Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Nanovesicular Photodynamic Clinical Treatment of Resistant Plantar Warts

Author(s): Maha Fadel, Kawser Kassab, Nevien Samy, Doaa Abdelfadeel, Ghada Yassin and Maha Nasr *

Volume 17, Issue 5, 2020

Page: [396 - 405] Pages: 10

DOI: 10.2174/1567201817666200324142221

Price: $65

Abstract

Background: Photodynamic therapy which involves the use of photosensitizer molecule activated by a light source was proven very promising for the treatment of dermatological diseases, especially the resistant ones such as recalcitrant Plantar Warts (PW).

Objective: However, its efficacy is hindered by the poor permeation of the photosensitizer molecule required to initiate skin photo-induced effects.

Methods: In this manuscript, the efficiency of the nano-vesicular system (transfersomes) as a potential topical drug delivery system for the photosensitizer methylene blue (MB) was investigated following clinical Photodynamic Therapy (PDT) in patients suffering from PW.

Results: Results revealed that MB transfersomal gel displayed a higher complete healing percentage for the lesions compared to the free MB gel (86.67% versus 53.57%) achieved at a lower number of treatment sessions (2.2 versus 4.14). Patients reported no signs of pain or inflammation, with no recurrence of the lesions during the follow up period of 8 months.

Conclusion: PDT using transfersomal MB is an effective and safe therapeutic modality for the treatment of PW.

Keywords: Topical delivery, methylene blue, transfersomes, photodynamic therapy, plantar warts, clinical.

Graphical Abstract

[1]
Cubie, H.A. Diseases associated with human papillomavirus infection. Virology, 2013, 445(1-2), 21-34.
[http://dx.doi.org/10.1016/j.virol.2013.06.007] [PMID: 23932731]
[2]
Hassan, I.; Bhat, T.; Altaf, H.; Sameem, F.; Masood, Q. Role of oral zinc sulphate in warts-a placebo controlled single-blinded study. Our Dermatol. Online, 2013, 4, 24-27.
[http://dx.doi.org/10.7241/ourd.20131.04]
[3]
Khozeimeh, F.; Jabbari Azad, F.; Mahboubi Oskouei, Y.; Jafari, M.; Tehranian, S.; Alizadehsani, R.; Layegh, P. Intralesional immunotherapy compared to cryotherapy in the treatment of warts. Int. J. Dermatol., 2017, 56(4), 474-478.
[http://dx.doi.org/10.1111/ijd.13535] [PMID: 28108992]
[4]
Fabbrocini, G.; Vita, V.; Monfrecola, F. Photodynamic therapy with 20% topical 5-aminolaevulinic acid or placebo for the treatment of common therapies-resistant plantar warts: a randomised double-blind trial. J. Egypt Women Dermatol. Soc., 2010, 7, 81-88.
[5]
Alemany-Ribes, M.; García-Díaz, M.; Acedo, P.; Agut, M.; Nonell, S.; Sagrista, M.L.; Mora, M.; Canete, M.; Villanueva, A.; Stockert, J.C.; Semino, C.E. Why not introducing the third dimension in photodynamic therapy research? J. Anal. Bioanal. Tech., 2013, S1, 1-6.
[http://dx.doi.org/10.4172/2155-9872.S1-004]
[6]
Fabris, C.; Vicente, M.G.; Hao, E.; Friso, E.; Borsetto, L.; Jori, G.; Miotto, G.; Colautti, P.; Moro, D.; Esposito, J.; Ferretti, A.; Rossi, C.R.; Nitti, D.; Sotti, G.; Sonchin, M. Tumour localizing and photosensitizing properties of meso-tetra(4-nido-carbonaylphenyl)porphyrin (H2TCP). J. Photochem. Photobiol., 2007, 89, 131-138.
[7]
Muehlmann, L.A.; Joanitti, G.A.; Silva, J.R.; Longo, J.P.; Azevedo, R.B. Liposomal photosensitizers: potential platforms for anticancer photodynamic therapy. Braz. J. Med. Biol. Res., 2011, 44(8), 729-737.
[http://dx.doi.org/10.1590/S0100-879X2011007500091] [PMID: 21969965]
[8]
Shaji, J.; Lal, M. Preparation, optimization and evaluation of transferosomal formulation for enhanced transdermal delivery of a cox-2 inhibitor. Int. J. Pharm. Pharm. Sci., 2014, 6, 467-477.
[9]
Mao, K.L.; Fan, Z.L.; Yuan, J.D.; Chen, P.P.; Yang, J.J.; Xu, J.; ZhuGe, D.L.; Jin, B.H.; Zhu, Q.Y.; Shen, B.X.; Sohawon, Y.; Zhao, Y.Z.; Xu, H.L. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf. B Biointerfaces, 2017, 160, 704-714.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.029] [PMID: 29035818]
[10]
Chen, Y.; Feng, X.; Meng, S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin. Drug Deliv., 2019, 16(8), 847-867.
[http://dx.doi.org/10.1080/17425247.2019.1645119] [PMID: 31311345]
[11]
Vogt, A.; Wischke, C.; Neffe, A.T.; Ma, N.; Alexiev, U.; Lendlein, A. Nanocarriers for drug delivery into and through the skin - Do existing technologies match clinical challenges? J. Control. Release, 2016, 242, 3-15.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.027] [PMID: 27449743]
[12]
Ramez, S.A.; Soliman, M.M.; Fadel, M.; Nour El-Deen, F.; Nasr, M.; Youness, E.R.; Aboel-Fadl, D.M. Novel methotrexate soft nanocarrier/fractional erbium YAG laser combination for clinical treatment of plaque psoriasis. Artif. Cells Nanomed. Biotechnol., 2018, 461, 996-1002.
[13]
Khallaf, R.A.; Salem, H.F.; Abdelbary, A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv., 2016, 23(9), 3452-3460.
[http://dx.doi.org/10.1080/10717544.2016.1194498] [PMID: 27240935]
[14]
Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv., 2020, 17(3), 357-377.
[http://dx.doi.org/10.1080/17425247.2020.1727883] [PMID: 32064958]
[15]
Esposito, E.; Nastruzzi, C.; Sguizzato, M.; Cortesi, R. Nanomedicines to treat skin pathologies with natural molecules. Curr. Pharm. Des., 2019, 25(21), 2323-2337.
[http://dx.doi.org/10.2174/1381612825666190709210703] [PMID: 31584367]
[16]
Fadel, M.; Samy, N.; Nasr, M.; Alyoussef, A.A. Topical colloidal indocyanine green-mediated photodynamic therapy for treatment of basal cell carcinoma. Pharm. Dev. Technol., 2017, 22(4), 545-550.
[http://dx.doi.org/10.3109/10837450.2016.1146294] [PMID: 26895257]
[17]
Romero, E.L.; Morilla, M.J. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int. J. Nanomedicine, 2013, 8, 3171-3186.
[http://dx.doi.org/10.2147/IJN.S33048] [PMID: 23986634]
[18]
Elsayed, M.M.; Abdallah, O.Y.; Naggar, V.F.; Khalafallah, N.M. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm., 2007, 332(1-2), 1-16.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.005] [PMID: 17222523]
[19]
Seo, S.H.; Kim, B.M.; Joe, A.; Han, H.W.; Chen, X.; Cheng, Z.; Jang, E.S. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials, 2014, 35(10), 3309-3318.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.066] [PMID: 24424205]
[20]
Salah, M.; Samy, N.; Fadel, M. Methylene blue mediated photodynamic therapy for resistant plaque psoriasis. J. Drugs Dermatol., 2009, 8(1), 42-49.
[PMID: 19180895]
[21]
Guan, J.; Lai, X.; Wang, X.; Leung, A.W.; Zhang, H.; Xu, C. Photodynamic action of methylene blue in osteosarcoma cells in vitro. Photodiagn. Photodyn. Ther., 2014, 11(1), 13-19.
[http://dx.doi.org/10.1016/j.pdpdt.2013.09.003] [PMID: 24629696]
[22]
Floyd, R.A.; Schneider, J.E., Jr; Dittmer, D.P. Methylene blue photoinactivation of RNA viruses. Antiviral Res., 2004, 61(3), 141-151.
[http://dx.doi.org/10.1016/j.antiviral.2003.11.004] [PMID: 15168794]
[23]
Hatem, S.; Nasr, M.; Moftah, N.H.; Ragai, M.H.; Geneidi, A.S.; Elkheshen, S.A. Melatonin vitamin C-based nanovesicles for treatment of androgenic alopecia: Design, characterization and clinical appraisal. Eur. J. Pharm. Sci., 2018, 122, 246-253.
[http://dx.doi.org/10.1016/j.ejps.2018.06.034] [PMID: 29981403]
[24]
Fadel, M.; Kassab, K.; Abd El Fadeel, D.A.; Nasr, M.; El Ghoubary, N.M. Comparative enhancement of curcumin cytotoxic photodynamic activity by nanoliposomes and gold nanoparticles with pharmacological appraisal in HepG2 cancer cells and Erlich solid tumor model. Drug Dev. Ind. Pharm., 2018, 44(11), 1809-1816.
[http://dx.doi.org/10.1080/03639045.2018.1496451] [PMID: 29969300]
[25]
Ashraf, O.; Nasr, M.; Nebsen, M.; Said, A.M.A.; Sammour, O. In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int. J. Pharm., 2018, 539(1-2), 83-94.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.041] [PMID: 29374518]
[26]
Agiba, A.M.; Nasr, M.; Abdel-Hamid, S.; Eldin, A.B.; Geneidi, A.S. Enhancing the intestinal permeation of the chondroprotective nutraceuticals glucosamine sulphate and chondroitin sulphate using conventional and modified liposomes. Curr. Drug Deliv., 2018, 15(6), 907-916.
[http://dx.doi.org/10.2174/1567201815666180123100148] [PMID: 29359666]
[27]
Abdelgawad, R.; Nasr, M.; Moftah, N.H.; Hamza, M.Y. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment. Eur. J. Pharm. Sci., 2017, 101, 258-268.
[http://dx.doi.org/10.1016/j.ejps.2017.02.030] [PMID: 28232140]
[28]
Mouez, M.A.; Nasr, M.; Abdel-Mottaleb, M.; Geneidi, A.S.; Mansour, S. Composite chitosan-transfersomal vesicles for improved trans-nasal permeation and bioavailability of verapamil. Int. J. Biol. Macromol., 2016, 93(Pt A), 591-599.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.027]
[29]
Nasr, M.; Taha, I.; Hathout, R.M. Suitability of liposomal carriers for systemic delivery of risedronate using the pulmonary route. Drug Deliv., 2013, 20(8), 311-318.
[http://dx.doi.org/10.3109/10717544.2013.835160] [PMID: 24079347]
[30]
Nasr, M.; Mansour, S.; Mortada, N.D.; Elshamy, A.A. Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J. Microencapsul., 2008, 25(7), 499-512.
[http://dx.doi.org/10.1080/02652040802055411] [PMID: 18608811]
[31]
Bsieso, E.A.; Nasr, M.; Moftah, N.H.; Sammour, O.A.; Abd El Gawad, N.A. Could nanovesicles containing a penetration enhancer clinically improve the therapeutic outcome in skin fungal diseases? Nanomedicine (Lond.), 2015, 10(13), 2017-2031.
[http://dx.doi.org/10.2217/nnm.15.49] [PMID: 26135513]
[32]
Bseiso, E.A.; Nasr, M.; Sammour, O.A.; Abd El Gawad, N.A. Novel nail penetration enhancer containing vesicles “nPEVs” for treatment of onychomycosis. Drug Deliv., 2016, 23(8), 2813-2819.
[http://dx.doi.org/10.3109/10717544.2015.1099059] [PMID: 26447337]
[33]
Barakat, S.S.; Nasr, M.; Ahmed, R.F.; Badawy, S.S.; Mansour, S. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci. Rep., 2017, 7(1), 9910.
[http://dx.doi.org/10.1038/s41598-017-10032-7] [PMID: 28855590]
[34]
Prasanthi, D.; Lakshmi, P.K. Vesicles – mechanism of transdermal permeation: a review. Asian J. Pharm. Clin. Res., 2012, 5, 18-25.
[35]
Kassab, K.; El Fadeel, D.A.; Fadel, M. Topical photodynamic therapy using transfersomal aluminum phthalocyanine tetrasulfonate: in vitro and in vivo study. Lasers Med. Sci., 2013, 28(5), 1353-1361.
[http://dx.doi.org/10.1007/s10103-012-1256-3] [PMID: 23291878]
[36]
Sinico, C.; Manconi, M.; Peppi, M.; Lai, F.; Valenti, D.; Fadda, A.M. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle-skin interaction. J. Control. Release, 2005, 103(1), 123-136.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.020] [PMID: 15710506]
[37]
Maione-Silva, L.; de Castro, E.G.; Nascimento, T.L.; Cintra, E.R.; Moreira, L.C.; Cintra, B.A.S.; Valadares, M.C.; Lima, E.M. Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts. Sci. Rep., 2019, 9(1), 522.
[http://dx.doi.org/10.1038/s41598-018-36682-9] [PMID: 30679479]
[38]
Duangjit, S.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J. Drug Deliv., 2011, 2011, 418316
[http://dx.doi.org/10.1155/2011/418316] [PMID: 21490750]
[39]
Ogiso, T.; Yamaguchi, T.; Iwaki, M.; Tanino, T.; Miyake, Y. Effect of positively and negatively charged liposomes on skin permeation of drugs. J. Drug Target., 2001, 9(1), 49-59.
[http://dx.doi.org/10.3109/10611860108995632] [PMID: 11378523]
[40]
Guarino, M.F.; Harto, A.; Jaén, P. Treatment of recalcitrant viral warts with photodynamic therapy with mal and red light. J. Cosmet. Dermatol. Sci. Appl., 2013, 3, 117-120.
[http://dx.doi.org/10.4236/jcdsa.2013.31017]
[41]
Genina, E.; Bashkatov, A.; Tuchin, V. Methylene blue diffusion in skin tissue.Proc. SPIE 5486, ALT'03 Int. Conf. Adv. Laser Technol.: Biomed. Optics; , 2004, 5486, pp. 315-323.
[42]
Sachan, R.; Parashar, T. Soniya; Singh, V.; Singh, G.; Tyagi, S.; Patel, C.; Gupta, A. Drug carrier transfersomes: a novel tool for transdermal drug delivery System. Int. J. Res. Dev. Pharm. Sci., 2013, 2, 309-316.
[43]
Ayala, F.; Grimaldi, E.; Perfetto, B.; Donnarumma, M.; De Filippis, A.; Donnarumma, G.; Tufano, M.A. 5-aminolaevulinic acid and photodynamic therapy reduce HSV-1 replication in HaCat cells through an apoptosis-independent mechanism. Photodermatol. Photoimmunol. Photomed., 2008, 24(5), 237-243.
[http://dx.doi.org/10.1111/j.1600-0781.2008.00367.x] [PMID: 18811864]
[44]
Giomi, B.; Pagnini, F.; Cappuccini, A.; Bianchi, B.; Tiradritti, L.; Zuccati, G. Immunological activity of photodynamic therapy for genital warts. Br. J. Dermatol., 2011, 164(2), 448-451.
[http://dx.doi.org/10.1111/j.1365-2133.2010.10089.x] [PMID: 21271995]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy