Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Mini-Review Article

Nanotechnological Innovations Enhancing the Topical Therapeutic Efficacy of Quercetin: A Succinct Review

Author(s): Maha Nasr* and Rawan Al-Karaki

Volume 17, Issue 4, 2020

Page: [270 - 278] Pages: 9

DOI: 10.2174/1567201817666200317123224

Price: $65

Abstract

Nanotechnology is currently a hot topic in dermatology and nutraceutical/cosmeceutical delivery, owing to the advantages it provides in terms of enhancing the skin permeation of drugs, as well as increasing their therapeutic efficacy in the treatment of different dermatological diseases. There is also a great interest in the topical delivery of nutraceuticals; which are natural compounds with both therapeutic and cosmetic benefits, in order to overcome the side effects of topically applied chemical drugs. Quercetin is a key nutraceutical with topical antioxidant and anti-inflammatory properties which was reported to be effective in the treatment of different dermatological diseases, however, its topical therapeutic activity is hindered by its poor skin penetration. This review highlights the topical applications of quercetin, and summarizes the nanocarrier-based solutions to its percutaneous delivery challenges.

Keywords: Topical, nanoparticles, quercetin, nanotechnology, side effects, skin.

Graphical Abstract

[1]
Liu, H.L.; Jiang, W.B.; Xie, M.X. Flavonoids: recent advances as anticancer drugs. Recent Patents Anticancer Drug Discov., 2010, 5(2), 152-164.
[http://dx.doi.org/10.2174/157489210790936261] [PMID: 20088766]
[2]
López-Lázaro, M. Flavonoids as anticancer agents: structure-activity relationship study. Curr. Med. Chem. Anticancer Agents, 2002, 2(6), 691-714.
[http://dx.doi.org/10.2174/1568011023353714] [PMID: 12678721]
[3]
Cook, N.C.; Samman, S. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7, 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[4]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[5]
Kawai, M.; Hirano, T.; Higa, S.; Arimitsu, J.; Maruta, M.; Kuwahara, Y.; Ohkawara, T.; Hagihara, K.; Yamadori, T.; Shima, Y.; Ogata, A.; Kawase, I.; Tanaka, T. Flavonoids and related compounds as anti-allergic substances. Allergol. Int., 2007, 56(2), 113-123.
[http://dx.doi.org/10.2332/allergolint.R-06-135] [PMID: 17384531]
[6]
Snijman, P.W.; Swanevelder, S.; Joubert, E.; Green, I.R.; Gelderblom, W.C. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): some dose-response effects on mutagen activation-flavonoid interactions. Mutat. Res., 2007, 631(2), 111-123.
[http://dx.doi.org/10.1016/j.mrgentox.2007.03.009] [PMID: 17537670]
[7]
Serafini, M.; Peluso, I.; Raguzzini, A. Flavonoids as anti-inflammatory agents. Proc. Nutr. Soc., 2010, 69(3), 273-278.
[http://dx.doi.org/10.1017/S002966511000162X] [PMID: 20569521]
[8]
Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, inflammation and immunity. Nutrients, 2016, 8(3), 167.
[http://dx.doi.org/10.3390/nu8030167] [PMID: 26999194]
[9]
D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015, 106, 256-271.
[http://dx.doi.org/10.1016/j.fitote.2015.09.018] [PMID: 26393898]
[10]
Wach, A.; Pyrzynska, K.; Biesaga, M. Quercetin content in some food and herbal samples. Food Chem., 2007, 100, 699-704.
[http://dx.doi.org/10.1016/j.foodchem.2005.10.028]
[11]
Sultana, B.; Anwar, F. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem., 2008, 108(3), 879-884.
[http://dx.doi.org/10.1016/j.foodchem.2007.11.053] [PMID: 26065748]
[12]
Merfort, I.; Wray, V.; Barakat, H.H.; Hussein, S.A.M.; Nawwar, M.A.M.; Willuhn, G. Flavonol triglycosides from seeds of Nigella sativa. Phytochemistry, 1997, 46, 359-363.
[http://dx.doi.org/10.1016/S0031-9422(97)00296-3]
[13]
Aller, S.G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P.M.; Trinh, Y.T.; Zhang, Q.; Urbatsch, I.L.; Chang, G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323(5922), 1718-1722.
[http://dx.doi.org/10.1126/science.1168750] [PMID: 19325113]
[14]
Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J.M.; Müller, R.H.; Bégu, S. Quercetin topical application, from conventional dosage forms to nanodosage forms. Eur. J. Pharm. Biopharm., 2016, 108, 41-53.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.011] [PMID: 27565033]
[15]
Erden Inal, M.; Kahraman, A.; Köken, T. Beneficial effects of quercetin on oxidative stress induced by ultraviolet A. Clin. Exp. Dermatol., 2001, 26(6), 536-539.
[http://dx.doi.org/10.1046/j.1365-2230.2001.00884.x] [PMID: 11678884]
[16]
Choquenet, B.; Couteau, C.; Paparis, E.; Coiffard, L.J. Quercetin and rutin as potential sunscreen agents: determination of efficacy by an in vitro method. J. Nat. Prod., 2008, 71(6), 1117-1118.
[http://dx.doi.org/10.1021/np7007297] [PMID: 18512988]
[17]
Guan, C.; Xu, W.; Hong, W.; Zhou, M.; Lin, F.; Fu, L.; Liu, D.; Xu, A. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes. Mol. Med. Rep., 2015, 11(6), 4285-4290.
[http://dx.doi.org/10.3892/mmr.2015.3242] [PMID: 25625855]
[18]
Gianfaldoni, S.; Tchernev, G.; Lotti, J.; Wollina, U.; Satolli, F.; Rovesti, M.; França, K.; Lotti, T. Unconventional treatments for vitiligo: are they (un)satisfactory? Open Access Maced. J. Med. Sci., 2018, 6(1), 170-175.
[http://dx.doi.org/10.3889/oamjms.2018.038] [PMID: 29484020]
[19]
Chen, H.; Lu, C.; Liu, H.; Wang, M.; Zhao, H.; Yan, Y.; Han, L. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int. Immunopharmacol., 2017, 48, 110-117.
[http://dx.doi.org/10.1016/j.intimp.2017.04.022] [PMID: 28499194]
[20]
Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Watanabe, K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov. Today, 2016, 21(4), 632-639.
[http://dx.doi.org/10.1016/j.drudis.2016.02.011] [PMID: 26905599]
[21]
Choopani, R.; Mehrbani, M.; Fekri, A.; Mehrabani, M. Treatment of atopic dermatitis from the perspective of traditional Persian medicine, presentation of a novel therapeutic approach. J. Evid. Based Complementary Altern. Med., 2017, 22(1), 5-11.
[http://dx.doi.org/10.1177/2156587215598610] [PMID: 26260045]
[22]
Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin accelerated cutaneous wound healing in rats by increasing levels of VEGF and TGF-β1. Indian J. Exp. Biol., 2016, 54(3), 187-195.
[PMID: 27145632]
[23]
Yin, G.; Wang, Z.; Wang, Z.; Wang, X. Topical application of quercetin improves wound healing in pressure ulcer lesions. Exp. Dermatol., 2018, 27(7), 779-786.
[http://dx.doi.org/10.1111/exd.13679] [PMID: 29733461]
[24]
Wikramanayake, T.C.; Villasante, A.C.; Mauro, L.M.; Perez, C.I.; Schachner, L.A.; Jimenez, J.J. Prevention and treatment of alopecia areata with quercetin in the C3H/HeJ mouse model. Cell Stress Chaperones, 2012, 17(2), 267-274.
[http://dx.doi.org/10.1007/s12192-011-0305-3] [PMID: 22042611]
[25]
da Silva, C.R.; de Andrade Neto, J.B.; de Sousa Campos, R.; Figueiredo, N.S.; Sampaio, L.S.; Magalhães, H.I.F.; Cavalcanti, B.C.; Gaspar, D.M.; de Andrade, G.M.; Lima, I.S.; de Barros Viana, G.S.; de Moraes, M.O.; Lobo, M.D.; Grangeiro, T.B.; Nobre Júnior, H.V. Synergistic effect of the flavonoid catechin, quercetin, or epigallocatechin gallate with fluconazole induces apoptosis in Candida tropicalis resistant to fluconazole. Antimicrob. Agents Chemother., 2014, 58(3), 1468-1478.
[http://dx.doi.org/10.1128/AAC.00651-13] [PMID: 24366745]
[26]
Gao, M.; Wang, H.; Zhu, L. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida Albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell. Physiol. Biochem., 2016, 40(3-4), 727-742.
[http://dx.doi.org/10.1159/000453134] [PMID: 27915337]
[27]
Oliveira, V.M.; Carraro, E.; Auler, M.E.; Khalil, N.M. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol., 2016, 76(4), 1029-1034.
[http://dx.doi.org/10.1590/1519-6984.07415] [PMID: 27166572]
[28]
Liu, X.; Ma, Z.; Zhang, J.; Yang, L. Antifungal compounds against Candida infections from traditional Chinese medicine. BioMed Res. Int., 2017, 2017, e4614183
[http://dx.doi.org/10.1155/2017/4614183] [PMID: 29445739]
[29]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[30]
Sinha, P.; Srivastava, S.; Mishra, N.; Yadav, N.P. New perspectives on antiacne plant drugs: contribution to modern therapeutics. BioMed Res. Int., 2014, 2014, 301304
[http://dx.doi.org/10.1155/2014/301304] [PMID: 25147793]
[31]
Cao, H.H.; Tse, A.K.; Kwan, H.Y.; Yu, H.; Cheng, C.Y.; Su, T.; Fong, W.F.; Yu, Z.L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem. Pharmacol., 2014, 87(3), 424-434.
[http://dx.doi.org/10.1016/j.bcp.2013.11.008] [PMID: 24275163]
[32]
Harris, Z.; Donovan, M.G.; Branco, G.M.; Limesand, K.H.; Burd, R. Quercetin as an emerging anti-melanoma agent: a four-focus area therapeutic development strategy. Front. Nutr., 2016, 3, 48.
[http://dx.doi.org/10.3389/fnut.2016.00048] [PMID: 27843913]
[33]
Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E.S. Anti-ageing and rejuvenating effects of quercetin. Exp. Gerontol., 2010, 45(10), 763-771.
[http://dx.doi.org/10.1016/j.exger.2010.07.001] [PMID: 20619334]
[34]
Choi, M-H.; Shin, H-J. Anti-melanogenesis effect of quercetin. Cosmetics, 2016, 3, 18.
[http://dx.doi.org/10.3390/cosmetics3020018]
[35]
Bae, C.R.; Park, Y.K.; Cha, Y.S. Quercetin-rich onion peel extract suppresses adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 adipocytes. J. Sci. Food Agric., 2014, 94(13), 2655-2660.
[http://dx.doi.org/10.1002/jsfa.6604] [PMID: 24634340]
[36]
Palmer, B.C.; DeLouise, L.A. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016, 21(12), E1719
[http://dx.doi.org/10.3390/molecules21121719] [PMID: 27983701]
[37]
Amer, S.S.; Nasr, M.; Mamdouh, W.; Sammour, O. Insights on the use of nanocarriers for acne alleviation. Curr. Drug Deliv., 2019, 16(1), 18-25.
[http://dx.doi.org/10.2174/1567201815666180913144145] [PMID: 30210000]
[38]
Hatem, S.; Nasr, M.; Elkheshen, S.A.; Geneidi, A.S. Recent advances in antioxidant cosmeceutical topical delivery. Curr. Drug Deliv., 2018, 15(7), 953-964.
[http://dx.doi.org/10.2174/1567201815666180214143551] [PMID: 29446743]
[39]
Abdelgawad, R.; Nasr, M.; Hamza, M.Y.; Awad, G.A.S. Topical and systemic dermal carriers for psoriasis. Int. J. Curr. Pharm. Res, 2016, 8, 4-9.
[40]
Abdelgawad, R.; Nasr, M.; Moftah, N.H.; Hamza, M.Y. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment. Eur. J. Pharm. Sci., 2017, 101, 258-268.
[http://dx.doi.org/10.1016/j.ejps.2017.02.030] [PMID: 28232140]
[41]
Tolba, M.S.; Nasr, M.; Fadel, M.; Sammour, O. Nanocarriers for topical psoralen delivery. Scholars Reports, 2017, 2, 1-11.
[42]
Bseiso, E.A.; Nasr, M.; Sammour, O.; Abd El Gawad, N.A. Recent advances in topical formulation carriers of antifungal agents. Indian J. Dermatol. Venereol. Leprol., 2015, 81(5), 457-463.
[http://dx.doi.org/10.4103/0378-6323.162328] [PMID: 26261140]
[43]
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front. Pharmacol., 2015, 6, 219.
[http://dx.doi.org/10.3389/fphar.2015.00219] [PMID: 26483690]
[44]
Fadel, M.; Kassab, K.; Abd El Fadeel, D.A.; Nasr, M.; El Ghoubary, N.M. Comparative enhancement of curcumin cytotoxic photodynamic activity by nanoliposomes and gold nanoparticles with pharmacological appraisal in HepG2 cancer cells and Erlich solid tumor model. Drug Dev. Ind. Pharm., 2018, 44(11), 1809-1816.
[http://dx.doi.org/10.1080/03639045.2018.1496451] [PMID: 29969300]
[45]
Du, G.; Hathout, R.M.; Nasr, M.; Nejadnik, M.R.; Tu, J.; Koning, R.I.; Koster, A.J.; Slütter, B.; Kros, A.; Jiskoot, W.; Bouwstra, J.A.; Mönkäre, J. Intradermal vaccination with hollow microneedles: A comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J. Control. Release, 2017, 266, 109-118.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.021] [PMID: 28943194]
[46]
Agiba, A.M.; Nasr, M.; Abdel-Hamid, S.; Eldin, A.B.; Geneidi, A.S. Enhancing the intestinal permeation of the chondroprotective nutraceuticals glucosamine sulphate and chondroitin sulphate using conventional and modified liposomes. Curr. Drug Deliv., 2018, 15(6), 907-916.
[http://dx.doi.org/10.2174/1567201815666180123100148] [PMID: 29359666]
[47]
Aref, N.M.; Nasr, M.; Osman, R. Novel heat-stable enterotoxin (STa) immunogen based on cationic nanoliposomes: preparation, characterization and immunization. J. Vaccines Vaccin., 2017, 8, 1-8.
[48]
Nasr, M.; Taha, I.; Hathout, R.M. Suitability of liposomal carriers for systemic delivery of risedronate using the pulmonary route. Drug Deliv., 2013, 20(8), 311-318.
[http://dx.doi.org/10.3109/10717544.2013.835160] [PMID: 24079347]
[49]
Nasr, M.; Mansour, S.; Mortada, N.D.; Elshamy, A.A. Vesicular aceclofenac systems: a comparative study between liposomes and niosomes. J. Microencapsul., 2008, 25(7), 499-512.
[http://dx.doi.org/10.1080/02652040802055411] [PMID: 18608811]
[50]
Park, S.N.; Lee, M.H.; Kim, S.J.; Yu, E.R. Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. Biochem. Biophys. Res. Commun., 2013, 435(3), 361-366.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.093] [PMID: 23669037]
[51]
Caddeo, C.; Nacher, A.; Vassallo, A.; Armentano, M.F.; Pons, R.; Fernàndez-Busquets, X.; Carbone, C.; Valenti, D.; Fadda, A.M.; Manconi, M. Effect of quercetin and resveratrol co-incorporated in liposomes against inflammatory/oxidative response associated with skin cancer. Int. J. Pharm., 2016, 513(1-2), 153-163.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.014] [PMID: 27609664]
[52]
Jangde, R.; Singh, D. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 635-641.
[http://dx.doi.org/10.3109/21691401.2014.975238] [PMID: 25375215]
[53]
Ashraf, O.; Nasr, M.; Nebsen, M.; Said, A.M.A.; Sammour, O. In vitro stabilization and in vivo improvement of ocular pharmacokinetics of the multi-therapeutic agent baicalin: Delineating the most suitable vesicular systems. Int. J. Pharm., 2018, 539(1-2), 83-94.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.041] [PMID: 29374518]
[54]
Mouez, M.A.; Nasr, M.; Abdel-Mottaleb, M.; Geneidi, A.S.; Mansour, S. Composite chitosan-transfersomal vesicles for improved transnasal permeation and bioavailability of verapamil. Int. J. Biol. Macromol., 2016, 93(Pt A), 591-599.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.027]
[55]
Fadel, M.; Samy, N.; Nasr, M.; Alyoussef, A.A. Topical colloidal indocyanine green-mediated photodynamic therapy for treatment of basal cell carcinoma. Pharm. Dev. Technol., 2017, 22(4), 545-550.
[http://dx.doi.org/10.3109/10837450.2016.1146294] [PMID: 26895257]
[56]
Yaowen, L.U.; Shengyun, Y.; Xiaoying, L.; Qiuxia, W. Guangdong Pharmaceutical University. Effect of formulation on transdermal delivery of quercetin transfersomes; Chinese J. Pharmaceut, 2017, p. 4.
[57]
Liu, D.; Hu, H.; Lin, Z.; Chen, D.; Zhu, Y.; Hou, S.; Shi, X. Quercetin deformable liposome: preparation and efficacy against ultraviolet B induced skin damages in vitro and in vivo. J. Photochem. Photobiol. B, 2013, 127, 8-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.07.014] [PMID: 23933244]
[58]
Cadena, P.G.; Pereira, M.A.; Cordeiro, R.B.; Cavalcanti, I.M.; Barros Neto, B.; Pimentel, Mdo.C.; Lima Filho, J.L.; Silva, V.L.; Santos-Magalhães, N.S. Nanoencapsulation of quercetin and resveratrol into elastic liposomes. Biochim. Biophys. Acta, 2013, 1828(2), 309-316.
[http://dx.doi.org/10.1016/j.bbamem.2012.10.022] [PMID: 23103506]
[59]
Park, S.N.; Lee, H.J.; Kim, H.S.; Park, M.A.; Gu, H.A. Enhanced transdermal deposition and characterization of quercetin-loaded ethosomes. Korean J. Chem. Eng., 2013, 30, 688-692.
[http://dx.doi.org/10.1007/s11814-012-0171-4]
[60]
Ramadon, D.; Anwar, E.; Harahap, Y. In vitro penetration and bioavailability of novel transdermal quercetin-loaded ethosomal gel. Indian J. Pharm. Sci., 2017, 79, 948-956.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000312]
[61]
Rong, H.; Qi, D.; Ji-Fa, Z.; Guang, Z.X. Preparation of the topical gel based on quercetin-loaded ethosome. Pharm. Biotechnol., 2013, 2.
[62]
Barakat, S.S.; Nasr, M.; Ahmed, R.F.; Badawy, S.S.; Mansour, S. Intranasally administered in situ gelling nanocomposite system of dimenhydrinate: preparation, characterization and pharmacodynamic applicability in chemotherapy induced emesis model. Sci. Rep., 2017, 7(1), 9910.
[http://dx.doi.org/10.1038/s41598-017-10032-7] [PMID: 28855590]
[63]
Barakat, S.S.; Nasr, M.; Badawy, S.S.; Mansour, S. Nanoliposomes containing penetration enhancers for the intranasal delivery of the antiemetic dimenhydrinate. Int. J. Pharm. Res. Biosci., 2016, 2, 111-122.
[64]
Bsieso, E.A.; Nasr, M.; Moftah, N.H.; Sammour, O.A.; Abd El Gawad, N.A. Could nanovesicles containing a penetration enhancer clinically improve the therapeutic outcome in skin fungal diseases? Nanomedicine (Lond.), 2015, 10(13), 2017-2031.
[http://dx.doi.org/10.2217/nnm.15.49] [PMID: 26135513]
[65]
Bseiso, E.A.; Nasr, M.; Sammour, O.A.; Abd El Gawad, N.A. Novel nail penetration enhancer containing vesicles “nPEVs” for treatment of onychomycosis. Drug Deliv., 2016, 23(8), 2813-2819.
[http://dx.doi.org/10.3109/10717544.2015.1099059] [PMID: 26447337]
[66]
Caddeo, C.; Díez-Sales, O.; Pons, R.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: in vivo and in vitro evaluation. Pharm. Res., 2014, 31(4), 959-968.
[http://dx.doi.org/10.1007/s11095-013-1215-0] [PMID: 24297068]
[67]
Chessa, M.; Caddeo, C.; Valenti, D.; Manconi, M.; Sinico, C.; Fadda, A.M. Effect of penetration enhancer containing vesicles on the percutaneous delivery of quercetin through new born pig skin. Pharmaceutics, 2011, 3(3), 497-509.
[http://dx.doi.org/10.3390/pharmaceutics3030497] [PMID: 24310593]
[68]
Manca, M.L.; Castangia, I.; Caddeo, C.; Pando, D.; Escribano, E.; Valenti, D.; Lampis, S.; Zaru, M.; Fadda, A.M.; Manconi, M. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf. B Biointerfaces, 2014, 123, 566-574.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.059] [PMID: 25444664]
[69]
Ramez, S.A.; Soliman, M.M.; Fadel, M.; Nour El-Deen, F.; Nasr, M.; Youness, E.R.; Aboel-Fadl, D.M. Novel methotrexate soft nanocarrier/ fractional erbium YAG laser combination for clinical treatment of plaque psoriasis. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 996-1002.
[70]
Ahmed-Farid, O.A.H.; Nasr, M.; Ahmed, R.F.; Bakeer, R.M. Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content. J. Biomed. Sci., 2017, 24(1), 66.
[http://dx.doi.org/10.1186/s12929-017-0373-5] [PMID: 28865467]
[71]
Nasr, M.; Abdel-Hamid, S.; Moftah, N.H.; Fadel, M.; Alyoussef, A.A. Jojoba oil soft colloidal nanocarrier of a synthetic retinoid: preparation, characterization and clinical efficacy in psoriatic patients. Curr. Drug Deliv., 2017, 14(3), 426-432.
[http://dx.doi.org/10.2174/1567201813666160513132321] [PMID: 27174314]
[72]
Nasr, M.; Abdel-Hamid, S. Optimizing the dermal accumulation of a tazarotene microemulsion using skin deposition modeling. Drug Dev. Ind. Pharm., 2015, 16, 322-332.
[http://dx.doi.org/10.3109/03639045.2015.1062512] [PMID: 26133080]
[73]
Nasr, M. Development of an optimized hyaluronic acid-based lipidic nanoemulsion co-encapsulating two polyphenols for nose to brain delivery. Drug Deliv., 2016, 23(4), 1444-1452.
[http://dx.doi.org/10.3109/10717544.2015.1092619] [PMID: 26401600]
[74]
Hathout, R.M.; Nasr, M. Transdermal delivery of betahistine hydrochloride using microemulsions: physical characterization, biophysical assessment, confocal imaging and permeation studies. Colloids Surf. B Biointerfaces, 2013, 110, 254-260.
[http://dx.doi.org/10.1016/j.colsurfb.2013.05.007] [PMID: 23732802]
[75]
Nasr, M.; Nawaz, S.; Elhissi, A. Amphotericin B lipid nanoemulsion aerosols for targeting peripheral respiratory airways via nebulization. Int. J. Pharm., 2012, 436(1-2), 611-616.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.028] [PMID: 22842623]
[76]
Dario, M.F.; Santos, S.C.S.; Viana, A.S.; Areas, E.P.G.; Bou-Chacra, N.A.; Oliveira, M.C.; Minsa da Piedade, M.E.; Baby, A.R.; Velasco, M.V.R. A high loaded cationic nanoemulsion for quercetin delivery obtained by sub-PIT method. Colloids Surf. A Physicochem. Eng. Asp., 2016, 489, 256-264.
[http://dx.doi.org/10.1016/j.colsurfa.2015.10.031]
[77]
Fasolo, D.; Bassani, V.L.; Teixeira, H.F. Development of topical nanoemulsions containing quercetin and 3-O-methylquercetin. Pharmazie, 2009, 64(11), 726-730.
[PMID: 20099516]
[78]
Ebrahimi, P.; Salmanpour, S. Topical quercetin nanoemulsions: optimization of preparation using chemometric approaches. Pharm. Chem. J., 2014, 48, 402-407.
[http://dx.doi.org/10.1007/s11094-014-1120-9]
[79]
Bidone, J.; Argenta, D.F.; Kratz, J.; Pettenuzzo, L.F.; Horn, A.P.; Koester, L.S.; Bassani, V.L.; Simões, C.M.; Teixeira, H.F. Antiherpes activity and skin/mucosa distribution of flavonoids from achyrocline satureioides extract incorporated into topical nanoemulsions. BioMed Res. Int., 2015, 2015, 238010
[http://dx.doi.org/10.1155/2015/238010] [PMID: 26101767]
[80]
Kitagawa, S.; Tanaka, Y.; Tanaka, M.; Endo, K.; Yoshii, A. Enhanced skin delivery of quercetin by microemulsion. J. Pharm. Pharmacol., 2009, 61(7), 855-860.
[http://dx.doi.org/10.1211/jpp.61.07.0003] [PMID: 19589226]
[81]
Vicentini, F.T.; Simi, T.R.; Del Ciampo, J.O.; Wolga, N.O.; Pitol, D.L.; Iyomasa, M.M.; Bentley, M.V.; Fonseca, M.J. Quercetin in w/o microemulsion: in vitro and in vivo skin penetration and efficacy against UVB-induced skin damages evaluated in vivo. Eur. J. Pharm. Biopharm., 2008, 69(3), 948-957.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.012] [PMID: 18304790]
[82]
Kajbafvala, A.; Salabat, A.; Salimi, A. Formulation, characterization, and in vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application. Pharm. Dev. Technol., 2018, 23(8), 741-750.
[http://dx.doi.org/10.1080/10837450.2016.1263995] [PMID: 27871215]
[83]
Hatem, S.; Nasr, M.; Moftah, N.H.; Ragai, M.H.; Geneidi, A.S.; Elkheshen, S.A. Clinical cosmeceutical repurposing of melatonin in androgenic alopecia using nanostructured lipid carriers prepared with antioxidant oils. Expert Opin. Drug Deliv., 2018, 15(10), 927-935.
[http://dx.doi.org/10.1080/17425247.2018.1517740] [PMID: 30169980]
[84]
Nasr, M.; Abdel-Hamid, S.; Alyoussef, A.A. A highlight on lipid based nanocarriers for transcutaneous immunization. Curr. Pharm. Biotechnol., 2015, 16(4), 371-379.
[http://dx.doi.org/10.2174/1389201016666150206105552] [PMID: 25658381]
[85]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[86]
Bose, S.; Du, Y.; Takhistov, P.; Michniak-Kohn, B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm., 2013, 441(1-2), 56-66.
[http://dx.doi.org/10.1016/j.ijpharm.2012.12.013] [PMID: 23262430]
[87]
Scalia, S.; Franceschinis, E.; Bertelli, D.; Iannuccelli, V. Comparative evaluation of the effect of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin penetration of quercetin. Skin Pharmacol. Physiol., 2013, 26(2), 57-67.
[http://dx.doi.org/10.1159/000345210] [PMID: 23207877]
[88]
Ma, J.; Ji, C.; Xiao, D.; Fan, Q. Quercetin-loaded solid lipid nanoparticles-enriched hydrogel prevents the formation of skin scars by inhibiting TGF-β/Smad signalling pathway. Biomed. Res. (Aligarh), 2018, 29(7), 2202.
[89]
Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm., 2012, 430(1-2), 292-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[90]
Huang, J.; Wang, Q.; Li, T.; Xia, N.; Xia, Q. Nanostructured Lipid Carrier (NLC) as a strategy for encapsulation of quercetin and linseed oil: preparation and in vitro characterization studies. J. Food Eng., 2017, 215, 1-12.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.07.002]
[91]
Bose, S.; Michniak-Kohn, B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur. J. Pharm. Sci., 2013, 48(3), 442-452.
[http://dx.doi.org/10.1016/j.ejps.2012.12.005] [PMID: 23246734]
[92]
Nasr, M.; Abdel-Hamid, S. Lipid based nanocapsules: a multitude of biomedical applications. Curr. Pharm. Biotechnol., 2015, 16(4), 322-332.
[http://dx.doi.org/10.2174/138920101604150218103555] [PMID: 25543690]
[93]
Aldalaen, S.; El-Gogary, R.I.; Nasr, M. Fabrication of rosuvastatin-loaded polymeric nanocapsules: a promising modality for treating hepatic cancer delineated by apoptotic and cell cycle arrest assessment. Drug Dev. Ind. Pharm., 2019, 45(1), 55-62.
[http://dx.doi.org/10.1080/03639045.2018.1515221] [PMID: 30139281]
[94]
Hatahet, T.; Morille, M.; Shamseddin, A.; Aubert-Pouëssel, A.; Devoisselle, J.M.; Bégu, S. Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide. Int. J. Pharm., 2017, 518(1-2), 167-176.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.043] [PMID: 28011344]
[95]
Said-Elbahr, R.; Nasr, M.; Alhnan, M.A.; Taha, I.; Sammour, O. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur. J. Pharm. Biopharm., 2016, 103, 1-12.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.025] [PMID: 27020529]
[96]
Aref, N.M.; Nasr, M.; Osman, R. Construction and immunogenicity analysis of nanoparticulated conjugate of heat-stable enterotoxin (STa) of enterotoxigenic Escherichia coli. Int. J. Biol. Macromol., 2018, 106, 730-738.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.077] [PMID: 28823704]
[97]
Tan, Q.; Liu, W.; Guo, C.; Zhai, G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int. J. Nanomedicine, 2011, 6, 1621-1630.
[PMID: 21904452]
[98]
Nan, W.; Ding, L.; Chen, H.; Khan, F.U.; Yu, L.; Sui, X.; Shi, X. Topical use of quercetin-loaded chitosan nanoparticles against ultraviolet B radiation. Front. Pharmacol., 2018, 9, 826.
[http://dx.doi.org/10.3389/fphar.2018.00826] [PMID: 30140227]
[99]
Sahu, S.; Saraf, S.; Kaur, C.D.; Saraf, S. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin. Pak. J. Biol. Sci., 2013, 16(13), 601-609.
[http://dx.doi.org/10.3923/pjbs.2013.601.609] [PMID: 24505982]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy