Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Hydrophilic Interaction Chromatography Analysis of Esculin in Ointments with UV Detection

Author(s): Fatma H. Abdulla and Ashraf Saad Rasheed *

Volume 16, Issue 7, 2020

Page: [935 - 941] Pages: 7

DOI: 10.2174/1573412916666200316124837

Price: $65

Abstract

Background: Esculin (ESCN) is used in the pharmaceutical industry with intravenous effect, stimulant and anti-inflammatory capillaries, like vitamin P. It is a significant component of many anti-inflammatory remedies such as esqusan, esflazid and anavenol [14]. It is also found in numerous other remedies available in the market such as proctosone, anustat, and ariproct.

Objective: To determine experimental conditions, to elucidate retention behavior of esculin in HILIC mode. Moreover, to suggest new ways to separate and determinate esculin in ointments.

Methods: Two hydrophilic columns were obtained by attaching molecules of sulfobetaine to polystyrene- divinylbenzene particles were studied for chromatographic separation of esculin. The various lengths of the chain are used as an investigative instrument for esculin retention conduct. The change of ACN percentage, buffer concentrations and pH of mobile phase in order to study the retention conduct of esculin.

Results: A mixed mode hydrophilic interaction and ion exchange is the separation mechanism of esculin. A calibration graph was created for two columns. The concentration range was 8-1200 ng.ml-1, LOD 2.33 and 1.40, RSD% 0.31-1.02, , LOQ 7.07 and 4.25 ng.ml-1, Erel% 0.83 ± 0.68 and 0.545 ± 0.45, Recovery% 100.86 ± 0.68 and 1054 ± 0.45.

Conclusion: The findings of the current study introduced new ZIC-HILIC methods for the separation and quantitation of esculin.

Keywords: Esculin, hydrophilic interaction, mixed mode, ion exchange, ointment, ZIC-HILIC.

Graphical Abstract

[1]
Stanić, G.; Juričić, B.; Brkić, D. HPLC analysis of esculin and fraxin in horse-chestnut bark (Aesculus hippocastanum L.). Croat. Chem. Acta, 1999, 72(4), 827-834.
[2]
Liu, R.; Sun, Q.; Sun, A.; Cui, J. Isolation and purification of coumarin compounds from Cortex fraxinus by high-speed countercurrent chromatography. J. Chromatogr. A, 2005, 1072(2), 195-199.
[http://dx.doi.org/10.1016/J.CHROMA.2005.03.023] [PMID: 15887488]
[3]
Dampc, A.; Luczkiewicz, M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia, 2013, 85, 130-143.
[http://dx.doi.org/10.1016/J.FITOTE.2013.01.013] [PMID: 23352748]
[4]
Rehman, R.; Israr, M.; Srivastava, P.; Bansal, K.; Abdin, M. In vitro regeneration of witloof chicory (Cichorium intybus L.) from leaf explants and accumulation of esculin. In Vitro Cell. Dev. Biol. Plant, 2003, 39(2), 142-146.
[http://dx.doi.org/10.1079/IVP2002381]
[5]
Rafsanjani, M.S.; Alvari, A.; Mohammad, A.; Abdin, M.Z.; Hejazi, M.A. In vitro propagation of Cichorium intybus L. and quantification of enhanced secondary metabolite (esculin). Recent Pat. Biotechnol., 2011, 5(3), 227-234.
[http://dx.doi.org/10.2174/187220811797579123] [PMID: 22360470]
[6]
Kostova, I.N.; Iossifova, T. chemical components of fraxinus ornus bark—structure and biological activity. studies in natural products chemistry; elsevier, 2002, vol. 26, pp., , 313-349.
[7]
Witaicenis, A.; Seito, L.N.; Di Stasi, L.C. Intestinal antiinflammatory activity of esculetin and 4-methylesculetin in the trinitrobenzenesulphonic acid model of rat colitis. Chem. Biol. Interact., 2010, 186(2), 211-218.
[http://dx.doi.org/10.1016/J.CBI.2010.03.045] [PMID: 20380826]
[8]
Lopez-Gonzalez, J.S.; Prado-Garcia, H.; Aguilar-Cazares, D.; Molina-Guarneros, J.A.; Morales-Fuentes, J.; Mandoki, J.J. Apoptosis and cell cycle disturbances induced by coumarin and 7- hydroxycoumarin on human lung carcinoma cell lines. Lung Cancer, 2004, 43(3), 275-283.
[http://dx.doi.org/10.1016/J.LUNGCAN.2003.09.005] [PMID: 15165085]
[9]
Ben Rhouma, G.; Chebil, L.; Krifa, M.; Ghoul, M.; Chekir-Ghedira, L. Evaluation of mutagenic and antimutagenic activities of oligorutin and oligoesculin. Food Chem., 2012, 135(3), 1700-1707.
[http://dx.doi.org/10.1016/J.FOODCHEM.2012.06.029] [PMID: 22953912]
[10]
Marinova, E.M.; Yanishlieva, N.V.; Kostova, I.N. Antioxidative action of the ethanolic extract and some hydroxycoumarins of Fraxinus ornus bark Food Chem., 1994, 51(2), 125-132.
[http://dx.doi.org/10.1016/0308-8146(94)90245-3]
[11]
Bellini, E.; Nin, S. cultivation for ornamental purposes and non-food crop production. J. Herbs Spices Med. Plants, 2005, 11(1-2), 93-120.
[http://dx.doi.org/10.1300/J044V11N01_04]
[12]
Rehman, S.U.; Kim, I.S.; Kang, K.S.; Yoo, H.H. determination of esculin and esculetin in rat plasma for pharmacokinetic studies. J. Chromatogr. Sci., 2015, 53(8), 1322-1327.
[http://dx.doi.org/10.1093/CHROMSCI/BMV014] [PMID: 25713108]
[13]
Lv, C.; Zhang, L.; Wang, Q.; Liu, W.; Wang, C.; Jing, X.; Liu, Y. Determination of piceid in rat plasma and tissues by highperformance liquid chromatographic method with UV detection. Biomed. Chromatogr., 2006, 20(11), 1260-1266.
[http://dx.doi.org/10.1002/BMC.693] [PMID: 16883546]
[14]
Li, Y.; Guo, H.; Wu, Y.; Geng, Q.; Dong, D.; Wu, H.; Li, E. A sensitive and selective method for determination of aesculin in Cortex Fraxini by liquid chromatography quadrupole time-of-flight tandem mass spectrometry and application in pharmacokinetic study. J. Anal. Methods Chem., 2013, 2013432465HTTP://DX.DOI.ORG/10.1155/2013/432465
[PMID: 24187648]
[15]
Chen, Q.; Zeng, Y.; Kuang, J.; Li, Y.; Li, X.; Zheng, Y.; Hou, H.; Hou, S. Quantification of aesculin in rabbit plasma and ocular tissues by high performance liquid chromatography using fluorescent detection: application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2011, 55(1), 161-167.
[http://dx.doi.org/10.1016/J.JPBA.2011.01.004] [PMID: 21295934]
[16]
Ding, X.; Hou, X.; Gao, S.; Sun, M.; Lin, F.; Cai, G.; Xiao, K. Pharmacokinetics and bioavailability study of polydatin in rat plasma by using a LC-MS/MS method. Pak. J. Pharm. Sci., 2014, 27(6), 1931-1937.
[PMID: 25362596]
[17]
Wang, H.; Xiao, B.; Hao, Z.; Sun, Z. Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography- tandem mass spectrometry and its application in a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1017-1018, 70-74.
[http://dx.doi.org/10.1016/J.JCHROMB.2016.02.030] [PMID: 26945887]
[18]
Zhao, M.; Ding, W.; Wang, S.; Wang, C.; Du, Y.; Xu, H.; Wang, Q.; Jin, S. Simultaneous determination of nine coumarins in rat plasma by HPLC-MS/MS for pharmacokinetics studies following oral administration of J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1025, 25-32.
[http://dx.doi.org/10.1016/J.JCHROMB.2016.04.042] [PMID: 27183215]
[19]
Jandera, P.; Staňková, M.; Hájek, T. New zwitterionic polymethacrylate monolithic columns for one- and two-dimensional microliquid chromatography J. Sep. Sci., 2013, 36(15), 2430-2440.
[http://dx.doi.org/10.1002/JSSC.201300337] [PMID: 23729220]
[20]
Škeříková, V.; Urban, J. Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography J. Sep. Sci., 2013, 36(17), 2806-2812.
[http://dx.doi.org/10.1002/JSSC.201300395] [PMID: 23868530]
[21]
Jandera, P.; Hájek, T.; Šromová, Z. Comprehensive twodimensional monolithic liquid chromatography of polar compounds. J. Sep. Sci., 2019, 42(3), 670-677.
[PMID: 30488658]
[22]
Al-Ayash, A.S.; Khammas, Z.A.; Jasim, F. determination of desferrioxamine in the drug desferal™ as dfom-au (iii) complex by using indirect electrothermal atomic absorption spectrometry and other techniques. baghdad sci. j., , 2008, 5, 409-415.
[23]
Abbas, M.A.; Rasheed, A.S. Retention characteristic of ranitidine hydrochloride on new polymer-based in zwitter ion chromatography- hydrophilic interaction chromatography stationary phases. J. Chem. Soc. Pak., 2018, 40(01), 89-94.
[24]
Seubert, A.; Rasheed, A.S. Separation of Metal-Trifluoperazine Hydrochloride Complexes Using Zwitterionic Ion Chromatography (ZIC) Coupled Online with ICP-AES Curr. Pharm. Anal., 2017, 13(4), 328-333.
[http://dx.doi.org/10.2174/1573412912666160720114147]
[25]
Rasheed, A.S.; Al-Phalahy, B.A. ICP Spectrometric–Vis Separation of Cerium (IV)–Desferal complex using 4-vinylbenzyldimethylammonio pentanesulfonate zwitterionic stationary phase. J. Al-Nahrain University, 2016, 19(2), 25-32.
[http://dx.doi.org/10.22401/JNUS.19.2.04]
[26]
Al-Phalahy, B.A.; Muhamad, Y.H.; Rasheed, A.S. Zwitterionic Ion chromatography of dansyl amino acids with 4-vinylbenzyl dimethyl ammonio pentanesulfonate as stationary phase Asian J. Chem., 2016, 28(11), 2411-2414.
[http://dx.doi.org/10.14233/AJCHEM.2016.19993]
[27]
Rasheed, A.S.; Seubert, A. Influence of capacity on the retention and selectivity of inorganic ions separation over a homologous series of sulfobetaine based stationary phases in zwitterionic ion chromatography Curr. Chromatogr., 2016, 3(1), 4-11.
[http://dx.doi.org/10.2174/2213240603666160115213954]
[28]
Guideline, I.H.T. in validation of analytical procedures: text and methodology q2 (r1 international conference on harmonization,, geneva, switzerland, 2005.
[29]
Rasheed, A.S.; Al-Phalahy, B.A.; Seubert, A. STUDIES ON BEHAVIORS OF INTERACTIONS BETWEEN NEW POLYMER-BASED ZIC-HILIC STATIONARY PHASES AND CARBOXYLIC ACIDS. J. Chromatogr. Sci., 2017, 55(1), 52-59.
[http://dx.doi.org/10.1093/CHROMSCI/BMW149] [PMID: 27993864]
[30]
Sonnenschein, L.; Seubert, A. SEPARATION OF INORGANIC ANIONS USING A SERIES OF SULFOBETAINE EXCHANGERS. J. Chromatogr. A, 2011, 1218(8), 1185-1194.
[http://dx.doi.org/10.1016/J.CHROMA.2010.12.101] [PMID: 21251664]
[32]
Haddad, P.R.; Jackson, P.E. ion chromatography: principles and applications; elsevier amsterdam, 1990.

© 2025 Bentham Science Publishers | Privacy Policy