Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Monoclonal Antibodies Against Infectious Microbes: So Long and Too Little!

Author(s): Gerard M. Raj*, Rekha Priyadarshini, Sakthibalan Murugesan and Mangaiarkkarasi Adhimoolam

Volume 21, Issue 1, 2021

Published on: 12 March, 2020

Page: [4 - 27] Pages: 24

DOI: 10.2174/1871526520666200312154649

Price: $65

Abstract

Monoclonal antibodies (mAbs) as alternatives or more often as complementary to the conventional antimicrobials have been developed for the management of infectious conditions for the past two decades. These pharmacotherapeutic strategies are inevitable as the burden of antimicrobial resistance is far-reaching in recent times. MAbs are part of the targeted pharmacotherapy armamentarium with a high degree of specificity - hence, exert comparatively superior efficacy and tolerability than the conventional polyclonal antisera. So far, only five mAbs have been approved for the management of infectious states, since the marketing authorization (1998) given to palivizumab (Synagis®) for the prophylaxis of lower respiratory tract disease caused by a respiratory syncytial virus in pediatric patients. Ibalizumab-uiyk (Trogarzo™) used for the management of multidrug-resistant HIV-1 infection not yielding to at least 10 antiretroviral drugs, was approved recently. Among the three antibacterial mAbs, raxibacumab (ABthrax®/ Anthrin®) and obiltoxaximab (Anthim®) are indicated for the treatment and prophylaxis of inhalation anthrax due to Bacillus anthracis; bezlotoxumab (Zinplava®) is used to reduce the recurrence of Clostridium difficile infection. There are also around 30 and 15 mAbs in different phases of development for viral and bacterial conditions. As alternatives to the traditional antivirals and antibacterials, the antimicrobial mAbs are the need of the hour. These mAbs are more relevant to the management of conditions like emerging viral outbreaks wherein there is a lack of prophylactic vaccines. The current cutting-edge engineering technologies revolutionizing the production of mAbs include phagedisplayed antibody libraries, cloning from single-memory B cells or single-antibody-secreting plasma B cells, proteomics-directed cloning of mAbs from serum clubbed with high-throughput sequencing techniques. Yet, the cost of manufacture continues to be the main limiting factor. In this review, the different therapeutic monoclonal antibodies directed against the microbial pathogens are discussed.

Keywords: Monoclonal antibodies, palivizumab, ibalizumab-uiyk, raxibacumab, obiltoxaximab, bezlotoxumab.

Graphical Abstract

[1]
Marston, H.D.; Paules, C.I.; Fauci, A.S. Monoclonal antibodies for emerging infectious diseases - borrowing from history. N. Engl. J. Med., 2018, 378(16), 1469-1472.
[http://dx.doi.org/10.1056/NEJMp1802256] [PMID: 29513615]
[2]
Malaviya, A.N.; Mehra, N.K. A fascinating story of the discovery & development of biologicals for use in clinical medicine. Indian J. Med. Res., 2018, 148(3), 263-278.
[http://dx.doi.org/10.4103/ijmr.IJMR-1471-18] [PMID: 30425216]
[3]
Projan, S.J. Monoclonal antibodies for infectious diseases.Biosimilars of Monoclonal Antibodies: A Practical Guide to Manufacturing, Preclinical, and Clinical Development; Liu, C; Morrow, K.J., Ed.; John Wiley & Sons, Inc.: New Jersey, 2017, pp. 283-291.
[4]
Salazar, G.; Zhang, N.; Fu, T.M.; An, Z. Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines, 2017, 2, 19.
[http://dx.doi.org/10.1038/s41541-017-0019-3] [PMID: 29263875]
[5]
Geoghegan, S.; Erviti, A.; Caballero, M.T.; Vallone, F.; Zanone, S.M.; Losada, J.V.; Bianchi, A.; Acosta, P.L.; Talarico, L.B.; Ferretti, A.; Grimaldi, L.A.; Sancilio, A.; Dueñas, K.; Sastre, G.; Rodriguez, A.; Ferrero, F.; Barboza, E.; Gago, G.F.; Nocito, C.; Flamenco, E.; Perez, A.R.; Rebec, B.; Ferolla, F.M.; Libster, R.; Karron, R.A.; Bergel, E.; Polack, F.P. Mortality due to respiratory syncytial virus. Burden and Risk Factors. Am. J. Respir. Crit. Care Med., 2017, 195(1), 96-103.
[http://dx.doi.org/10.1164/rccm.201603-0658OC] [PMID: 27331632]
[6]
Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; Alassani, I.; Ali, A.; Antonio, M.; Awasthi, S.; Awori, J.O.; Azziz-Baumgartner, E.; Baggett, H.C.; Baillie, V.L.; Balmaseda, A.; Barahona, A.; Basnet, S.; Bassat, Q.; Basualdo, W.; Bigogo, G.; Bont, L.; Breiman, R.F.; Brooks, W.A.; Broor, S.; Bruce, N.; Bruden, D.; Buchy, P.; Campbell, S.; Carosone-Link, P.; Chadha, M.; Chipeta, J.; Chou, M.; Clara, W.; Cohen, C.; de Cuellar, E.; Dang, D.A.; Dash-Yandag, B.; Deloria-Knoll, M.; Dherani, M.; Eap, T.; Ebruke, B.E.; Echavarria, M.; de Freitas Lázaro Emediato, C.C.; Fasce, R.A.; Feikin, D.R.; Feng, L.; Gentile, A.; Gordon, A.; Goswami, D.; Goyet, S.; Groome, M.; Halasa, N.; Hirve, S.; Homaira, N.; Howie, S.R.C.; Jara, J.; Jroundi, I.; Kartasasmita, C.B.; Khuri-Bulos, N.; Kotloff, K.L.; Krishnan, A.; Libster, R.; Lopez, O.; Lucero, M.G.; Lucion, F.; Lupisan, S.P.; Marcone, D.N.; McCracken, J.P.; Mejia, M.; Moisi, J.C.; Montgomery, J.M.; Moore, D.P.; Moraleda, C.; Moyes, J.; Munywoki, P.; Mutyara, K.; Nicol, M.P.; Nokes, D.J.; Nymadawa, P.; da Costa Oliveira, M.T.; Oshitani, H.; Pandey, N.; Paranhos-Baccalà, G.; Phillips, L.N.; Picot, V.S.; Rahman, M.; Rakoto-Andrianarivelo, M.; Rasmussen, Z.A.; Rath, B.A.; Robinson, A.; Romero, C.; Russomando, G.; Salimi, V.; Sawatwong, P.; Scheltema, N.; Schweiger, B.; Scott, J.A.G.; Seidenberg, P.; Shen, K.; Singleton, R.; Sotomayor, V.; Strand, T.A.; Sutanto, A.; Sylla, M.; Tapia, M.D.; Thamthitiwat, S.; Thomas, E.D.; Tokarz, R.; Turner, C.; Venter, M.; Waicharoen, S.; Wang, J.; Watthanaworawit, W.; Yoshida, L.M.; Yu, H.; Zar, H.J.; Campbell, H.; Nair, H. RSV Global Epidemiology Network. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet, 2017, 390(10098), 946-958.
[http://dx.doi.org/10.1016/S0140-6736(17)30938-8] [PMID: 28689664]
[7]
Griffiths, C.; Drews, S.J.; Marchant, D.J. Respiratory syncytial virus: Infection, detection, and new options for prevention and treatment. Clin. Microbiol. Rev., 2017, 30(1), 277-319.
[http://dx.doi.org/10.1128/CMR.00010-16] [PMID: 27903593]
[8]
United States Food and Drug Administration. Synagis Label., 2018. Available from: https://www.accessdata.fda.gov/drugsatfda-docs/label/2017/103770s5200lbl.pdf
[9]
American Academy of Pediatrics Committee on Infectious Diseases; American Academy of Pediatrics Bronchiolitis Guidelines Committee. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics, 2014, 134(2), 415-420.
[http://dx.doi.org/10.1542/peds.2014-1665] [PMID: 25070315]
[10]
Gutfraind, A.; Galvani, A.P.; Meyers, L.A. Efficacy and optimization of palivizumab injection regimens against respiratory syncytial virus infection. JAMA Pediatr., 2015, 169(4), 341-348.
[http://dx.doi.org/10.1001/jamapediatrics.2014.3804] [PMID: 25706618]
[11]
Simões, E.A.F.; Bont, L.; Manzoni, P.; Fauroux, B.; Paes, B.; Figueras-Aloy, J.; Checchia, P.A.; Carbonell-Estrany, X. Past, Present and future approaches to the prevention and treatment of respiratory syncytial virus infection in children. Infect. Dis. Ther., 2018, 7(1), 87-120.
[http://dx.doi.org/10.1007/s40121-018-0188-z] [PMID: 29470837]
[12]
Robinson, K.A.; Odelola, O.A.; Saldanha, I.J. Palivizumab for prophylaxis against respiratory syncytial virus infection in children with cystic fibrosis. Cochrane Database Syst. Rev., 2016, 7(7)CD007743
[http://dx.doi.org/10.1002/14651858.CD007743.pub6] [PMID: 27439110]
[13]
Blanken, M.O.; Frederix, G.W.; Nibbelke, E.E.; Koffijberg, H.; Sanders, E.A.M.; Rovers, M.M.; Bont, L. Dutch RSV Neonatal Network. Cost-effectiveness of rule-based immunoprophylaxis against respiratory syncytial virus infections in preterm infants. Eur. J. Pediatr., 2018, 177(1), 133-144.
[http://dx.doi.org/10.1007/s00431-017-3046-1] [PMID: 29168012]
[14]
McLellan, J.S. Neutralizing epitopes on the respiratory syncytial virus fusion glycoprotein. Curr. Opin. Virol., 2015, 11, 70-75.
[http://dx.doi.org/10.1016/j.coviro.2015.03.002] [PMID: 25819327]
[15]
Modjarrad, K.; Giersing, B.; Kaslow, D.C.; Smith, P.G.; Moorthy, V.S. WHO RSV vaccine consultation expert group. WHO consultation on respiratory syncytial virus vaccine development report from a world health organization meeting held on 23-24 March 2015. Vaccine, 2016, 34(2), 190-197.
[http://dx.doi.org/10.1016/j.vaccine.2015.05.093] [PMID: 26100926]
[16]
Jordan, P.C.; Stevens, S.K.; Tam, Y.; Pemberton, R.P.; Chaudhuri, S.; Stoycheva, A.D.; Dyatkina, N.; Wang, G.; Symons, J.A.; Deval, J.; Beigelman, L. Activation pathway of a nucleoside analog inhibiting respiratory syncytial virus polymerase. ACS Chem. Biol., 2017, 12(1), 83-91.
[http://dx.doi.org/10.1021/acschembio.6b00788] [PMID: 28103684]
[17]
United States Food and Drug Administration. Trogarzo Label., Available from: https://www.accessdata.fda.gov/drugsatfda-docs/label/2018/761065s001lbl.pdf
[18]
Shaw, M.L. The next wave of influenza drugs. ACS Infect. Dis., 2017, 3(10), 691-694.
[http://dx.doi.org/10.1021/acsinfecdis.7b00142] [PMID: 28892353]
[19]
Yasugi, M.; Kubota-Koketsu, R.; Yamashita, A.; Kawashita, N.; Du, A.; Sasaki, T. Human Monoclonal Antibodies Broadly Neutralizing against influenza B virus. PLoS Pathog., 2013, 9(2)e1003150
[20]
Nagarajan, T.; Marissen, W.; Rupprecht, C. Monoclonal antibodies for the prevention of rabies: theory and clinical practice. Antib Technol J., 2014, 4, 1-12.
[http://dx.doi.org/10.2147/ANTI.S33533]
[21]
Moekotte, A.L.; Huson, M.A.M.; van der Ende, A.J.; Agnandji, S.T.; Huizenga, E.; Goorhuis, A.; Grobusch, M.P. Monoclonal antibodies for the treatment of Ebola virus disease. Expert Opin. Investig. Drugs, 2016, 25(11), 1325-1335.
[http://dx.doi.org/10.1080/13543784.2016.1240785] [PMID: 27676206]
[22]
Li, C.; Gao, F.; Yu, L.; Wang, R.; Jiang, Y.; Shi, X.; Yin, C.; Tang, X.; Zhang, F.; Xu, Z.; Zhang, L. A Single injection of human neutralizing antibody protects against zika virus infection and microcephaly in developing mouse embryos. Cell Rep., 2018, 23(5), 1424-1434.
[http://dx.doi.org/10.1016/j.celrep.2018.04.005] [PMID: 29719255]
[23]
Injampa, S.; Muenngern, N.; Pipattanaboon, C.; Benjathummarak, S.; Boonha, K.; Hananantachai, H.; Wongwit, W.; Ramasoota, P.; Pitaksajjakul, P. Generation and characterization of cross neutralizing human monoclonal antibody against 4 serotypes of dengue virus without enhancing activity. PeerJ, 2017, 5e4021
[http://dx.doi.org/10.7717/peerj.4021] [PMID: 29152418]
[24]
Colpitts, C.C.; Tawar, R.G.; Mailly, L.; Thumann, C.; Heydmann, L.; Durand, S.C.; Xiao, F.; Robinet, E.; Pessaux, P.; Zeisel, M.B.; Baumert, T.F. Humanisation of a claudin-1-specific monoclonal antibody for clinical prevention and cure of HCV infection without escape. Gut, 2018, 67(4), 736-745.
[PMID: 28360099]
[25]
Smith, H.L.; Chung, R.T.; Mantry, P.; Chapman, W.; Curry, M.P.; Schiano, T.D.; Boucher, E.; Cheslock, P.; Wang, Y.; Molrine, D.C. Prevention of allograft HCV recurrence with peri-transplant human monoclonal antibody MBL-HCV1 combined with a single oral direct-acting antiviral: A proof-of-concept study. J. Viral Hepat., 2017, 24(3), 197-206.
[http://dx.doi.org/10.1111/jvh.12632] [PMID: 28127942]
[26]
Gardiner, D.; Lalezari, J.; Lawitz, E.; DiMicco, M.; Ghalib, R.; Reddy, K.R. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS One, 2013, 8(5)e63818
[27]
Jang, S.; Venna, S. Antitumor and anti-hepatitis C viral response after administration of the anti-programmed death 1 antibody pembrolizumab. J. Oncol. Pract., 2017, 13(7), 462-464.
[http://dx.doi.org/10.1200/JOP.2016.019224] [PMID: 28562196]
[28]
Gerber, D.E.; Stopeck, A.T.; Wong, L.; Rosen, L.S.; Thorpe, P.E.; Shan, J.S.; Ibrahim, N.K. Phase I safety and pharmacokinetic study of bavituximab, a chimeric phosphatidylserine-targeting monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res., 2011, 17(21), 6888-6896.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1074] [PMID: 21989064]
[29]
DiGiandomenico, A.; Sellman, B.R. Antibacterial monoclonal antibodies: the next generation? Curr. Opin. Microbiol., 2015, 27, 78-85.
[http://dx.doi.org/10.1016/j.mib.2015.07.014] [PMID: 26302478]
[30]
Wang-Lin, S.X.; Balthasar, J.P. Pharmacokinetic and pharmacodynamic considerations for the use of monoclonal antibodies in the treatment of bacterial infections. Antibodies (Basel), 2018, 7(1), 5.
[http://dx.doi.org/10.3390/antib7010005] [PMID: 31544858]
[31]
Tsai, C-W.; Morris, S. Approval of Raxibacumab for the Treatment of Inhalation Anthrax Under the US Food and Drug Administration “Animal Rule”. Front. Microbiol., 2015, 6, 1320.
[http://dx.doi.org/10.3389/fmicb.2015.01320] [PMID: 26648915]
[32]
United States Food and Drug Administration. Raxibacumab Label, 2018. Available from: https://www.accessdata.fda.gov/drugsatfda-docs/label/2018/125349s022lbl.pdf
[33]
Migone, T-S.; Bolmer, S.; Zhong, J.; Corey, A.; Vasconcelos, D.; Buccellato, M.; Meister, G. Added benefit of raxibacumab to antibiotic treatment of inhalational anthrax. Antimicrob. Agents Chemother., 2015, 59(2), 1145-1151.
[http://dx.doi.org/10.1128/AAC.04606-14] [PMID: 25487792]
[34]
United States Food and Drug Administration. Anthim Label., 2016. Available from: https://www.accessdata.fda.gov/drugsatfda-docs/label/2016/125509lbl.pdf
[35]
Yamamoto, B.J.; Shadiack, A.M.; Carpenter, S.; Sanford, D.; Henning, L.N.; O’Connor, E.; Gonzales, N.; Mondick, J.; French, J.; Stark, G.V.; Fisher, A.C.; Casey, L.S.; Serbina, N.V. efficacy projection of obiltoxaximab for treatment of inhalational anthrax across a range of disease severity. Antimicrob. Agents Chemother., 2016, 60(10), 5787-5795.
[http://dx.doi.org/10.1128/AAC.00972-16] [PMID: 27431222]
[36]
Riddle, V.; Leese, P.; Blanset, D.; Adamcio, M.; Meldorf, M.; Lowy, I.; Phase, I. Phase I study evaluating the safety and pharmacokinetics of MDX-1303, a fully human monoclonal antibody against Bacillus anthracis protective antigen, in healthy volunteers. Clin. Vaccine Immunol., 2011, 18(12), 2136-2142.
[http://dx.doi.org/10.1128/CVI.05059-11] [PMID: 21976227]
[37]
Malkevich, N.V.; Hopkins, R.J.; Bernton, E.; Meister, G.T.; Vela, E.M.; Atiee, G.; Johnson, V.; Nabors, G.S.; Aimes, R.T.; Ionin, B.; Skiadopoulos, M.H. Efficacy and safety of AVP-21D9, an anthrax monoclonal antibody, in animal models and humans. Antimicrob. Agents Chemother., 2014, 58(7), 3618-3625.
[http://dx.doi.org/10.1128/AAC.02295-13] [PMID: 24733473]
[38]
United States Food and Drug Administration. Zinplava Label., 2016. Available from: https://www.accessdata.fda.gov/drugsatfda-docs/label/2016/761046s000lbl.pdf
[39]
European Medicines Compendium (eMC). Zinplava - Summary of Product Characteristics (SmPC) 2017. Available from: https://www.medicines.org.uk/emc/product/2669
[40]
Birch, T.; Golan, Y.; Rizzardini, G.; Jensen, E.; Gabryelski, L.; Guris, D.; Dorr, M.B. Efficacy of bezlotoxumab based on timing of administration relative to start of antibacterial therapy for Clostridium difficile infection. J. Antimicrob. Chemother., 2018, 73(9), 2524-2528.
[http://dx.doi.org/10.1093/jac/dky182] [PMID: 29788418]
[41]
Prabhu, V.S.; Dubberke, E.R.; Dorr, M.B.; Elbasha, E.; Cossrow, N.; Jiang, Y.; Marcella, S. Cost-effectiveness of bezlotoxumab compared with placebo for the prevention of recurrent clostridium difficile infection. Clin. Infect. Dis., 2018, 66(3), 355-362.
[http://dx.doi.org/10.1093/cid/cix809] [PMID: 29106516]
[42]
Posteraro, B.; Pea, F.; Masucci, L.; Posteraro, P.; Sanguinetti, M. Actoxumab + bezlotoxumab combination: what promise for Clostridium difficile treatment? Expert Opin. Biol. Ther., 2018, 18(4), 469-476.
[http://dx.doi.org/10.1080/14712598.2018.1452908] [PMID: 29534621]
[43]
Džunková, M.; D’Auria, G.; Xu, H.; Huang, J.; Duan, Y.; Moya, A.; Kelly, C.P.; Chen, X. The monoclonal antitoxin antibodies (actoxumab-bezlotoxumab) treatment facilitates normalization of the gut microbiota of mice with Clostridium difficile infection. Front. Cell. Infect. Microbiol., 2016, 6, 119.
[http://dx.doi.org/10.3389/fcimb.2016.00119] [PMID: 27757389]
[44]
WHO. Update of antibacterial agents in clinical development., 2018. Available from: http://apps.who.int/iris/bitstream/handle/10665/275487/WHO-EMP-IAU-2018.06-eng.pdf?sequence=1&isAllowed=y
[45]
Giuntini, S.; Stoppato, M.; Sedic, M.; Ejemel, M.; Pondish, J.R.; Wisheart, D.; Schiller, Z.A.; Thomas, W.D., Jr; Barry, E.M.; Cavacini, L.A.; Klempner, M.S.; Wang, Y. Identification and characterization of human monoclonal antibodies for immunoprophylaxis against enterotoxigenic Escherichia coli Infection. Infect. Immun., 2018, 86(8), e00355-e18.
[http://dx.doi.org/10.1128/IAI.00355-18] [PMID: 29866909]
[46]
Guachalla, L.M.; Hartl, K.; Varga, C.; Stulik, L.; Mirkina, I.; Malafa, S.; Nagy, E.; Nagy, G.; Szijártó, V. Multiple Modes of Action of a Monoclonal Antibody against Multidrug-Resistant Escherichia coli Sequence Type 131-H30. Antimicrob. Agents Chemother., 2017, 61(11), e01428-e17.
[http://dx.doi.org/10.1128/AAC.01428-17] [PMID: 28874372]
[47]
Hey, A. History and practice: Antibodies in infectious diseases. Microbiol. Spectr., 2015, 3(2), AID-0026-AID-2014.
[http://dx.doi.org/10.1128/microbiolspec.AID-0026-2014] [PMID: 26104697]
[48]
Le, H.N.; Quetz, J.S.; Tran, V.G.; Le, V.T.M.; Aguiar-Alves, F.; Pinheiro, M.G.; Cheng, L.; Yu, L.; Sellman, B.R.; Stover, C.K.; DiGiandomenico, A.; Diep, B.A. MEDI3902 Correlates of Protection against Severe Pseudomonas aeruginosa Pneumonia in a Rabbit Acute Pneumonia Model. Antimicrob. Agents Chemother., 2018, 62(5), e02565-e17.
[http://dx.doi.org/10.1128/AAC.02565-17] [PMID: 29483116]
[49]
Ali, S.O.; Yu, X.Q.; Robbie, G.J.; Wu, Y.; Shoemaker, K.; Yu, L.; DiGiandomenico, A.; Keller, A.E.; Anude, C.; Hernandez-Illas, M.; Bellamy, T.; Falloon, J.; Dubovsky, F.; Jafri, H.S. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin. Microbiol. Infect., 2019, 25(5), 629.e1-629.e6.
[http://dx.doi.org/10.1016/j.cmi.2018.08.004] [PMID: 30107283]
[50]
Tabor, D.E.; Oganesyan, V.; Keller, A.E.; Yu, L.; McLaughlin, R.E.; Song, E.; Warrener, P.; Rosenthal, K.; Esser, M.; Qi, Y.; Ruzin, A.; Stover, C.K.; DiGiandomenico, A. Pseudomonas aeruginosa PcrV and Psl, the molecular targets of bispecific antibody MEDI3902, are conserved among diverse global clinical isolates. J. Infect. Dis., 2018, 218(12), 1983-1994.
[http://dx.doi.org/10.1093/infdis/jiy438] [PMID: 30016475]
[51]
Jain, R.; Beckett, V.V.; Konstan, M.W.; Accurso, F.J.; Burns, J.L.; Mayer-Hamblett, N.; Milla, C.; VanDevanter, D.R.; Chmiel, J.F. KB001-A Study Group. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with Pseudomonas aeruginosa. J. Cyst. Fibros., 2018, 17(4), 484-491.
[http://dx.doi.org/10.1016/j.jcf.2017.12.006] [PMID: 29292092]
[52]
Speziale, P.; Rindi, S.; Pietrocola, G. Antibody-Based Agents in the Management of Antibiotic-Resistant Staphylococcus aureus Diseases. Microorganisms, 2018, 6(1), 25.
[http://dx.doi.org/10.3390/microorganisms6010025] [PMID: 29533985]
[53]
Tkaczyk, C.; Semenova, E.; Shi, Y.Y.; Rosenthal, K.; Oganesyan, V.; Warrener, P.; Stover, C.K.; Sellman, B.R. Alanine scanning mutagenesis of the MEDI4893 (suvratoxumab) epitope reduces alpha toxin lytic activity in vitro and Staphylococcus aureus fitness in infection models. Antimicrob. Agents Chemother., 2018, 62(11), e01033-e18.
[http://dx.doi.org/10.1128/AAC.01033-18] [PMID: 30150481]
[54]
Huynh, T.; Stecher, M.; Mckinnon, J.; Jung, N.; Rupp, M.E. Safety and tolerability of 514G3, a true human anti-protein a monoclonal antibody for the treatment of S. aureus bacteremia. Open Forum Infect. Dis., 2016, 3(suppl-1), 1354. Available from: https://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ ofw 172.1057
[55]
Varshney, A.K.; Kuzmicheva, G.A.; Lin, J.; Sunley, K.M.; Bowling, R.A.; Kwan, T-Y. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLoS One, 2018, 13(1)e0190537
[http://dx.doi.org/10.1371/journal.pone.0190537]
[56]
Yang, Y.; Qian, M.; Yi, S.; Liu, S.; Li, B.; Yu, R.; Guo, Q.; Zhang, X.; Yu, C.; Li, J.; Xu, J.; Chen, W. Monoclonal antibody targeting Staphylococcus aureus surface protein A (SasA) protect against Staphylococcus aureus sepsis and peritonitis in mice. PLoS One, 2016, 11(2)e0149460
[http://dx.doi.org/10.1371/journal.pone.0149460] [PMID: 26926145]
[57]
Pancari, G.; Fan, H.; Smith, S.; Joshi, A.; Haimbach, R.; Clark, D.; Li, Y.; Hua, J.; McKelvey, T.; Ou, Y.; Drummond, J.; Cope, L.; Montgomery, D.; McNeely, T. Characterization of the mechanism of protection mediated by CS-D7, a monoclonal antibody to Staphylococcus aureus iron regulated surface determinant B (IsdB). Front. Cell. Infect. Microbiol., 2012, 2, 36.
[http://dx.doi.org/10.3389/fcimb.2012.00036] [PMID: 22919628]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy