Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Perspectives in Medicinal Chemistry

Drug Repurposing Strategy against Fungal Biofilms

Author(s): Thaís Pereira de Mello, Laura Nunes Silva, Lívia de Souza Ramos, Heloísa Freire Frota, Marta Helena Branquinha and André Luis Souza dos Santos*

Volume 20, Issue 7, 2020

Page: [509 - 516] Pages: 8

DOI: 10.2174/156802662007200316142626

Next »
[1]
Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol., 2016, 14(9), 563-575.
[http://dx.doi.org/10.1038/nrmicro.2016.94] [PMID: 27510863]
[2]
Sardi, Jde.C.; Pitangui, Nde.S.; Rodríguez-Arellanes, G.; Taylor, M.L.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J. Highlights in pathogenic fungal biofilms. Rev. Iberoam. Micol., 2014, 31(1), 22-29.
[http://dx.doi.org/10.1016/j.riam.2013.09.014] [PMID: 24252828]
[3]
Suleyman, G.; Alangaden, G.J. Nosocomial fungal infections: epidemiology, infection control, and prevention. Infect. Dis. Clin. North Am., 2016, 30(4), 1023-1052.
[http://dx.doi.org/10.1016/j.idc.2016.07.008] [PMID: 27816138]
[4]
Hashemi Fesharaki, S.; Aghili, S.R.; Shokohi, T.; Boroumand, M.A. Catheter-related candidemia and identification of causative Candida species in patients with cardiovascular disorder. Curr Med Mycol, 2018, 4(2), 7-13.
[http://dx.doi.org/10.18502/cmm.4.2.63] [PMID: 30324151]
[5]
Muller, F.M.; Seidler, M.; Beauvais, A. Aspergillus fumigatus biofilms in the clinical setting. Med. Mycol., 2011, 49(Suppl. 1), S96-S100.
[6]
Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J. Med. Microbiol., 2015, 64(Pt 4), 323-334.
[http://dx.doi.org/10.1099/jmm.0.000032] [PMID: 25670813]
[7]
Mowat, E.; Williams, C.; Jones, B. The characteristics of Aspergillus fumigatus mycetoma development: Is this a biofilm? Med. Mycol., 2009, 47(Suppl. 1), S120-S126.
[8]
Kalan, L.; Loesche, M.; Hodkinson, B.P.; Heilmann, K.; Ruthel, G.; Gardner, S.E.; Grice, E.A. Redefining the chronic-wound cicrobiome: fungal communities are prevalent, dynamic, and associated with delayed healing. MBio, 2016, 7(5), e01058-e16.
[http://dx.doi.org/10.1128/mBio.01058-16] [PMID: 27601572]
[9]
Santos, A.L.S.; de Mello, T.P.; de Souza, R.L. Biofilm: A robust and efficient barrier to antifungal chemotherapy. J. Antimicro., 2015, 1(1), 1-4.
[http://dx.doi.org/10.4172/2472-1212.1000e101]
[10]
Mowat, E.; Butcher, J.; Lang, S.; Williams, C.; Ramage, G. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol., 2007, 56(Pt 9), 1205-1212.
[http://dx.doi.org/10.1099/jmm.0.47247-0] [PMID: 17761484]
[11]
Lewis, R.E.; Kontoyiannis, D.P.; Darouiche, R.O.; Raad, I.I.; Prince, R.A. Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob. Agents Chemother., 2002, 46(11), 3499-3505.
[http://dx.doi.org/10.1128/AAC.46.11.3499-3505.2002] [PMID: 12384356]
[12]
Andes, D.; Nett, J.; Oschel, P.; Albrecht, R.; Marchillo, K.; Pitula, A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect. Immun., 2004, 72(10), 6023-6031.
[http://dx.doi.org/10.1128/IAI.72.10.6023-6031.2004] [PMID: 15385506]
[13]
Desai, J.V.; Mitchell, A.P.; Andes, D.R. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb. Perspect. Med., 2014, 4(10)a019729
[http://dx.doi.org/10.1101/cshperspect.a019729] [PMID: 25274758]
[14]
LaFleur, M.D.; Kumamoto, C.A.; Lewis, K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother., 2006, 50(11), 3839-3846.
[http://dx.doi.org/10.1128/AAC.00684-06] [PMID: 16923951]
[15]
Ramage, G.; Robertson, S.N.; Williams, C. Strength in numbers: antifungal strategies against fungal biofilms. Int. J. Antimicrob. Agents, 2014, 43(2), 114-120.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.10.023] [PMID: 24359842]
[16]
Mukherjee, P.K.; Chandra, J.; Kuhn, D.M.; Ghannoum, M.A. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect. Immun., 2003, 71(8), 4333-4340.
[http://dx.doi.org/10.1128/IAI.71.8.4333-4340.2003] [PMID: 12874310]
[17]
Rajendran, R.; Williams, C.; Lappin, D.F.; Millington, O.; Martins, M.; Ramage, G. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot. Cell, 2013, 12(3), 420-429.
[http://dx.doi.org/10.1128/EC.00287-12] [PMID: 23314962]
[18]
Nett, J.; Lincoln, L.; Marchillo, K.; Massey, R.; Holoyda, K.; Hoff, B.; VanHandel, M.; Andes, D. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother., 2007, 51(2), 510-520.
[http://dx.doi.org/10.1128/AAC.01056-06] [PMID: 17130296]
[19]
Vediyappan, G.; Rossignol, T.; d’Enfert, C. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob. Agents Chemother., 2010, 54(5), 2096-2111.
[http://dx.doi.org/10.1128/AAC.01638-09] [PMID: 20194705]
[20]
Rajendran, R.; Mowat, E.; McCulloch, E.; Lappin, D.F.; Jones, B.; Lang, S.; Majithiya, J.B.; Warn, P.; Williams, C.; Ramage, G. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob. Agents Chemother., 2011, 55(5), 2092-2097.
[http://dx.doi.org/10.1128/AAC.01189-10] [PMID: 21321135]
[21]
Ramage, G.; Bachmann, S.; Patterson, T.F.; Wickes, B.L.; López-Ribot, J.L. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother., 2002, 49(6), 973-980.
[http://dx.doi.org/10.1093/jac/dkf049] [PMID: 12039889]
[22]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[23]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[24]
Butts, A.; Krysan, D.J. Antifungal drug discovery: something old and something new. PLoS Pathog., 2012, 8(9)e1002870
[http://dx.doi.org/10.1371/journal.ppat.1002870] [PMID: 22969422]
[25]
Ghofrani, H.A.; Osterloh, I.H.; Grimminger, F. Sildenafil: from angina to erectile dysfunction to pulmonary hypertension and beyond. Nat. Rev. Drug Discov., 2006, 5(8), 689-702.
[http://dx.doi.org/10.1038/nrd2030] [PMID: 16883306]
[26]
Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov., 2012, 11(3), 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[27]
Bustamante, C.; Ochoa, R.; Asela, C.; Muskus, C. Repurposing of known drugs for leishmaniasis treatment using bioinformatic predictions, in vitro validations and pharmacokinetic simulations. J. Comput. Aided Mol. Des., 2019, 33(9), 845-854.
[http://dx.doi.org/10.1007/s10822-019-00230-y] [PMID: 31612362]
[28]
Chavez-Dozal, A.A.; Lown, L.; Jahng, M.; Walraven, C.J.; Lee, S.A. In vitro analysis of finasteride activity against Candida albicans urinary biofilm formation and filamentation. Antimicrob. Agents Chemother., 2014, 58(10), 5855-5862.
[http://dx.doi.org/10.1128/AAC.03137-14] [PMID: 25049253]
[29]
Delattin, N.; De Brucker, K.; Vandamme, K.; Meert, E.; Marchand, A.; Chaltin, P.; Cammue, B.P.; Thevissen, K. Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms. J. Antimicrob. Chemother., 2014, 69(4), 1035-1044.
[http://dx.doi.org/10.1093/jac/dkt449] [PMID: 24284780]
[30]
Derengowski, Lda.S.; Pereira, A.L.; Andrade, A.C.; Kyaw, C.M.; Silva-Pereira, I. Propranolol inhibits Candida albicans adherence and biofilm formation on biotic and abiotic surfaces. Int. J. Antimicrob. Agents, 2009, 34(6), 619-621.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.08.010] [PMID: 19801180]
[31]
Yu, Q.; Ding, X.; Xu, N.; Cheng, X.; Qian, K.; Zhang, B.; Xing, L.; Li, M. In vitro activity of verapamil alone and in combination with fluconazole or tunicamycin against Candida albicans biofilms. Int. J. Antimicrob. Agents, 2013, 41(2), 179-182.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.10.009] [PMID: 23265915]
[32]
Kathwate, G.H.; Shinde, R.B.; Karuppayil, S.M. Antiepileptic drugs inhibit growth, dimorphism, and biofilm mode of growth in human pathogen Candida albicans. Assay Drug Dev. Technol., 2015, 13(6), 307-312.
[http://dx.doi.org/10.1089/adt.2015.29007.ghkdrrr] [PMID: 26241210]
[33]
Chaillot, J.; Tebbji, F.; García, C.; Wurtele, H.; Pelletier, R.; Sellam, A. pH-dependant antifungal activity of valproic acid against the human fungal pathogen Candida albicans. Front. Microbiol., 2017, 8, 1956-1956.
[http://dx.doi.org/10.3389/fmicb.2017.01956] [PMID: 29062309]
[34]
Janeczko, M.; Kochanowicz, E. Silymarin, a popular dietary supplement shows anti–Candida activity. Antibiotics (Basel), 2019, 8(4), 206.
[http://dx.doi.org/10.3390/antibiotics8040206] [PMID: 31683548]
[35]
Alem, M.A.S.; Douglas, L.J. Effects of aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and planktonic cells of Candida albicans. Antimicrob. Agents Chemother., 2004, 48(1), 41-47.
[http://dx.doi.org/10.1128/AAC.48.1.41-47.2004] [PMID: 14693516]
[36]
Jia, W.; Zhang, H.; Li, C.; Li, G.; Liu, X.; Wei, J. The calcineruin inhibitor cyclosporine a synergistically enhances the susceptibility of Candida albicans biofilms to fluconazole by multiple mechanisms. BMC Microbiol., 2016, 16(1), 113-113.
[http://dx.doi.org/10.1186/s12866-016-0728-1] [PMID: 27316338]
[37]
Shinde, R.B.; Chauhan, N.M.; Raut, J.S.; Karuppayil, S.M. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A. Ann. Clin. Microbiol. Antimicrob., 2012, 11(1), 27.
[http://dx.doi.org/10.1186/1476-0711-11-27] [PMID: 23035934]
[38]
Dennis, E.K.; Garneau-Tsodikova, S. Synergistic combinations of azoles and antihistamines against Candida species in vitro. Med. Mycol., 2019, 57(7), 874-884.
[http://dx.doi.org/10.1093/mmy/myy088] [PMID: 30295881]
[39]
Ko, H-T.; Hsu, L-H.; Yang, S-Y.; Chen, Y.L. Repurposing the thrombopoietin receptor agonist eltrombopag as an anticryptococcal agent. Med. Mycol., 2019.myz077
[http://dx.doi.org/10.1093/mmy/myz077] [PMID: 31297540]
[40]
Abdelmegeed, E.; Shaaban, M.I. Cyclooxygenase inhibitors reduce biofilm formation and yeast-hypha conversion of fluconazole resistant Candida albicans. J. Microbiol., 2013, 51(5), 598-604.
[http://dx.doi.org/10.1007/s12275-013-3052-6] [PMID: 24037655]
[41]
Brilhante, R.S.N.; de Oliveira, J.S.; de Jesus Evangelista, A.J.; Pereira, V.S.; Alencar, L.P.; Castelo-Branco, D.S.C.M.; Câmara, L.M.C.; de Lima-Neto, R.G.; Cordeiro, R.A.; Sidrim, J.J.C.; Rocha, M.F.G. In vitro effects of promethazine on cell morphology and structure and mitochondrial activity of azole-resistant Candida tropicalis. Med. Mycol., 2018, 56(8), 1012-1022.
[PMID: 29420801]
[42]
Pierce, C.G.; Saville, S.P.; Lopez-Ribot, J.L. High-content phenotypic screenings to identify inhibitors of Candida albicans biofilm formation and filamentation. Pathog. Dis., 2014, 70(3), 423-431.
[http://dx.doi.org/10.1111/2049-632X.12161] [PMID: 24623598]
[43]
Uppuluri, P.; Nett, J.; Heitman, J.; Andes, D. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob. Agents Chemother., 2008, 52(3), 1127-1132.
[http://dx.doi.org/10.1128/AAC.01397-07] [PMID: 18180354]
[44]
Gao, L.; Sun, Y. In vitro interactions of antifungal agents and tacrolimus against Aspergillus biofilms. Antimicrob. Agents Chemother., 2015, 59(11), 7097-7099.
[http://dx.doi.org/10.1128/AAC.01510-15] [PMID: 26303797]
[45]
De Cremer, K.; Lanckacker, E.; Cools, T.L.; Bax, M.; De Brucker, K.; Cos, P.; Cammue, B.P.; Thevissen, K. Artemisinins, new miconazole potentiators resulting in increased activity against Candida albicans biofilms. Antimicrob. Agents Chemother., 2015, 59(1), 421-426.
[http://dx.doi.org/10.1128/AAC.04229-14] [PMID: 25367916]
[46]
Siles, S.A.; Srinivasan, A.; Pierce, C.G.; Lopez-Ribot, J.L.; Ramasubramanian, A.K. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob. Agents Chemother., 2013, 57(8), 3681-3687.
[http://dx.doi.org/10.1128/AAC.00680-13] [PMID: 23689719]
[47]
Shinde, R.B.; Raut, J.S.; Chauhan, N.M.; Karuppayil, S.M. Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles. Braz. J. Infect. Dis., 2013, 17(4), 395-400.
[http://dx.doi.org/10.1016/j.bjid.2012.11.002] [PMID: 23602464]
[48]
Fernández-Rivero, M.E.; Del Pozo, J.L.; Valentín, A.; de Diego, A.M.; Pemán, J.; Cantón, E. Activity of amphotericin B and anidulafungin combined with rifampicin, clarithromycin, ethylenediaminetetraacetic acid, N-acetylcysteine, and farnesol against Candida tropicalis biofilms. J. Fungi (Basel), 2017, 3(1), 16.
[http://dx.doi.org/10.3390/jof3010016] [PMID: 29371534]
[49]
Wall, G.; Herrera, N.; Lopez-Ribot, J.L. Repositionable compounds with antifungal activity against multidrug resistant Candida auris identified in the medicines for Malaria Venture’s Pathogen Box. J. Fungi (Basel), 2019, 5(4), 1-17.
[http://dx.doi.org/10.3390/jof5040092] [PMID: 31581540]
[50]
Joffe, L.S.; Schneider, R.; Lopes, W.; Azevedo, R.; Staats, C.C.; Kmetzsch, L.; Schrank, A.; Del Poeta, M.; Vainstein, M.H.; Rodrigues, M.L. The anti-helminthic compound mebendazole has multiple antifungal effects against Cryptococcus neoformans. Front. Microbiol., 2017, 8, 535.
[http://dx.doi.org/10.3389/fmicb.2017.00535] [PMID: 28400768]
[51]
Garcia, C.; Burgain, A.; Chaillot, J.; Pic, É.; Khemiri, I.; Sellam, A. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci. Rep., 2018, 8(1), 11559.
[http://dx.doi.org/10.1038/s41598-018-29973-8] [PMID: 30068935]
[52]
Kulkarny, V.V.; Chavez-Dozal, A.; Rane, H.S.; Jahng, M.; Bernardo, S.M.; Parra, K.J.; Lee, S.A. Quinacrine inhibits Candida albicans growth and filamentation at neutral pH. Antimicrob. Agents Chemother., 2014, 58(12), 7501-7509.
[http://dx.doi.org/10.1128/AAC.03083-14] [PMID: 25288082]
[53]
Eldesouky, H.E.; Mayhoub, A.; Hazbun, T.R.; Seleem, M.N. Reversal of azole resistance in Candida albicans by sulfa antibacterial drugs. Antimicrob. Agents Chemother., 2018, 62(3), 1-12.
[PMID: 29263071]
[54]
Hacioglu, M.; Birteksoz Tan, A.S.; Dosler, S. In vitro activities of antifungals alone and in combination with tigecycline against Candida albicans biofilms. PeerJ, 2018, 6, 1-17.
[55]
Rajasekharan, S.K.; Lee, J-H.; Lee, J. Aripiprazole repurposed as an inhibitor of biofilm formation and sterol biosynthesis in multidrug-resistant Candida albicans. Int. J. Antimicrob. Agents, 2019, 54(4), 518-523.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.05.016] [PMID: 31173863]
[56]
Holbrook, S.Y.L.; Garzan, A.; Dennis, E.K. Repurposing antipsychotic drugs into antifungal agents: Synergistic combinations of azoles and bromperidol derivatives in the treatment of various fungal infections. Eur. J. Med. Chem., 2017, 139, 12-21.
[57]
Caldara, M.; Marmiroli, N. Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation. Int. J. Antimicrob. Agents, 2018, 52(4), 500-505.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.06.023] [PMID: 29990546]
[58]
Oliveira, A.S.; Martinez-de-Oliveira, J.; Donders, G.G.G.; Palmeira-de-Oliveira, R.; Palmeira-de-Oliveira, A. Anti-Candida activity of antidepressants sertraline and fluoxetine: effect upon pre-formed biofilms. Med. Microbiol. Immunol. (Berl.), 2018, 207(3-4), 195-200.
[http://dx.doi.org/10.1007/s00430-018-0539-0] [PMID: 29556778]
[59]
Costa Silva, R.A.; da Silva, C.R.; de Andrade Neto, J.B.; da Silva, A.R.; Campos, R.S.; Sampaio, L.S.; do Nascimento, F.B.S.A.; da Silva Gaspar, B.; da Cruz Fonseca, S.G.; Josino, M.A.A.; Grangeiro, T.B.; Gaspar, D.M.; de Lucena, D.F.; de Moraes, M.O.; Cavalcanti, B.C.; Nobre Júnior, H.V. In vitro anti-Candida activity of selective serotonin reuptake inhibitors against fluconazole-resistant strains and their activity against biofilm-forming isolates. Microb. Pathog., 2017, 107, 341-348.
[http://dx.doi.org/10.1016/j.micpath.2017.04.008] [PMID: 28411060]
[60]
Wakharde, A.A.; Halbandge, S.D.; Phule, D.B.; Karuppayil, S.M. Anticancer drugs as antibiofilm agents in Candida albicans: potential targets. Assay Drug Dev. Technol., 2018, 16(5), 232-246.
[http://dx.doi.org/10.1089/adt.2017.826] [PMID: 29446984]
[61]
Mamouei, Z.; Alqarihi, A.; Singh, S.; Xu, S.; Mansour, M.K.; Ibrahim, A.S.; Uppuluri, P. Alexidine dihydrochloride has broad-spectrum activities against diverse fungal pathogens. MSphere, 2018, 3(5), 1-11.
[http://dx.doi.org/10.1128/mSphere.00539-18] [PMID: 30381356]
[62]
Brilhante, R.S.N.; Silva, M.L.Q.D.; Pereira, V.S.; de Oliveira, J.S.; Maciel, J.M.; Silva, I.N.G.D.; Garcia, L.G.S.; Guedes, G.M.M.; Cordeiro, R.A.; Pereira-Neto, W.A.; de Camargo, Z.P.; Rodrigues, A.M.; Sidrim, J.J.C.; Castelo-Branco, D.S.C.M.; Rocha, M.F.G. Potassium iodide and miltefosine inhibit biofilms of Sporothrix schenckii species complex in yeast and filamentous forms. Med. Mycol., 2019, 57(6), 764-772.
[http://dx.doi.org/10.1093/mmy/myy119] [PMID: 30462271]
[63]
Vila, T.V.M.; Ishida, K.; de Souza, W.; Prousis, K.; Calogeropoulou, T.; Rozental, S. Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. J. Antimicrob. Chemother., 2013, 68(1), 113-125.
[http://dx.doi.org/10.1093/jac/dks353] [PMID: 22995097]
[64]
Machado Vila, T.V.; Sousa Quintanilha, N.; Rozental, S. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro. J. Med. Microbiol., 2015, 64(11), 1436-1449.
[http://dx.doi.org/10.1099/jmm.0.000175] [PMID: 26404553]
[65]
Vila, T.; Ishida, K.; Seabra, S.H.; Rozental, S. Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells. Int. J. Antimicrob. Agents, 2016, 48(5), 512-520.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.07.022] [PMID: 27667564]
[66]
Vila, T.V.M.; Chaturvedi, A.K.; Rozental, S.; Lopez-Ribot, J.L. In vitro activity of miltefosine against Candida albicans under planktonic and biofilm growth conditions and in vivo efficacy in a murine model of oral candidiasis. Antimicrob. Agents Chemother., 2015, 59(12), 7611-7620.
[http://dx.doi.org/10.1128/AAC.01890-15] [PMID: 26416861]
[67]
Rana, R.; Sharma, R.; Kumar, A. Repurposing of fluvastatin against Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy: an in silico and in vitro study. Curr. Mol. Med., 2019, 19(7), 506-524.
[http://dx.doi.org/10.2174/1566524019666190520094644] [PMID: 31109273]
[68]
Zhou, Y.; Yang, H.; Zhou, X.; Luo, H.; Tang, F.; Yang, J.; Alterovitz, G.; Cheng, L.; Ren, B. Lovastatin synergizes with itraconazole against planktonic cells and biofilms of Candida albicans through the regulation on ergosterol biosynthesis pathway. Appl. Microbiol. Biotechnol., 2018, 102(12), 5255-5264.
[http://dx.doi.org/10.1007/s00253-018-8959-8] [PMID: 29691631]
[69]
Liu, G.; Vellucci, V.F.; Kyc, S.; Hostetter, M.K. Simvastatin inhibits Candida albicans biofilm in vitro. Pediatr. Res., 2009, 66(6), 600-604.
[http://dx.doi.org/10.1203/PDR.0b013e3181bd5bf8] [PMID: 19707174]

© 2024 Bentham Science Publishers | Privacy Policy