Gupta, M.; Vaidya, B.; Mishra, N.; Vyas, S.P. Effect of surfactants on the characteristics of fluconazole niosomes for enhanced cutaneous delivery. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(6), 376-384.
[http://dx.doi.org/10.3109/10731199.2011.611476] [PMID: 21951195]
[248]
Domingues Bianchin, M.; Borowicz, S.M.; da Rosa Monte Machado, G.; Pippi, B.; Stanisçuaski Guterres, S.; Raffin Pohlmann, A.; Meneghello Fuentefria, A.; Clemes Külkamp-Guerreiro, I. Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species. Colloids Surf. B Biointerfaces, 2019, 175, 523-529.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.011] [PMID: 30579053]
[249]
Gupta, M.; Tiwari, S.; Vyas, S.P. Influence of various lipid core on characteristics of SLNs designed for topical delivery of fluconazole against cutaneous candidiasis. Pharm. Dev. Technol., 2013, 18(3), 550-559.
[http://dx.doi.org/10.3109/10837450.2011.598161] [PMID: 21810069]
[250]
Sharma, R.; Garg, T.; Goyal, A.K.; Rath, G. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 524-531.
[http://dx.doi.org/10.3109/21691401.2014.966194] [PMID: 25315503]
[251]
Bors, A.; Niculae, G.; Stan, R.; Meghea, A. Lipid nanocarriers with antifungal activity prepared by high pressure homogenization. Rev. Chim., 2014, 65(6), 671-675.
[252]
Martín-Villena, M.J.; Fernández-Campos, F.; Calpena-Campmany, A.C.; Bozal-de Febrer, N.; Ruiz-Martínez, M.A.; Clares-Naveros, B. Novel microparticulate systems for the vaginal delivery of nystatin: development and characterization. Carbohydr. Polym., 2013, 94(1), 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.005] [PMID: 23544502]
[253]
Martín, M.J.; Calpena, A.C.; Fernández, F.; Mallandrich, M.; Gálvez, P.; Clares, B. Development of alginate microspheres as nystatin carriers for oral mucosa drug delivery. Carbohydr. Polym., 2015, 117, 140-149.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.032] [PMID: 25498619]
[254]
Gupta, P.K.; Jaiswal, A.K.; Asthana, S.; Verma, A.; Kumar, V.; Shukla, P.; Dwivedi, P.; Dube, A.; Mishra, P.R. Self assembled ionically sodium alginate cross-linked amphotericin B encapsulated glycol chitosan stearate nanoparticles: applicability in better chemotherapy and non-toxic delivery in visceral leishmaniasis. Pharm. Res., 2015, 32(5), 1727-1740.
[http://dx.doi.org/10.1007/s11095-014-1571-4] [PMID: 25425053]
[255]
Yang, C.; Xue, B.; Song, W.; Kan, B.; Zhang, D.; Yu, H.; Shen, N.; Li, X.; Tang, Z.; Chen, X. Reducing the toxicity of amphotericin B by encapsulation using methoxy poly(ethylene glycol)-b-poly(l-glutamic acid-co-l-phenylalanine). Biomater. Sci., 2018, 6(8), 2189-2196.
[http://dx.doi.org/10.1039/C8BM00506K] [PMID: 29947373]
[256]
Chhonker, Y.S.; Prasad, Y.D.; Chandasana, H.; Vishvkarma, A.; Mitra, K.; Shukla, P.K.; Bhatta, R.S. Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int. J. Biol. Macromol., 2015, 72, 1451-1458.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.014] [PMID: 25453292]
[257]
Tang, X.; Zhu, H.; Sun, L.; Hou, W.; Cai, S.; Zhang, R.; Liu, F. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Int. J. Nanomedicine, 2014, 9, 5403-5413.
[http://dx.doi.org/10.2147/ijn.s71623] [PMID: 25473279]
[258]
Zhang, P.; Yang, X.; He, Y.; Chen, Z.; Liu, B.; Emesto, C.S.; Yang, G.; Wang, W.; Zhang, J.; Lin, R. Preparation, characterization and toxicity evaluation of amphotericin B loaded MPEG-PCL micelles and its application for buccal tablets. Appl. Microbiol. Biotechnol., 2017, 101(19), 7357-7370.
[http://dx.doi.org/10.1007/s00253-017-8463-6] [PMID: 28868587]
[259]
Hussain, A.; Singh, V.K.; Singh, O.P.; Shafaat, K.; Kumar, S.; Ahmad, F.J. Formulation and optimization of nanoemulsion using antifungal lipid and surfactant for accentuated topical delivery of Amphotericin B. Drug Deliv., 2016, 23(8), 3101-3110.
[http://dx.doi.org/10.3109/10717544.2016.1153747] [PMID: 27854145]
[260]
Sandhya, M. v, A.; Maneesha K, S.; Raja, B.; R, J.; S, S. Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections. Int. J. Biol. Macromol., 2018, 110, 133-139.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.028] [PMID: 29339278]
[261]
Zhou, W.; Wang, Y.; Jian, J.; Song, S. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int. J. Nanomedicine, 2013, 8, 3715-3728.
[http://dx.doi.org/10.2147/ijn.s51186] [PMID: 24106427]
[262]
Zu, Y.; Sun, W.; Zhao, X.; Wang, W.; Li, Y.; Ge, Y.; Liu, Y.; Wang, K. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. Eur. J. Pharm. Sci., 2014, 53, 109-117.
[http://dx.doi.org/10.1016/j.ejps.2013.12.005] [PMID: 24345795]
[263]
Zhao, M.; Hu, J.; Zhang, L.; Zhang, L.; Sun, Y.; Ma, N.; Chen, X.; Gao, Z. Study of amphotericin B magnetic liposomes for brain targeting. Int. J. Pharm., 2014, 475(1-2), 9-16.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.035] [PMID: 25151436]
[264]
Bhatia, S.; Kumar, V.; Sharma, K.; Nagpal, K.; Bera, T. Significance of algal polymer in designing amphotericin B nanoparticles. ScientificWorldJournal, 2014, 2014, 564573.
[http://dx.doi.org/10.1155/2014/564573] [PMID: 25478596]
[265]
Pippa, N.; Mariaki, M.; Pispas, S.; Demetzos, C. Preparation, development and in vitro release evaluation of amphotericin B-loaded amphiphilic block copolymer vectors. Int. J. Pharm., 2014, 473(1-2), 80-86.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.001] [PMID: 24998505]
[266]
Richter, A.R.; Feitosa, J.P.A.; Paula, H.C.B.; Goycoolea, F.M.; de Paula, R.C.M. Pickering emulsion stabilized by cashew gum- poly-l-lactide copolymer nanoparticles: Synthesis, characterization and amphotericin B encapsulation. Colloids Surf. B Biointerfaces, 2018, 164, 201-209.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.023] [PMID: 29413597]
[267]
Yang, M.; Du, K.; Hou, Y.; Xie, S.; Dong, Y.; Li, D.; Du, Y. Synergistic antifungal effect of amphotericin B-loaded Poly(Lactic-Co-Glycolic Acid) nanoparticle with ultrasound against Candida albicans biofilms. Antimicrob. Agents Chemother., 2019, 63(4), e2022-e18.
[http://dx.doi.org/10.1128/aac.02022-18] [PMID: 30670414]
[268]
Aparna, V.; Melge, A.R.; Rajan, V.K.; Biswas, R.; Jayakumar, R.; Gopi Mohan, C. Carboxymethylated ɩ-carrageenan conjugated amphotericin B loaded gelatin nanoparticles for treating intracellular Candida glabrata infections. Int. J. Biol. Macromol., 2018, 110, 140-149.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.126] [PMID: 29169943]
[269]
Tan, S.W.; Billa, N. Lipid effects on expulsion rate of amphotericin B from solid lipid nanoparticles. AAPS PharmSciTech, 2014, 15(2), 287-295.
[http://dx.doi.org/10.1208/s12249-013-0056-9] [PMID: 24318197]
[270]
Nahar, M.; Mishra, D.; Dubey, V.; Jain, N.K. Development, characterization and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine (Lond.), 2008, 4(3), 252-261.
[http://dx.doi.org/10.1016/j.nano.2008.03.007] [PMID: 18502187]
[271]
Van den Bossche, H.; Willemsens, G.; Cools, W.; Marichal, P.; Lauwers, W. Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem. Soc. Trans., 1983, 11(6), 665-667.
[http://dx.doi.org/10.1042/bst0110665] [PMID: 6667774]
[272]
Bianco, M.A.; Gallarate, M.; Trotta, M.; Battaglia, L. Amphotericin B loaded SLN prepared with the coacervation technicque. J. Drug Deliv. Sci. Technol., 2010, 20(3), 187-191.
[http://dx.doi.org/10.1016/S1773-2247(10)50028-5]
[273]
Vakil, R.; Knilans, K.; Andes, D.; Kwon, G.S. Combination antifungal therapy involving amphotericin B, rapamycin and 5-fluorocytosine using PEG-phospholipid micelles. Pharm. Res., 2008, 25(9), 2056-2064.
[http://dx.doi.org/10.1007/s11095-008-9588-1] [PMID: 18415047]
[274]
Baumgartner, J.; Bertinetti, L.; Widdrat, M.; Hirt, A.M.; Faivre, D. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles. PLoS One, 2013, 8(3), e57070.
[http://dx.doi.org/10.1371/journal.pone.0057070] [PMID: 23520462]
[275]
Goy, R.C.; De Brito, D.; Assis, O.B.G. A review of the antimicrobial activity of chitosan. Polímeros, 2009, 19(3), 241-247.
[http://dx.doi.org/10.1590/S0104-14282009000300013]
[276]
Sun, L.; Liao, K.; Li, Y.; Zhao, L.; Liang, S.; Guo, D.; Hu, J.; Wang, D. Synergy between polyvinylpyrrolidone-coated silver nanoparticles and azole antifungal against drug-resistant Candida albicans. J. Nanosci. Nanotechnol., 2016, 16(3), 2325-2335.
[http://dx.doi.org/10.1166/jnn.2016.10934] [PMID: 27455637]
[277]
Costa, A.F.; Araujo, D.E.; Cabral, M.S.; Brito, I.T.; Leite, L.B.M.; Pereira, M.; Amaral, A.C. Development, characterization and in vitro-in vivo evaluation miconazole and farnesol for treatment of vulvovaginal candidiasis. Med. Mycol., 2018, 57(1), 52-62.
[http://dx.doi.org/10.1093/mmy/myx155] [PMID: 29361177]
[278]
Kalita, S.; Kandimalla, R.; Devi, B.; Kalita, B.; Kalita, K.; Deka, M.; Kataki, A.C.; Sharma, A.; Kotoky, J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–Pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Advances, 2017, 7(3), 1749-1758.
[http://dx.doi.org/10.1039/C6RA26561H]
[279]
Svetlichny, G.; Külkamp-Guerreiro, I.C.; Cunha, S.L.; Silva, F.E.; Bueno, K.; Pohlmann, A.R.; Fuentefria, A.M.; Guterres, S.S. Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity. Pharmazie, 2015, 70(3), 155-164.
[PMID: 25980176]
[280]
Diezi, T.A.; Kwon, G. Amphotericin B/sterol co-loaded PEG-phospholipid micelles: effects of sterols on aggregation state and hemolytic activity of amphotericin B. Pharm. Res., 2012, 29(7), 1737-1744.
[http://dx.doi.org/10.1007/s11095-011-0626-z] [PMID: 22130733]
[281]
Vitonyte, J.; Manca, M.L.; Caddeo, C.; Valenti, D.; Peris, J.E.; Usach, I.; Nacher, A.; Matos, M.; Gutiérrez, G.; Orrù, G.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur. J. Pharm. Biopharm., 2017, 114, 278-287.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.004] [PMID: 28192250]
[282]
Jogaiah, S.; Kurjogi, M.; Abdelrahman, M.; Hanumanthappa, N.; Tran, L-S.P. Ganoderma applanatum-mediated green synthesis of silver nanoparticles: structural characterization and in vitro and in vivo biomedical and agrochemical properties. Arab. J. Chem., 2019, 12, 1108-1120.
[http://dx.doi.org/10.1016/j.arabjc.2017.12.002]
[283]
Sarkar, J.; Chakraborty, N.; Chatterjee, A.; Bhattacharjee, A.; Dasgupta, D.; Acharya, K. Green synthesized copper oxide nanoparticles ameliorate defence and antioxidant enzymes in Lens culinaris. Nanomaterials (Basel), 2020, 10(2), 312.
[http://dx.doi.org/10.3390/nano10020312] [PMID: 32059367]
[284]
Thakur, B.K.; Kumar, A.; Kumar, D. Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S. Afr. J. Bot., 2019, 124, 223-227.
[http://dx.doi.org/10.1016/j.sajb.2019.05.024]
[285]
Nandini, B.; Puttaswamy, H. H S, P.; Adhikari, S.; Jogaiah, S.; Nagaraja, G. Elicitation of novel trichogenic-lipid nanoemulsion signaling resistance against pearl millet downy mildew disease. Biomolecules, 2019, 10(1), E25.
[http://dx.doi.org/10.3390/biom10010025] [PMID: 31878099]
[286]
Nayak, S.; Bhat, M.P.; Udayashankar, A.C.; Lakshmeesha, T.R.; Geetha, N.; Jogaiah, S. Biosynthesis and characterization of Dillenia indica‐mediated silver nanoparticles and their biological activity. Appl. Organometal. Chem., 2020, 34(4), e5567.
[http://dx.doi.org/10.1002/aoc.5567]
[287]
Bhatnagar, S.; Kobori, T.; Ganesh, D.; Ogawa, K.; Aoyagi, H. Biosynthesis of silver nanoparticles mediated by extracellular pigment from Talaromyces purpurogenus and their biomedical applications. Nanomaterials (Basel), 2019, 9(7), 1042.
[http://dx.doi.org/10.3390/nano9071042] [PMID: 31330905]
[288]
Riaz, M.; Altaf, M.; Khan, M.Q.; Manzoor, S.; Shekheli, M.A.; Shah, M.A.; Ilyas, S.Z.; Hussain, Z. Green synthesis of silver nanoparticles using Jurinea dolomiaea and biological activities. J. Nanosci. Nanotechnol., 2018, 18(12), 8386-8391.
[http://dx.doi.org/10.1166/jnn.2018.16401] [PMID: 30189964]
[289]
Jaffri, S.B.; Ahmad, K.S. Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants. Environ. Sci. Pollut. Res. Int., 2020, 27(9), 9669-9685.
[http://dx.doi.org/10.1007/s11356-020-07626-6] [PMID: 31925686]
[290]
Fernández-Campos, F.; Calpena-Campmany, A.C.; Rodríguez-Delgado, G.; López-Serrano, O.; Claves-Naveros, B. Development and characterization of a treatment of candidosis: ultrastructural effects and release studies. J. Pharm. Sci., 2012, 101(10), 3739-3752.
[http://dx.doi.org/10.1002/jps.23249] [PMID: 22777575]
[291]
Krpetić, Z.; Anguissola, S.; Garry, D.; Kelly, P.M.; Dawson, K.A. Nanomaterials: impact on cells and cell organelles. Adv. Exp. Med. Biol., 2014, 811, 135-156.
[http://dx.doi.org/10.1007/978-94-017-8739-0_8] [PMID: 24683031]
[292]
Tosi, G.; Duskey, J.T.; Kreuter, J. Nanoparticles as carriers for drug delivery of macromolecules across the blood-brain barrier. Expert Opin. Drug Deliv., 2020, 17(1), 23-32.
[http://dx.doi.org/10.1080/17425247.2020.1698544] [PMID: 31774000]
[293]
Patel, S.; Jana, S.; Chetty, R.; Thakore, S.; Singh, M.; Devkar, R. Toxicity evaluation of magnetic iron oxide nanoparticles reveals neuronal loss in chicken embryo. Drug Chem. Toxicol., 2019, 42(1), 1-8.
[http://dx.doi.org/10.1080/01480545.2017.1413110] [PMID: 29281933]
[294]
Sohaebuddin, S.K.; Thevenot, P.T.; Baker, D.; Eaton, J.W.; Tang, L. Nanomaterial cytotoxicity is composition, size and cell type dependent. Part. Fibre Toxicol., 2010, 7, 22.
[http://dx.doi.org/10.1186/1743-8977-7-22] [PMID: 20727197]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy