Review Article

抗VEGF治疗角膜疾病

卷 21, 期 12, 2020

页: [1159 - 1180] 页: 22

弟呕挨: 10.2174/1389450121666200319111710

价格: $65

摘要

背景:角膜新生血管(CN)是眼部不同病理条件的一个线索特征,可导致角膜水肿和混浊,进而导致视力丧失。血管内皮生长因子(VEGF)在新血管的形成、增殖和迁移中起关键作用,在这些条件下被发现上调。如今,使用不同途径的抗VEGF药物可以下调血管生成过程。 目的:评价抗VEGF药物治疗不同病因的CNV的疗效、安全性和可能的未来发展方向。 方法: 结果:使用抗VEGF治疗CN可降低病理性血管密度,且无明显副作用。各种给药途径,如局部给药、结膜下给药和星状细胞内给药,其选择取决于病人和疾病的特点。如果在成熟和牢固的船只出现之前进行早期管理,会取得更大的效果。对于新生血管复发风险较高的病例,如缺血性和炎症刺激不能完全逆转的慢性长期疾病,应采用包括抗vegf制剂在内的多种药物的联合治疗。 结论:抗VEGF药物的有效性和安全性支持它们被应用到CN的日常临床实践中。

关键词: 抗VEGF ,新生血管,角膜,贝伐珠单抗,安维汀,雷尼珠单抗,角膜新生血管形成,血管内皮生长因子

图形摘要

[1]
Zhang SX, Ma JX. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 2007; 26(1): 1-37.
[http://dx.doi.org/10.1016/j.preteyeres.2006.09.002] [PMID: 17074526]
[2]
Ma DH, Chen JK, Zhang F, Lin KY, Yao JY, Yu JS. Regulation of corneal angiogenesis in limbal stem cell deficiency. Prog Retin Eye Res 2006; 25(6): 563-90.
[http://dx.doi.org/10.1016/j.preteyeres.2006.09.001] [PMID: 17079182]
[3]
Giannaccare G, Pellegrini M, Bernabei F, Scorcia V, Campos E. Ocular surface system alterations in ocular graft-versus-host disease: all the pieces of the complex puzzle. Graefes Arch Clin Exp Ophthalmol 2019; 257(7): 1341-51.
[http://dx.doi.org/10.1007/s00417-019-04301-6] [PMID: 30944986]
[4]
Busin M, Giannaccare G, Sapigni L, et al. Conjunctival and Limbal Transplantation From the Same Living-Related Bone Marrow Donor to Patients With Severe Ocular Graft-vs-Host Disease. JAMA Ophthalmol 2017; 135(10): 1123-5.
[http://dx.doi.org/10.1001/jamaophthalmol.2017.3204] [PMID: 28880979]
[5]
Agarwal S, Angayarkanni N, Iyer G, et al. Clinico-biochemical correlation of the effect of subconjunctival bevacizumab for corneal neovascularization. Cornea 2014; 33(10): 1016-21.
[http://dx.doi.org/10.1097/ICO.0000000000000198] [PMID: 25090164]
[6]
Roshandel D, Eslani M, Baradaran-Rafii A, et al. Current and emerging therapies for corneal neovascularization. Ocul Surf 2018; 16(4): 398-414.
[http://dx.doi.org/10.1016/j.jtos.2018.06.004] [PMID: 29908870]
[7]
Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 1998; 43(3): 245-69.
[http://dx.doi.org/10.1016/S0039-6257(98)00035-6] [PMID: 9862312]
[8]
Lim M, Jacobs DS, Rosenthal P, Carrasquillo KG. The Boston Ocular Surface Prosthesis as a novel drug delivery system for bevacizumab. Semin Ophthalmol 2009; 24(3): 149-55.
[http://dx.doi.org/10.1080/08820530902802013] [PMID: 19437350]
[9]
Lee KJ, Lee JY, Lee SH, Choi TH. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea. BMB Rep 2013; 46(4): 195-200.
[http://dx.doi.org/10.5483/BMBRep.2013.46.4.193] [PMID: 23615260]
[10]
Kwon YS, Kim JC. Inhibition of corneal neovascularization by rapamycin. Exp Mol Med 2006; 38(2): 173-9.
[http://dx.doi.org/10.1038/emm.2006.21] [PMID: 16672771]
[11]
Lipman RM, Epstein RJ, Hendricks RL. Suppression of corneal neovascularization with cyclosporine. Arch Ophthalmol 1992; 110(3): 405-7.
[http://dx.doi.org/10.1001/archopht.1992.01080150103037] [PMID: 1543461]
[12]
Shakiba Y, Mansouri K, Arshadi D, Rezaei N. Corneal neovascularization: molecular events and therapeutic options. Recent Pat Inflamm Allergy Drug Discov 2009; 3(3): 221-31.
[http://dx.doi.org/10.2174/187221309789257450] [PMID: 19702562]
[13]
Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP. Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 1998; 39(1): 18-22.
[PMID: 9430540]
[14]
Tolentino MJ, Miller JW, Gragoudas ES, Chatzistefanou K, Ferrara N, Adamis AP. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch Ophthalmol 1996; 114(8): 964-70.
[http://dx.doi.org/10.1001/archopht.1996.01100140172010] [PMID: 8694732]
[15]
Rosenfeld PJ, Rich RM, Lalwani GA. Ranibizumab: Phase III clinical trial results. Ophthalmol Clin North Am 2006; 19(3): 361-72.
[PMID: 16935211]
[16]
Singerman LJ, Masonson H, Patel M, et al. Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF Inhibition Study in Ocular Neovascularisation (VISION) trial. Br J Ophthalmol 2008; 92(12): 1606-11.
[http://dx.doi.org/10.1136/bjo.2007.132597] [PMID: 18614570]
[17]
Tshionyi M, Shay E, Lunde E, et al. Hemangiogenesis and lymphangiogenesis in corneal pathology. Cornea 2012; 31(1): 74-80.
[http://dx.doi.org/10.1097/ICO.0b013e31821dd986] [PMID: 22030600]
[18]
Keating AM, Jacobs DS. Anti-VEGF Treatment of Corneal Neovascularization. Ocul Surf 2011; 9(4): 227-37.
[http://dx.doi.org/10.1016/S1542-0124(11)70035-0] [PMID: 22023817]
[19]
Cursiefen C, Chen L, Borges LP, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 2004; 113(7): 1040-50.
[http://dx.doi.org/10.1172/JCI20465] [PMID: 15057311]
[20]
Sunderkötter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994; 55(3): 410-22.
[http://dx.doi.org/10.1002/jlb.55.3.410] [PMID: 7509844]
[21]
Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B. Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res 2000; 70(4): 419-28.
[http://dx.doi.org/10.1006/exer.1999.0790] [PMID: 10865990]
[22]
Nakao S, Hata Y, Miura M, et al. Dexamethasone inhibits interleukin-1beta-induced corneal neovascularization: role of nuclear factor-kappaB-activated stromal cells in inflammatory angiogenesis. Am J Pathol 2007; 171(3): 1058-65.
[http://dx.doi.org/10.2353/ajpath.2007.070172] [PMID: 17690185]
[23]
Biswas PS, Banerjee K, Kinchington PR, Rouse BT. Involvement of IL-6 in the paracrine production of VEGF in ocular HSV-1 infection. Exp Eye Res 2006; 82(1): 46-54.
[http://dx.doi.org/10.1016/j.exer.2005.05.001] [PMID: 16009363]
[24]
Strieter RM, Kunkel SL, Elner VM, et al. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol 1992; 141(6): 1279-84.
[PMID: 1281615]
[25]
Suryawanshi A, Mulik S, Sharma S, Reddy PB, Sehrawat S, Rouse BT. Ocular neovascularization caused by herpes simplex virus type 1 infection results from breakdown of binding between vascular endothelial growth factor A and its soluble receptor. J Immunol 2011; 186(6): 3653-65.
[http://dx.doi.org/10.4049/jimmunol.1003239] [PMID: 21325621]
[26]
Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci 2000; 41(9): 2514-22.
[PMID: 10937562]
[27]
Termote K, Schendel S, Moloney G, Holland SP, Lange AP. Focal limbal stem cell deficiency associated with soft contact lens wear. Can J Ophthalmol 2017; 52(6): 552-8.
[http://dx.doi.org/10.1016/j.jcjo.2017.03.017] [PMID: 29217022]
[28]
Vafeas C, Mieyal PA, Urbano F, et al. Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. J Pharmacol Exp Ther 1998; 287(3): 903-10.
[PMID: 9864271]
[29]
Ferrari G, Hajrasouliha AR, Sadrai Z, Ueno H, Chauhan SK, Dana R. Nerves and neovessels inhibit each other in the cornea. Invest Ophthalmol Vis Sci 2013; 54(1): 813-20.
[http://dx.doi.org/10.1167/iovs.11-8379] [PMID: 23307967]
[30]
Hosseini H, Nejabat M, Mehryar M, Yazdchi T, Sedaghat A, Noori F. Bevacizumab inhibits corneal neovascularization in an alkali burn induced model of corneal angiogenesis. Clin Exp Ophthalmol 2007; 35(8): 745-8.
[http://dx.doi.org/10.1111/j.1442-9071.2007.01572.x] [PMID: 17997779]
[31]
Han KY, Chang JH, Lee H, Azar DT. Proangiogenic Interactions of Vascular Endothelial MMP14 With VEGF Receptor 1 in VEGFA-Mediated Corneal Angiogenesis. Invest Ophthalmol Vis Sci 2016; 57(7): 3313-22.
[http://dx.doi.org/10.1167/iovs.16-19420] [PMID: 27327585]
[32]
Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13(1): 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[33]
Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 2013; 153(1): 13-9.
[http://dx.doi.org/10.1093/jb/mvs136] [PMID: 23172303]
[34]
Klettner A, Roider J. Treating age-related macular degeneration - interaction of VEGF-antagonists with their target. Mini Rev Med Chem 2009; 9(9): 1127-35.
[http://dx.doi.org/10.2174/138955709788922665] [PMID: 19689408]
[35]
Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int Suppl 2000; 77: S113-9.
[http://dx.doi.org/10.1046/j.1523-1755.2000.07718.x] [PMID: 10997700]
[36]
Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146(5): 1029-39.
[PMID: 7538264]
[37]
Hoppenreijs VP, Pels E, Vrensen GF, Felten PC, Treffers WF. Platelet-derived growth factor: receptor expression in corneas and effects on corneal cells. Invest Ophthalmol Vis Sci 1993; 34(3): 637-49.
[PMID: 8449682]
[38]
Dell S, Peters S, Müther P, Kociok N, Joussen AM. The role of PDGF receptor inhibitors and PI3-kinase signaling in the pathogenesis of corneal neovascularization. Invest Ophthalmol Vis Sci 2006; 47(5): 1928-37.
[http://dx.doi.org/10.1167/iovs.05-1071] [PMID: 16639000]
[39]
Soubrane G, Jerdan J, Karpouzas I, et al. Binding of basic fibroblast growth factor to normal and neovascularized rabbit cornea. Invest Ophthalmol Vis Sci 1990; 31(2): 323-33.
[PMID: 1689281]
[40]
Mignatti P, Rifkin DB. Nonenzymatic interactions between proteinases and the cell surface: novel roles in normal and malignant cell physiology. Adv Cancer Res 2000; 78: 103-57.
[http://dx.doi.org/10.1016/S0065-230X(08)61024-6] [PMID: 10547669]
[41]
Papapetropoulos A, García-Cardeña G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997; 100(12): 3131-9.
[http://dx.doi.org/10.1172/JCI119868] [PMID: 9399960]
[42]
Bryan BA, Dennstedt E, Mitchell DC, et al. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J 2010; 24(9): 3186-95.
[http://dx.doi.org/10.1096/fj.09-145102] [PMID: 20400538]
[43]
Wang Z, Cheng R, Lee K, et al. Nanoparticle-mediated expression of a Wnt pathway inhibitor ameliorates ocular neovascularization. Arterioscler Thromb Vasc Biol 2015; 35(4): 855-64.
[http://dx.doi.org/10.1161/ATVBAHA.114.304627] [PMID: 25657312]
[44]
Kim SJ, Lee JW, Yeo ED, et al. The role of Nod1 signaling in corneal neovascularization. Cornea 2013; 32(5): 674-9.
[http://dx.doi.org/10.1097/ICO.0b013e3182781ea4] [PMID: 23328697]
[45]
Al-Torbak A, Al-Amri A, Wagoner MD. Deep corneal neovascularization after implantation with intrastromal corneal ring segments. Am J Ophthalmol 2005; 140(5): 926-7.
[http://dx.doi.org/10.1016/j.ajo.2005.05.020] [PMID: 16310478]
[46]
Cejkova J, Cejka C, Trosan P, Zajicova A, Sykova E, Holan V. Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy. Exp Eye Res 2016; 147: 128-37.
[http://dx.doi.org/10.1016/j.exer.2016.04.016] [PMID: 27181227]
[47]
Park JH, Joo CK, Chung SK. Comparative study of tacrolimus and bevacizumab on corneal neovascularization in rabbits. Cornea 2015; 34(4): 449-55.
[http://dx.doi.org/10.1097/ICO.0000000000000336] [PMID: 25651492]
[48]
Baer JC, Foster CS. Corneal laser photocoagulation for treatment of neovascularization. Efficacy of 577 nm yellow dye laser. Ophthalmology 1992; 99(2): 173-9.
[http://dx.doi.org/10.1016/S0161-6420(92)31996-7] [PMID: 1553204]
[49]
Brooks BJ, Ambati BK, Marcus DM, Ratanasit A. Photodynamic therapy for corneal neovascularisation and lipid degeneration. Br J Ophthalmol 2004; 88(6): 840.
[http://dx.doi.org/10.1136/bjo.2003.035071] [PMID: 15148229]
[50]
Yoeruek E, Ziemssen F, Henke-Fahle S, et al. Tübingen Bevacizumab Study Group. Safety, penetration and efficacy of topically applied bevacizumab: evaluation of eyedrops in corneal neovascularization after chemical burn. Acta Ophthalmol 2008; 86(3): 322-8.
[http://dx.doi.org/10.1111/j.1600-0420.2007.01049.x] [PMID: 17995975]
[51]
You IC, Kang IS, Lee SH, Yoon KC. Therapeutic effect of subconjunctival injection of bevacizumab in the treatment of corneal neovascularization. Acta Ophthalmol 2009; 87(6): 653-8.
[http://dx.doi.org/10.1111/j.1755-3768.2008.01399.x] [PMID: 19021596]
[52]
Pożarowska D, Pożarowski P. The era of anti-vascular endothelial growth factor (VEGF) drugs in ophthalmology, VEGF and anti-VEGF therapy. Cent Eur J Immunol 2016; 41(3): 311-6.
[http://dx.doi.org/10.5114/ceji.2016.63132] [PMID: 27833450]
[53]
Andreoli CM, Miller JW. Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 2007; 18(6): 502-8.
[http://dx.doi.org/10.1097/ICU.0b013e3282f0ca54] [PMID: 18163003]
[54]
Kimoto K, Kubota T. Anti-VEGF agents for ocular angiogenesis and vascular permeability. J Ophthalmol 2012.2012852183
[http://dx.doi.org/10.1155/2012/852183] [PMID: 22132316]
[55]
Chang JH, Garg NK, Lunde E, Han KY, Jain S, Azar DT. Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 2012; 57(5): 415-29.
[http://dx.doi.org/10.1016/j.survophthal.2012.01.007] [PMID: 22898649]
[56]
Park SC, Su D, Tello C. Anti-VEGF therapy for the treatment of glaucoma: a focus on ranibizumab and bevacizumab. Expert Opin Biol Ther 2012; 12(12): 1641-7.
[http://dx.doi.org/10.1517/14712598.2012.721772] [PMID: 22963411]
[57]
Popescu V, Pricopie S, Totir M, Iancu R, Yasyn S, Alexandrescu C. Clinical use of Bevacizumab in treating refractory glaucoma. J Med Life 2015; 8(1): 8-12.
[PMID: 25914729]
[58]
Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011; 2(12): 1097-105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[59]
Cardarelli WJ, Smith RA. Managed care implications of age-related ocular conditions. Am J Manag Care 2013; 19(5)(Suppl.): S85-91.
[PMID: 23725500]
[60]
Klein A, Loewenstein A. Therapeutic monoclonal antibodies and fragments: Bevacizumab. Dev Ophthalmol 2016; 55: 232-45.
[http://dx.doi.org/10.1159/000431199] [PMID: 26502311]
[61]
Osaadon P, Fagan XJ, Lifshitz T, Levy J. A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye (Lond) 2014; 28(5): 510-20.
[http://dx.doi.org/10.1038/eye.2014.13] [PMID: 24525867]
[62]
Ahn YJ, Hwang HB, Chung SK. Ranibizumab injection for corneal neovascularization refractory to bevacizumab treatment. Korean J Ophthalmol 2014; 28(2): 177-80.
[http://dx.doi.org/10.3341/kjo.2014.28.2.177] [PMID: 24688262]
[63]
Stevenson W, Cheng SF, Dastjerdi MH, Ferrari G, Dana R. Corneal neovascularization and the utility of topical VEGF inhibition: ranibizumab (Lucentis) vs bevacizumab (Avastin). Ocul Surf 2012; 10(2): 67-83.
[http://dx.doi.org/10.1016/j.jtos.2012.01.005] [PMID: 22482468]
[64]
Ferrari G, Giacomini C, Rama P. Corneal neovascularization: A translational perspective. J Clin Exp Ophthalmol 2015; 6: 387-95.
[65]
Stewart MW, Rosenfeld PJ. Predicted biological activity of intravitreal VEGF Trap. Br J Ophthalmol 2008; 92(5): 667-8.
[http://dx.doi.org/10.1136/bjo.2007.134874] [PMID: 18356264]
[66]
Wang Q, Yang J, Tang K, et al. Pharmacological characteristics and efficacy of a novel anti-angiogenic antibody FD006 in corneal neovascularization. BMC Biotechnol 2014; 14(1): 17.
[http://dx.doi.org/10.1186/1472-6750-14-17] [PMID: 24575750]
[67]
Singh N, Tiem M, Watkins R, et al. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood 2013; 121(20): 4242-9.
[http://dx.doi.org/10.1182/blood-2012-08-453043] [PMID: 23476047]
[68]
Iriyama A, Usui T, Yanagi Y, et al. Gene transfer using micellar nanovectors inhibits corneal neovascularization in vivo. Cornea 2011; 30(12): 1423-7.
[http://dx.doi.org/10.1097/ICO.0b013e318206c893] [PMID: 21975440]
[69]
Cho YK, Zhang X, Uehara H, Young JR, Archer B, Ambati B. Vascular Endothelial Growth Factor Receptor 1 morpholino increases graft survival in a murine penetrating keratoplasty model. Invest Ophthalmol Vis Sci 2012; 53(13): 8458-71.
[http://dx.doi.org/10.1167/iovs.12-10408] [PMID: 23150613]
[70]
Jani PD, Singh N, Jenkins C, et al. Nanoparticles sustain expression of Flt intraceptors in the cornea and inhibit injury-induced corneal angiogenesis. Invest Ophthalmol Vis Sci 2007; 48(5): 2030-6.
[http://dx.doi.org/10.1167/iovs.06-0853] [PMID: 17460257]
[71]
Al-Latayfeh M, Silva PS, Sun JK, Aiello LP. Antiangiogenic therapy for ischemic retinopathies. Cold Spring Harb Perspect Med 2012; 2(6)a006411
[http://dx.doi.org/10.1101/cshperspect.a006411] [PMID: 22675660]
[72]
Ahmad S, Osei-Bempong C, Dana R, Jurkunas U. The culture and transplantation of human limbal stem cells. J Cell Physiol 2010; 225(1): 15-9.
[http://dx.doi.org/10.1002/jcp.22251] [PMID: 20506173]
[73]
Osei-Bempong C, Figueiredo FC, Lako M. The limbal epithelium of the eye--a review of limbal stem cell biology, disease and treatment. BioEssays 2013; 35(3): 211-9.
[http://dx.doi.org/10.1002/bies.201200086] [PMID: 23129317]
[74]
Hosseini H, Nowroozzadeh MH, Salouti R, Nejabat M. Anti-VEGF therapy with bevacizumab for anterior segment eye disease. Cornea 2012; 31(3): 322-34.
[http://dx.doi.org/10.1097/ICO.0b013e31822480f9] [PMID: 22157572]
[75]
Singh P, Tyagi M, Kumar Y, Gupta KK, Sharma PD. Ocular chemical injuries and their management. Oman J Ophthalmol 2013; 6(2): 83-6.
[http://dx.doi.org/10.4103/0974-620X.116624] [PMID: 24082664]
[76]
Manzano RP, Peyman GA, Khan P, et al. Inhibition of experimental corneal neovascularisation by bevacizumab (Avastin). Br J Ophthalmol 2007; 91(6): 804-7.
[http://dx.doi.org/10.1136/bjo.2006.107912] [PMID: 17179168]
[77]
Barros LF, Belfort R Jr. The effects of the subconjunctival injection of bevacizumab (Avastin) on angiogenesis in the rat cornea. An Acad Bras Cienc 2007; 79(3): 389-94.
[http://dx.doi.org/10.1590/S0001-37652007000300004] [PMID: 17768531]
[78]
Oh JY, Kim MK, Shin MS, Lee HJ, Lee JH, Wee WR. The anti-inflammatory effect of subconjunctival bevacizumab on chemically burned rat corneas. Curr Eye Res 2009; 34(2): 85-91.
[http://dx.doi.org/10.1080/02713680802607740] [PMID: 19219678]
[79]
Doganay S, Firat PG, Cankaya C, Kirimlioglu H. Evaluation of the effects of resveratrol and bevacizumab on experimental corneal alkali burn. Burns 2013; 39(2): 326-30.
[http://dx.doi.org/10.1016/j.burns.2012.07.018] [PMID: 22922008]
[80]
DeStafeno JJ, Kim T. Topical bevacizumab therapy for corneal neovascularization. Arch Ophthalmol 2007; 125(6): 834-6.
[http://dx.doi.org/10.1001/archopht.125.6.834] [PMID: 17562998]
[81]
Bahar I, Kaiserman I, McAllum P, Rootman D, Slomovic A. Subconjunctival bevacizumab injection for corneal neovascularization. Cornea 2008; 27(2): 142-7.
[http://dx.doi.org/10.1097/ICO.0b013e318159019f] [PMID: 18216566]
[82]
Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 2006; 113(3): 363-372.e5.
[http://dx.doi.org/10.1016/j.ophtha.2005.11.019] [PMID: 16458968]
[83]
Nguyen QD, Shah S, Tatlipinar S, Do DV, Anden EV, Campochiaro PA. Bevacizumab suppresses choroidal neovascularisation caused by pathological myopia. Br J Ophthalmol 2005; 89(10): 1368-70.
[http://dx.doi.org/10.1136/bjo.2005.066431] [PMID: 16170134]
[84]
Rosenfeld PJ, Schwartz SD, Blumenkranz MS, et al. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology 2005; 112(6): 1048-53.
[http://dx.doi.org/10.1016/j.ophtha.2005.01.043] [PMID: 15885778]
[85]
Bock F, König Y, Kruse F, Baier M, Cursiefen C. Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2008; 246(2): 281-4.
[http://dx.doi.org/10.1007/s00417-007-0684-4] [PMID: 17934753]
[86]
Kuhlmann A, Amann K, Schlötzer-Schrehardt U, Kruse FE, Cursiefen C. Endothelin-1 and ETA/ETB receptor protein and mRNA: expression in normal and vascularized human corneas. Cornea 2005; 24(7): 837-44.
[http://dx.doi.org/10.1097/01.ico.0000157400.81408.2b] [PMID: 16160501]
[87]
Remeijer L, Osterhaus A, Verjans G. Human herpes simplex virus keratitis: the pathogenesis revisited. Ocul Immunol Inflamm 2004; 12(4): 255-85.
[http://dx.doi.org/10.1080/092739490500363] [PMID: 15621867]
[88]
Hayashi T, Ishioka M, Ito N, et al. Bilateral herpes simplex keratitis in a patient with chronic graft-versus-host disease. Clin Ophthalmol 2008; 2(2): 457-9.
[http://dx.doi.org/10.2147/OPTH.S1858] [PMID: 19668737]
[89]
Zheng M, Schwarz MA, Lee S, Kumaraguru U, Rouse BT. Control of stromal keratitis by inhibition of neovascularization. Am J Pathol 2001; 159(3): 1021-9.
[http://dx.doi.org/10.1016/S0002-9440(10)61777-4] [PMID: 11549594]
[90]
Benayoun Y, Adenis JP, Casse G, Forte R, Robert PY. Effects of subconjunctival bevacizumab on corneal neovascularization: results of a prospective study. Cornea 2012; 31(8): 937-44.
[http://dx.doi.org/10.1097/ICO.0b013e31823f8d71] [PMID: 22357391]
[91]
Petsoglou C, Balaggan KS, Dart JKG, et al. Subconjunctival bevacizumab induces regression of corneal neovascularisation: a pilot randomised placebo-controlled double-masked trial. Br J Ophthalmol 2013; 97(1): 28-32.
[http://dx.doi.org/10.1136/bjophthalmol-2012-302137] [PMID: 23087419]
[92]
Carrasco MA. Subconjunctival bevacizumab for corneal neovascularization in herpetic stromal keratitis. Cornea 2008; 27(6): 743-5.
[http://dx.doi.org/10.1097/01.ico.0000611440.32234.8f] [PMID: 18580272]
[93]
You IC, Im SK, Lee SH, Yoon KC. Photodynamic therapy with verteporfin combined with subconjunctival injection of bevacizumab for corneal neovascularization. Cornea 2011; 30(1): 30-3.
[http://dx.doi.org/10.1097/ICO.0b013e3181dc81a0] [PMID: 20861729]
[94]
Koenig Y, Bock F, Horn F, Kruse F, Straub K, Cursiefen C. Short- and long-term safety profile and efficacy of topical bevacizumab (Avastin) eye drops against corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2009; 247(10): 1375-82.
[http://dx.doi.org/10.1007/s00417-009-1099-1] [PMID: 19415316]
[95]
Yeung SN, Lichtinger A, Kim P, Amiran MD, Slomovic AR. Combined use of subconjunctival and intracorneal bevacizumab injection for corneal neovascularization. Cornea 2011; 30(10): 1110-4.
[http://dx.doi.org/10.1097/ICO.0b013e31821379aa] [PMID: 21673570]
[96]
Pleyer U, Steuhl KP, Weidle EG, Lisch W, Thiel HJ. Corneal graft rejection: incidence, manifestation, and interaction of clinical subtypes. Transplant Proc 1992; 24(5): 2034-7.
[PMID: 1412962]
[97]
Price MO, Thompson RW Jr, Price FW Jr. Risk factors for various causes of failure in initial corneal grafts. Arch Ophthalmol 2003; 121(8): 1087-92.
[http://dx.doi.org/10.1001/archopht.121.8.1087] [PMID: 12912684]
[98]
Wagoner MD, Ba-Abbad R, Sutphin JE, Zimmerman MB. Corneal transplant survival after onset of severe endothelial rejection. Ophthalmology 2007; 114(9): 1630-6.
[http://dx.doi.org/10.1016/j.ophtha.2006.12.012] [PMID: 17367863]
[99]
Bock F, Onderka J, Dietrich T, et al. Bevacizumab as a potent inhibitor of inflammatory corneal angiogenesis and lymphangiogenesis. Invest Ophthalmol Vis Sci 2007; 48(6): 2545-52.
[http://dx.doi.org/10.1167/iovs.06-0570] [PMID: 17525183]
[100]
Cursiefen C, Schlötzer-Schrehardt U, Küchle M, et al. Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin. Invest Ophthalmol Vis Sci 2002; 43(7): 2127-35.
[PMID: 12091407]
[101]
Lipp M, Bucher F, Parthasarathy A, et al. Blockade of the VEGF isoforms in inflammatory corneal hemangiogenesis and lymphangiogenesis. Graefes Arch Clin Exp Ophthalmol 2014; 252(6): 943-9.
[http://dx.doi.org/10.1007/s00417-014-2626-2] [PMID: 24728466]
[102]
Yan H, Yuan J, Peng R, et al. The Blockade of Vascular Endothelial Growth Factor C Effectively Inhibits Corneal Lymphangiogenesis and Promotes Allograft Survival. J Ocul Pharmacol Ther 2015; 31(9): 546-54.
[http://dx.doi.org/10.1089/jop.2015.0007] [PMID: 26172526]
[103]
Park PJ, Chang M, Garg N, Zhu J, Chang JH, Shukla D. Corneal lymphangiogenesis in herpetic stromal keratitis. Surv Ophthalmol 2015; 60(1): 60-71.
[http://dx.doi.org/10.1016/j.survophthal.2014.06.001] [PMID: 25444520]
[104]
Harooni H, Reddy V, Root T, Ambati B. Bevacizumab for graft rejection. Ophthalmology 2007; 114(10): 1950.
[http://dx.doi.org/10.1016/j.ophtha.2007.05.016] [PMID: 17908597]
[105]
Erdurmus M, Totan Y. Subconjunctival bevacizumab for corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2007; 245(10): 1577-9.
[http://dx.doi.org/10.1007/s00417-007-0587-4] [PMID: 17458556]
[106]
Awadein A. Subconjunctival bevacizumab for vascularized rejected corneal grafts. J Cataract Refract Surg 2007; 33(11): 1991-3.
[http://dx.doi.org/10.1016/j.jcrs.2007.07.012] [PMID: 17964413]
[107]
Rocha G, Deschênes J, Rowsey JJ. The immunology of corneal graft rejection. Crit Rev Immunol 1998; 18(4): 305-25.
[http://dx.doi.org/10.1615/CritRevImmunol.v18.i4.20] [PMID: 9704192]
[108]
Fasciani R, Mosca L, Giannico MI, Ambrogio SA, Balestrazzi E. Subconjunctival and/or intrastromal bevacizumab injections as preconditioning therapy to promote corneal graft survival. Int Ophthalmol 2015; 35(2): 221-7.
[http://dx.doi.org/10.1007/s10792-014-9938-4] [PMID: 24715230]
[109]
Niederer RL, Sherwin T, McGhee CNJ. In vivo confocal microscopy of subepithelial infiltrates in human corneal transplant rejection. Cornea 2007; 26(4): 501-4.
[http://dx.doi.org/10.1097/ICO.0b013e3180318107] [PMID: 17457206]
[110]
Jarrín E, Ruiz-Casas D, Mendivil A. Efficacy of bevacizumab against interface neovascularization after deep anterior lamellar keratoplasty. Cornea 2012; 31(2): 188-90.
[http://dx.doi.org/10.1097/ICO.0b013e31820ca19e] [PMID: 22146545]
[111]
Hashemian MN, Zare MA, Rahimi F, Mohammadpour M. Deep intrastromal bevacizumab injection for management of corneal stromal vascularization after deep anterior lamellar keratoplasty, a novel technique. Cornea 2011; 30(2): 215-8.
[http://dx.doi.org/10.1097/ICO.0b013e3181e291a6] [PMID: 20885312]
[112]
Saxena S, Kishore P, Pandey S, Khattri M, Kumar D. Topical bevacizumab for corneal neovascularization after penetrating keratoplasty. Eur J Ophthalmol 2009; 19(5): 870-2.
[http://dx.doi.org/10.1177/112067210901900530] [PMID: 19787612]
[113]
Catt CJ, Hamilton GM, Fish J, Mireskandari K, Ali A. Ocular Manifestations of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in Children. Am J Ophthalmol 2016; 166: 68-75.
[http://dx.doi.org/10.1016/j.ajo.2016.03.020] [PMID: 27018234]
[114]
Cursiefen C, Masli S, Ng TF, et al. Roles of thrombospondin-1 and -2 in regulating corneal and iris angiogenesis. Invest Ophthalmol Vis Sci 2004; 45(4): 1117-24.
[http://dx.doi.org/10.1167/iovs.03-0940] [PMID: 15037577]
[115]
Phillips K, Arffa R, Cintron C, et al. Effects of prednisolone and medroxyprogesterone on corneal wound healing, ulceration, and neovascularization. Arch Ophthalmol 1983; 101(4): 640-3.
[http://dx.doi.org/10.1001/archopht.1983.01040010640024] [PMID: 6188447]
[116]
Ambati BK, Joussen AM, Ambati J, et al. Angiostatin inhibits and regresses corneal neovascularization. Arch Ophthalmol 2002; 120(8): 1063-8.
[http://dx.doi.org/10.1001/archopht.120.8.1063] [PMID: 12149060]
[117]
Corrent G, Roussel TJ, Tseng SCG, Watson BD. Promotion of graft survival by photothrombotic occlusion of corneal neovascularization. Arch Ophthalmol 1989; 107(10): 1501-6.
[http://dx.doi.org/10.1001/archopht.1989.01070020575043] [PMID: 2478111]
[118]
Pillai CT, Dua HS, Hossain P. Fine needle diathermy occlusion of corneal vessels. Invest Ophthalmol Vis Sci 2000; 41(8): 2148-53.
[PMID: 10892856]
[119]
Qian CX, Bahar I, Levinger E, Rootman D. Combined use of superficial keratectomy and subconjunctival bevacizumab injection for corneal neovascularization. Cornea 2008; 27(9): 1090-2.
[http://dx.doi.org/10.1097/ICO.0b013e31817c41e3] [PMID: 18812781]
[120]
Uy HS, Chan PS, Ang RE. Topical bevacizumab and ocular surface neovascularization in patients with stevens-johnson syndrome. Cornea 2008; 27(1): 70-3.
[http://dx.doi.org/10.1097/ICO.0b013e318158f6ad] [PMID: 18245970]
[121]
Kesarwani S, Sahu SK, Basu S. Bilateral response after unilateral subconjunctival bevacizumab injection in a child with Stevens-Johnson syndrome. J AAPOS 2012; 16(3): 309-11.
[http://dx.doi.org/10.1016/j.jaapos.2011.12.153] [PMID: 22459106]
[122]
Yoon HJ, Kim MK, Seo KY, Ueta M, Yoon KC. Effectiveness of photodynamic therapy with verteporfin combined with intrastromal bevacizumab for corneal neovascularization in Stevens-Johnson syndrome. Int Ophthalmol 2019; 39(1): 55-62.
[http://dx.doi.org/10.1007/s10792-017-0786-x] [PMID: 29256167]
[123]
Kim MJ, Han ES, Kim J, Kim TW. Aqueous humor concentration of bevacizumab after subconjunctival injection in rabbit. J Ocul Pharmacol Ther 2010; 26(1): 49-53.
[http://dx.doi.org/10.1089/jop.2009.0022] [PMID: 20148650]
[124]
Bakri SJ, Snyder MR, Reid JM, Pulido JS, Singh RJ. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology 2007; 114(5): 855-9.
[http://dx.doi.org/10.1016/j.ophtha.2007.01.017] [PMID: 17467524]
[125]
Abu El-Asrar AM, Al-Mansouri S, Tabbara KF, Missotten L, Geboes K. Immunopathogenesis of conjunctival remodelling in vernal keratoconjunctivitis. Eye (Lond) 2006; 20(1): 71-9.
[http://dx.doi.org/10.1038/sj.eye.6701811] [PMID: 15746957]
[126]
Nguyen CL, Chen TS, Tran K, Smith JEH, Lewis N. Simultaneous Subconjunctival Triamcinolone and Bevacizumab Injections for Management of Blepharokeratoconjunctivitis in Children. Case Rep Ophthalmol Med 2018.20182602487
[http://dx.doi.org/10.1155/2018/2602487] [PMID: 29967706]
[127]
Elbaz U, Mireskandari K, Shen C, Ali A. Corneal Fine Needle Diathermy With Adjuvant Bevacizumab to Treat Corneal Neovascularization in Children. Cornea 2015; 34(7): 773-7.
[http://dx.doi.org/10.1097/ICO.0000000000000419] [PMID: 25811720]
[128]
Taurone S, Spoletini M, Ralli M, et al. Ocular mucous membrane pemphigoid: a review. Immunol Res 2019; 67(2-3): 280-9.
[http://dx.doi.org/10.1007/s12026-019-09087-7] [PMID: 31327149]
[129]
Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II Definition and Classification Report. Ocul Surf 2017; 15(3): 276-83.
[http://dx.doi.org/10.1016/j.jtos.2017.05.008] [PMID: 28736335]
[130]
Calonge M, Enríquez-de-Salamanca A, Diebold Y, et al. Dry eye disease as an inflammatory disorder. Ocul Immunol Inflamm 2010; 18(4): 244-53.
[http://dx.doi.org/10.3109/09273941003721926] [PMID: 20482396]
[131]
Li DQ, Chen Z, Song XJ, Luo L, Pflugfelder SC. Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2004; 45(12): 4302-11.
[http://dx.doi.org/10.1167/iovs.04-0299] [PMID: 15557436]
[132]
Yoo SA, Kwok SK, Kim WU. Proinflammatory role of vascular endothelial growth factor in the pathogenesis of rheumatoid arthritis: prospects for therapeutic intervention. Mediators Inflamm 2008.2008129873
[http://dx.doi.org/10.1155/2008/129873] [PMID: 19223981]
[133]
Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9(6): 669-76.
[http://dx.doi.org/10.1038/nm0603-669] [PMID: 12778165]
[134]
Jiang X, Lv H, Qiu W, Liu Z, Li X, Wang W. Efficiency and safety of subconjunctival injection of anti-VEGF agent - bevacizumab - in treating dry eye. Drug Des Devel Ther 2015; 9: 3043-50.
[PMID: 26109847]
[135]
Jiang X, Wang Y, Lv H, Liu Y, Zhang M, Li X. Efficacy of intra-meibomian gland injection of the anti-VEGF agent bevacizumab for the treatment of meibomian gland dysfunction with lid-margin vascularity. Drug Des Devel Ther 2018; 12: 1269-79.
[http://dx.doi.org/10.2147/DDDT.S146556] [PMID: 29805249]
[136]
Mastyugin V, Mosaed S, Bonazzi A, Dunn MW, Schwartzman ML. Corneal epithelial VEGF and cytochrome P450 4B1 expression in a rabbit model of closed eye contact lens wear. Curr Eye Res 2001; 23(1): 1-10.
[http://dx.doi.org/10.1076/ceyr.23.1.1.5422] [PMID: 11821980]
[137]
Zaki AA, Farid SF. Subconjunctival bevacizumab for corneal neovascularization. Acta Ophthalmol 2010; 88(8): 868-71.
[http://dx.doi.org/10.1111/j.1755-3768.2009.01585.x] [PMID: 19519730]
[138]
Banifatemi M, Razeghinejad MR, Hosseini H, Gholampour A. Bevacizumab and ocular wound healing after primary pterygium excision. J Ocul Pharmacol Ther 2011; 27(1): 17-21.
[http://dx.doi.org/10.1089/jop.2010.0094] [PMID: 20977367]
[139]
Razeghinejad MR, Hosseini H, Ahmadi F, Rahat F, Eghbal H. Preliminary results of subconjunctival bevacizumab in primary pterygium excision. Ophthalmic Res 2010; 43(3): 134-8.
[http://dx.doi.org/10.1159/000252980] [PMID: 19887878]
[140]
Mauro J, Foster CS. Pterygia: pathogenesis and the role of subconjunctival bevacizumab in treatment. Semin Ophthalmol 2009; 24(3): 130-4.
[http://dx.doi.org/10.1080/08820530902801106] [PMID: 19437347]
[141]
Marcovich AL, Morad Y, Sandbank J, et al. Angiogenesis in pterygium: morphometric and immunohistochemical study. Curr Eye Res 2002; 25(1): 17-22.
[http://dx.doi.org/10.1076/ceyr.25.1.17.9959] [PMID: 12518239]
[142]
Jin J, Guan M, Sima J, et al. Decreased pigment epithelium-derived factor and increased vascular endothelial growth factor levels in pterygia. Cornea 2003; 22(5): 473-7.
[http://dx.doi.org/10.1097/00003226-200307000-00015] [PMID: 12827055]
[143]
Lee DH, Cho HJ, Kim JT, Choi JS, Joo CK. Expression of vascular endothelial growth factor and inducible nitric oxide synthase in pterygia. Cornea 2001; 20(7): 738-42.
[http://dx.doi.org/10.1097/00003226-200110000-00013] [PMID: 11588427]
[144]
Bahar I, Kaiserman I, McAllum P, Rootman D, Slomovic A. Subconjunctival bevacizumab injection for corneal neovascularization in recurrent pterygium. Curr Eye Res 2008; 33(1): 23-8.
[http://dx.doi.org/10.1080/02713680701799101] [PMID: 18214740]
[145]
Nava-Castañeda A, Olvera-Morales O, Ramos-Castellon C, Garnica-Hayashi L, Garfias Y. Randomized, controlled trial of conjunctival autografting combined with subconjunctival bevacizumab for primary pterygium treatment: 1-year follow-up. Clin Exp Ophthalmol 2014; 42(3): 235-41.
[http://dx.doi.org/10.1111/ceo.12140] [PMID: 23777441]
[146]
Wu L, Martínez-Castellanos MA, Quiroz-Mercado H, et al. Pan American Collaborative Retina Group (PACORES). Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol 2008; 246(1): 81-7.
[http://dx.doi.org/10.1007/s00417-007-0660-z] [PMID: 17674014]
[147]
Hurmeric V, Vaddavalli P, Galor A, Perez VL, Roman JS, Yoo SH. Single and multiple injections of subconjunctival ranibizumab for early, recurrent pterygium. Clin Ophthalmol 2013; 7: 467-73.
[PMID: 23486999]
[148]
Kim SW, Ha BJ, Kim EK, Tchah H, Kim TI. The effect of topical bevacizumab on corneal neovascularization. Ophthalmology 2008; 115(6): e33-8.
[http://dx.doi.org/10.1016/j.ophtha.2008.02.013] [PMID: 18439681]
[149]
Ferrari G, Dastjerdi MH, Okanobo A, et al. Topical ranibizumab as a treatment of corneal neovascularization. Cornea 2013; 32(7): 992-7.
[http://dx.doi.org/10.1097/ICO.0b013e3182775f8d] [PMID: 23407316]
[150]
Dastjerdi MH, Al-Arfaj KM, Nallasamy N, et al. Topical bevacizumab in the treatment of corneal neovascularization: results of a prospective, open-label, noncomparative study. Arch Ophthalmol 2009; 127(4): 381-9.
[http://dx.doi.org/10.1001/archophthalmol.2009.18] [PMID: 19365012]
[151]
Chen WL, Lin CT, Lin NT, et al. Subconjunctival injection of bevacizumab (avastin) on corneal neovascularization in different rabbit models of corneal angiogenesis. Invest Ophthalmol Vis Sci 2009; 50(4): 1659-65.
[http://dx.doi.org/10.1167/iovs.08-1997] [PMID: 18997093]
[152]
Gerten G. Bevacizumab (avastin) and argon laser to treat neovascularization in corneal transplant surgery. Cornea 2008; 27(10): 1195-9.
[http://dx.doi.org/10.1097/ICO.0b013e318180e50f] [PMID: 19034142]
[153]
Doctor PP, Bhat PV, Foster CS. Subconjunctival bevacizumab for corneal neovascularization. Cornea 2008; 27(9): 992-5.
[http://dx.doi.org/10.1097/ICO.0b013e31817786ad] [PMID: 18812760]
[154]
Dastjerdi MH, Saban DR, Okanobo A, et al. Effects of topical and subconjunctival bevacizumab in high-risk corneal transplant survival. Invest Ophthalmol Vis Sci 2010; 51(5): 2411-7.
[http://dx.doi.org/10.1167/iovs.09-3745] [PMID: 19892863]
[155]
Ahmed A, Berati H, Nalan A, Aylin S. Effect of bevacizumab on corneal neovascularization in experimental rabbit model. Clin Exp Ophthalmol 2009; 37(7): 730-6.
[http://dx.doi.org/10.1111/j.1442-9071.2009.02112.x] [PMID: 19788671]
[156]
Ozdemir O, Altintas O, Altintas L, Ozkan B, Akdag C, Yüksel N. Comparison of the effects of subconjunctival and topical anti-VEGF therapy (bevacizumab) on experimental corneal neovascularization. Arq Bras Oftalmol 2014; 77(4): 209-13.
[PMID: 25410169]
[157]
Kim YC, Grossniklaus HE, Edelhauser HF, Prausnitz MR. Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization. Invest Ophthalmol Vis Sci 2014; 55(11): 7376-86.
[http://dx.doi.org/10.1167/iovs.14-15257] [PMID: 25212779]
[158]
Vieira AC, Höfling-Lima AL, Gomes JÁ. Freitas Dd, Farah ME, Belfort R Jr. Intrastromal injection of bevacizumab in patients with corneal neovascularization. Arq Bras Oftalmol 2012; 75(4): 277-9.
[http://dx.doi.org/10.1590/S0004-27492012000400012] [PMID: 23258661]
[159]
Shahar J, Avery RL, Heilweil G, et al. Electrophysiologic and retinal penetration studies following intravitreal injection of bevacizumab (Avastin). Retina 2006; 26(3): 262-9.
[http://dx.doi.org/10.1097/00006982-200603000-00002] [PMID: 16508424]
[160]
Costa RA, Jorge R, Calucci D, Cardillo JA, Melo LA Jr, Scott IU. Intravitreal bevacizumab for choroidal neovascularization caused by AMD (IBeNA Study): results of a phase 1 dose-escalation study. Invest Ophthalmol Vis Sci 2006; 47(10): 4569-78.
[http://dx.doi.org/10.1167/iovs.06-0433] [PMID: 17003454]
[161]
Fung AE, Rosenfeld PJ, Reichel E. The International Intravitreal Bevacizumab Safety Survey: using the internet to assess drug safety worldwide. Br J Ophthalmol 2006; 90(11): 1344-9.
[http://dx.doi.org/10.1136/bjo.2006.099598] [PMID: 16854824]
[162]
Symes RJ, Poole TR. Corneal graft surgery combined with subconjunctival bevacizumab (avastin). Cornea 2010; 29(6): 691-3.
[http://dx.doi.org/10.1097/ICO.0b013e3181ba0ae2] [PMID: 20458243]
[163]
van Setten GB. Vascular endothelial growth factor (VEGF) in normal human corneal epithelium: detection and physiological importance. Acta Ophthalmol Scand 1997; 75(6): 649-52.
[http://dx.doi.org/10.1111/j.1600-0420.1997.tb00623.x] [PMID: 9527324]
[164]
Yu CQ, Zhang M, Matis KI, Kim C, Rosenblatt MI. Vascular endothelial growth factor mediates corneal nerve repair. Invest Ophthalmol Vis Sci 2008; 49(9): 3870-8.
[http://dx.doi.org/10.1167/iovs.07-1418] [PMID: 18487369]
[165]
Goldhardt R, Batawi HIM, Rosenblatt M, Lollett IV, Park JJ, Galor A. Effect of Anti-Vascular Endothelial Growth Factor Therapy on Corneal Nerves. Cornea 2019; 38(5): 559-64.
[http://dx.doi.org/10.1097/ICO.0000000000001871] [PMID: 30933961]
[166]
Nishijima K, Ng YS, Zhong L, et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. Am J Pathol 2007; 171(1): 53-67.
[http://dx.doi.org/10.2353/ajpath.2007.061237] [PMID: 17591953]
[167]
Kernt M, Welge-Lüssen U, Yu A, Neubauer AS, Kampik A. [Bevacizumab is not toxic to human anterior- and posterior-segment cultured cells. Ophthalmologe 2007; 104(11): 965-71.
[http://dx.doi.org/10.1007/s00347-007-1569-y] [PMID: 17653724]
[168]
Lichtinger A, Yeung SN, Kim P, Amiran MD, Elbaz U, Slomovic AR. Corneal endothelial safety following subconjunctival and intrastromal injection of bevacizumab for corneal neovascularization. Int Ophthalmol 2014; 34(3): 597-601.
[http://dx.doi.org/10.1007/s10792-013-9807-6] [PMID: 23722674]
[169]
Tolentino M. Systemic and ocular safety of intravitreal anti-VEGF therapies for ocular neovascular disease. Surv Ophthalmol 2011; 56(2): 95-113.
[http://dx.doi.org/10.1016/j.survophthal.2010.08.006] [PMID: 21335144]
[170]
van Wijngaarden P, Coster DJ, Williams KA. Inhibitors of ocular neovascularization: promises and potential problems. JAMA 2005; 293(12): 1509-13.
[http://dx.doi.org/10.1001/jama.293.12.1509] [PMID: 15784876]
[171]
Jo N, Mailhos C, Ju M, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization. Am J Pathol 2006; 168(6): 2036-53.
[http://dx.doi.org/10.2353/ajpath.2006.050588] [PMID: 16723717]
[172]
Pérez-Santonja JJ, Campos-Mollo E, Lledó-Riquelme M, Javaloy J, Alió JL. Inhibition of corneal neovascularization by topical bevacizumab (Anti-VEGF) and Sunitinib (Anti-VEGF and Anti-PDGF) in an animal model. Am J Ophthalmol 2010; 150(4): 519-528.e1.
[http://dx.doi.org/10.1016/j.ajo.2010.04.024] [PMID: 20591397]
[173]
Lopez ES, Ortiz GA, Potilinski C, Croxatto JO, Gallo JE. Corneal Neovascularization: A Combined Approach of Bevacizumab and Suramin Showed Increased Antiangiogenic Effect Through Downregulation of BFGF and P2X2. Curr Eye Res 2018; 43(4): 466-73.
[http://dx.doi.org/10.1080/02713683.2017.1416146] [PMID: 29265937]
[174]
Ma X, Ottino P, Bazan HE, Bazan NG. Platelet-activating factor (PAF) induces corneal neovascularization and upregulates VEGF expression in endothelial cells. Invest Ophthalmol Vis Sci 2004; 45(9): 2915-21.
[http://dx.doi.org/10.1167/iovs.04-0128] [PMID: 15326102]
[175]
Papathanassiou M, Theodoropoulou S, Analitis A, Tzonou A, Theodossiadis PG. Vascular endothelial growth factor inhibitors for treatment of corneal neovascularization: a meta-analysis. Cornea 2013; 32(4): 435-44.
[http://dx.doi.org/10.1097/ICO.0b013e3182542613] [PMID: 22668582]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy