Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Meta-Analysis

ALDH2基因多态性与迟发性阿尔茨海默病之间的关联:最新的荟萃分析

卷 17, 期 2, 2020

页: [105 - 111] 页: 7

弟呕挨: 10.2174/1567205017666200317102337

价格: $65

conference banner
摘要

目的:先前的病例对照研究集中于ALDH2基因多态性与迟发性阿尔茨海默氏病(LOAD)的关系,但尚未得出明确的统一结论。因此,ALDH2 Glu504Lys多态性与LOAD之间的相关性仍存在争议。为了分析ALDH2多态性与LOAD风险之间的相关性,我们实施了这一最新的荟萃分析以评估可能的关联。 方法:从1994年1月1日至2018年12月31日通过中国国家知识基础设施(CNKI),中国技术期刊VIP数据库,中国生物医学,PubMed,Cochrane图书馆,ClinicalTrials.gov,Embase和MEDLINE搜索研究。 ,对语言和种族没有任何限制。 结果:5项针对1057例LOAD患者和1136例健康对照的研究符合我们的分析标准。从统计学上讲,ALDH2 GA / AA基因型与增加LOAD风险无关(优势比(OR)= 1.48,95%置信区间(CI)= 0.96-2.28,p = 0.07)。在亚组分析中,观察到ALDH2 * 2男性有更高的患病风险(OR = 1.72,95%CI = 1.10-2.67,p = 0.02)。 结论:本研究仅包括五项现有的病例对照研究,结果为阴性。当样本数量扩大时,可能会出现正趋势。将来,应进行更大规模的病例对照或队列研究,以增强ALDH2多态性与AD或其他神经退行性疾病之间的联系。

关键词: 阿尔茨海默病,ALDH2,基因多态性,病例对照研究,最新荟萃分析。

Next »
[1]
Chiba-Falek O, Lutz MW. Towards precision medicine in Alzheimer’s disease: deciphering genetic data to establish informative biomarkers. Expert Rev Precis Med Drug Dev 2(1): 47-55. (2017).
[http://dx.doi.org/10.1080/23808993.2017.1286227] [PMID: 28944295]
[2]
Zusso M, Barbierato M, Facci L, Skaper SD, Giusti P. Neuroepigenetics and Alzheimer’s disease: an update. J Alzheimers Dis 64(3): 671-88. (2018).
[http://dx.doi.org/10.3233/JAD-180259] [PMID: 29991138]
[3]
Wang S, Ge W, Harns C, Meng X, Zhang Y, Ren J. Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy. J Mol Cell Cardiol 119: 40-50. (2018).
[http://dx.doi.org/10.1016/j.yjmcc.2018.04.009] [PMID: 29660306]
[4]
Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev 94(1): 1-34. (2014).
[http://dx.doi.org/10.1152/physrev.00017.2013] [PMID: 24382882]
[5]
Deza-Ponzio R, Herrera ML, Bellini MJ, Virgolini MB, Hereñú CB. Aldehyde dehydrogenase 2 in the spotlight: The link between mitochondria and neurodegeneration. Neurotoxicology 68: 19-24. (2018).
[http://dx.doi.org/10.1016/j.neuro.2018.06.005] [PMID: 29936317]
[6]
D’Souza Y, Elharram A, Soon-Shiong R, Andrew RD, Bennett BM. Characterization of Aldh2 (-/-) mice as an age-related model of cognitive impairment and Alzheimer’s disease. Mol Brain 8: 27-42. (2015).
[http://dx.doi.org/10.1186/s13041-015-0117-y] [PMID: 25910195]
[7]
Wang J, Du H, Jiang L, et al. Oxidation of ethanol in the rat brain and effects associated with chronic ethanol exposure. Proc Natl Acad Sci USA 110(35): 14444-9. (2013).
[http://dx.doi.org/10.1073/pnas.1306011110] [PMID: 23940368]
[8]
Zhao Y, Wang C. Glu504Lys single nucleotide polymorphism of aldehyde dehydrogenase 2 gene and the risk of human diseases. BioMed Res Int 2015174050 (2015).
[http://dx.doi.org/10.1155/2015/174050] [PMID: 26491656]
[9]
Kamino K, Nagasaka K, Imagawa M, et al. Deficiency in mitochondrial aldehyde dehydrogenase increases the risk for late-onset Alzheimer’s disease in the Japanese population. Biochem Biophys Res Commun 273(1): 192-6. (2000).
[http://dx.doi.org/10.1006/bbrc.2000.2923] [PMID: 10873585]
[10]
Ma L, Lu ZN. Role of ADH1B rs1229984 and ALDH2 rs671 gene polymorphisms in the development of Alzheimer's disease. Genet Mol Res 15(4): 05-12. (2016).
[11]
Wang B, Wang J, Zhou S, et al. The association of mitochondrial aldehyde dehydrogenase gene (ALDH2) polymorphism with susceptibility to late-onset Alzheimer’s disease in Chinese. J Neurol Sci 268(1-2): 172-5. (2008).
[http://dx.doi.org/10.1016/j.jns.2007.12.006] [PMID: 18201725]
[12]
Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 11(2): 193-206. (2006).
[http://dx.doi.org/10.1037/1082-989X.11.2.193] [PMID: 16784338]
[13]
Zhou S, Huriletemuer , Wang J, et al. Absence of association on aldehyde dehydrogenase 2 (ALDH2) polymorphism with Mongolian Alzheimer patients. Neurosci Lett 468(3): 312-5. (2010).
[http://dx.doi.org/10.1016/j.neulet.2009.11.022] [PMID: 19914339]
[14]
Komatsu M, Shibata N, Ohnuma T, et al. Polymorphisms in the aldehyde dehydrogenase 2 and dopamine β hydroxylase genes are not associated with Alzheimer’s disease. J Neural Transm 121(4): 427-32. (2014).
[15]
Hao PP, Chen YG, Wang JL, Wang XL, Zhang Y. Meta-analysis of aldehyde dehydrogenase 2 gene polymorphism and Alzheimer’s disease in East Asians. Can J Neurol Sci 38(3): 500-6. (2011).
[http://dx.doi.org/10.1017/S0317167100011938]
[16]
Kim JM, Stewart R, Shin IS, Jung JS, Yoon JS. Assessment of association between mitochondrial aldehyde dehydrogenase polymorphism and Alzheimer’s disease in an older Korean population. Neurobiol Aging 25(3): 295-301. (2004).
[http://dx.doi.org/10.1016/S0197-4580(03)00114-3] [PMID: 15123334]
[17]
Kamino K, Tanaka T, Kida T, et al. [The role of lipid metabolism in Alzheimer’s disease]. Nihon Shinkei Seishin Yakurigaku Zasshi 22(4): 103-10. (2002).
[PMID: 12373863]
[18]
Kanamaru T, Kamimura N, Yokota T, et al. Oxidative stress accelerates amyloid deposition and memory impairment in a double-transgenic mouse model of Alzheimer’s disease. Neurosci Lett 587: 126-31. (2015).
[http://dx.doi.org/10.1016/j.neulet.2014.12.033] [PMID: 25529196]
[19]
Ohta S, Ohsawa I. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer’s disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification. J Alzheimers Dis 9(2): 155-66. (2006).
[http://dx.doi.org/10.3233/JAD-2006-9208] [PMID: 16873963]
[20]
Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(1): 88-106. (2019).
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[21]
Ohsawa I, Nishimaki K, Murakami Y, Suzuki Y, Ishikawa M, Ohta S. Age-dependent neurodegeneration accompanying memory loss in transgenic mice defective in mitochondrial aldehyde dehydrogenase 2 activity. J Neurosci 28(24): 6239-49. (2008).
[http://dx.doi.org/10.1523/JNEUROSCI.4956-07.2008] [PMID: 18550766]
[22]
Bai J, Mei Y. Overexpression of aldehyde dehydrogenase-2 attenuates neurotoxicity induced by 4-hydroxynonenal in cultured primary hippocampal neurons. Neurotox Res 19(3): 412-22. (2011).
[http://dx.doi.org/10.1007/s12640-010-9183-1] [PMID: 20361289]
[23]
Joshi AU, Van Wassenhove LD, Logas KR, et al. Aldehyde dehydrogenase 2 activity and aldehydic load contribute to neuroinflammation and Alzheimer’s disease related pathology. Acta Neuropathol Commun 7(1): 190. (2019).
[http://dx.doi.org/10.1186/s40478-019-0839-7] [PMID: 31829281]
[24]
Chang YH, Lee SY, Wang TY, et al. Comorbid alcohol dependence disorder may be related to aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) in bipolar II disorder, but only to ALDH2 in bipolar I disorder, in Han Chinese. Bipolar Disord 17(5): 536-42. (2015).
[http://dx.doi.org/10.1111/bdi.12313] [PMID: 26033520]
[25]
Ohsawa I, Kamino K, Nagasaka K, et al. Genetic deficiency of a mitochondrial aldehyde dehydrogenase increases serum lipid peroxides in community-dwelling females. J Hum Genet 48(8): 404-9. (2003).
[http://dx.doi.org/10.1007/s10038-003-0046-y] [PMID: 12905081]
[26]
Ohta S, Ohsawa I, Kamino K, Ando F, Shimokata H. Mitochondrial ALDH2 deficiency as an oxidative stress. Ann N Y Acad Sci 1011: 36-44. (2004).
[http://dx.doi.org/10.1196/annals.1293.004] [PMID: 15126281]
[27]
Chen CH, Joshi AU, Mochly-Rosen D. The role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in neuropathology and neurodegeneration. Acta Neurol Taiwan 25(44): 111-23. (2016).
[28]
Aoki Y, Wehage SL, Talalay P. Quantification of skin erythema response to topical alcohol in alcohol-intolerant East Asians. Skin Res Technol 23(4): 593-6. (2017).
[29]
Greene CS, Penrod NM, Williams SM, Moore JH. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One 4(6)e5639 (2009).
[http://dx.doi.org/10.1371/journal.pone.0005639] [PMID: 19503614]
[30]
Dupré N. Genetic susceptibility of Alzheimer’s disease in East Asia. Can J Neurol Sci 38(3): 394-5. (2011).
[http://dx.doi.org/10.1017/S0317167100011768]
[31]
Li D, Zhao H, Gelernter J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum Genet 131(5): 725-37. (2012).
[http://dx.doi.org/10.1007/s00439-011-1116-4] [PMID: 22102315]
[32]
Heymann D, Stern Y, Cosentino S, Tatarina-Nulman O, Dorrejo JN, Gu Y. The association between alcohol use and the progression of Alzheimer’s disease. Curr Alzheimer Res 13(12): 1356-62. (2016).
[http://dx.doi.org/10.2174/1567205013666160603005035] [PMID: 27628432]
[33]
Brzecka A, Leszek J, Ashraf GM, et al. Sleep disorders associated with Alzheimer’s disease: a perspective. Front Neurosci 12: 330. (2018).
[http://dx.doi.org/10.3389/fnins.2018.00330] [PMID: 29904334]
[34]
Liang X, Chen Z, Dong X, et al. Mental work demands and late-life cognitive impairment: results from the shanghai aging study. J Aging Health 31(5): 883-98. (2019).
[http://dx.doi.org/10.1177/0898264318765034] [PMID: 29661060]
[35]
Milne R, Diaz A, Badger S, Bunnik E, Fauria K, Wells K. At, with and beyond risk: expectations of living with the possibility of future dementia. Sociol Health Illn 40(6): 969-87. (2018).
[http://dx.doi.org/10.1111/1467-9566.12731] [PMID: 29659032]
[36]
Xu W, Wang H, Wan Y, et al. Alcohol consumption and dementia risk: a dose-response meta-analysis of prospective studies. Eur J Epidemiol 32(1): 31-42. (2017).
[http://dx.doi.org/10.1007/s10654-017-0225-3] [PMID: 28097521]
[37]
Namboori PK, Vineeth KV, Rohith V, et al. The ApoE gene of Alzheimer’s disease (AD). Funct Integr Genomics 11(4): 519-22. (2011).
[http://dx.doi.org/10.1007/s10142-011-0238-z] [PMID: 21769591]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy