Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

A Review on the Methods in Diesel Desulfurization

Author(s): Muhammad Shahid Nazir*, Sadaf Ahmad, Zaman Tahir, Sadaf ul Hassan, Zulfiqar Ali, Majid Niaz Akhtar, Kashuf Azam and Mohd. Azmuddin Abdullah*

Volume 17, Issue 6, 2021

Published on: 12 March, 2020

Page: [815 - 830] Pages: 16

DOI: 10.2174/1573411016666200312095424

Price: $65

Abstract

Background: Diesel mainly consists of paraffin and thio-aromatic compounds. Sulfur present in diesel exhaust is the major challenge for oil refineries. Sulfur is an oxidizing element that discharges as acute pollutant in the environment, having adverse effects on human and animal life.

Introduction: The scope of this review paper is to discuss and highlight the recent advancements in the process of desulfurization of diesel oil to explore the less energy-intensive and more economical process.

Methods: Recently, different techniques are widely used for desulfurization of diesel oil to remove sulfur containing compounds from diesel. These techniques mainly involve hydrodesulfurzation, oxidative desulfurization, biodesulfurization, ionic liquid desulfurization, and adsorption desulfurization.

Conclusion: Adsorptive desulfurization technique is green, less energy incentive, and more economical than hydro-desulfurization, oxidative desulfurization, ionic liquid desulfurization and bio desulfurization. Optimization of adsorptive desulfurization technique may yield up to 100% desulfurization of diesel oil.

Keywords: Adsorption desulfurization, biodesulfurization, desulfurization, diesel, hydrodesulfurization, ionic liquid desulfurization, oxidative desulfurization.

Graphical Abstract

[1]
Gupta, R.D. Environment Pollution: Hazards and Control; Concept Publishing Company, 2006.
[2]
Scheepers, P.T. Health Implications of Combustion Engine Exhaust. Environmental Indicators. Springer, 2015, 899-924.
[3]
Rengaraj, D.; Kwon, W.S.; Pang, M.G. Effects of motor vehicle exhaust on male reproductive function and associated proteins. J. Proteome Res., 2015, 14(1), 22-37.
[http://dx.doi.org/10.1021/pr500939c] [PMID: 25329744]
[4]
Miller, C.A. Air pollution-control technologies. Strategies, 2015, 65, 3.
[5]
Dantas, T.C.; Neto, A.D.; Moura, M.; Neto, E.B.; Duarte, K.F. Study of new alternatives for removal of sulfur from diesel. Brazilian J. Petrol. Gas, 2014, 8(1), 1.
[6]
Jung, B.K.; Jhung, S.H. Adsorptive removal of benzothiophene from model fuel, using modified activated carbons, in presence of diethylether. Fuel, 2015, 145, 249-255.
[http://dx.doi.org/10.1016/j.fuel.2014.12.088]
[7]
Speight, J.G. The chemistry and technology of petroleum; CRC press, 2014.
[http://dx.doi.org/10.1201/b16559]
[8]
Demirbas, A.; Alidrisi, H.; Balubaid, M. API gravity, sulfur content, and desulfurization of crude oil. Petrol. Sci. Technol., 2015, 33(1), 93-101.
[http://dx.doi.org/10.1080/10916466.2014.950383]
[9]
Meshram, P.; Purohit, B.K.; Sinha, M.K.; Sahu, S.; Pandey, B. Demineralization of low grade coal–A review. Renew. Sustain. Energy Rev., 2015, 41, 745-761.
[http://dx.doi.org/10.1016/j.rser.2014.08.072]
[10]
Gattupalli, R.R.; Banerjee, S.M.; Nicholas, C.P.; Bhatacharyya, A. Process for desulfurization of naphtha using ionic liquids. U.S. Patent 20,150,001,135 2015.
[11]
Grange, P. Catalytic hydrodesulfurization. Catal. Rev., Sci. Eng., 1980, 21(1), 135-181.
[http://dx.doi.org/10.1080/03602458008068062]
[12]
Mittal, V.; Cai, T.; Krishnadevarajan, K.; Xu, Q. Emission‐considered diesel blending optimization. Chem. Eng. Technol., 2014, 37(2), 293-300.
[http://dx.doi.org/10.1002/ceat.201300267]
[13]
Fedushchak, T.; Petrenko, T.; Vosmerikov, A.; Kanashevich, D.; Zhuravkov, S.; Velichkina, L. Physicochemical properties and activity of nanopowder catalysts in the hydrodesulfurization of diesel fraction. Russian J. Phys. Chem. A, 2012, 86, 1.
[http://dx.doi.org/10.1134/S0036024412030090]]
[14]
Haji, S.; Zhang, Y.; Erkey, C. Atmospheric hydrodesulfurization of diesel fuel using Pt/Al2O3 catalysts prepared by supercritical deposition for fuel cell applications. Appl. Catal. A Gen., 2010, 374(1-2), 1-10.
[http://dx.doi.org/10.1016/j.apcata.2009.10.044]
[15]
Zepeda, T.; Infantes-Molina, A.; de León, J.D.; Fuentes, S.; Alonso-Núñez, G.; Torres-Otañez, G.; Pawelec, B. Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. Appl. Catal. A Gen., 2014, 484, 108-121.
[http://dx.doi.org/10.1016/j.apcata.2014.06.033]
[16]
Ma, X.; Sakanishi, K.; Mochida, I. Three-stage deep hydrodesulfurization and decolorization of diesel fuel with CoMo and NiMo catalysts at relatively low pressure. Fuel, 1994, 73(10), 1667-1671.
[http://dx.doi.org/10.1016/0016-2361(94)90148-1]
[17]
Rodríguez-Castellón, E.; Jiménez-López, A.; Eliche-Quesada, D. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel, 2008, 87(7), 1195-1206.
[http://dx.doi.org/10.1016/j.fuel.2007.07.020]
[18]
Alibouri, M.; Ghoreishi, S.; Aghabozorg, H. Hydrodesulfurization of dibenzothiophene using CoMo/Al-HMS nanocatalyst synthesized by supercritical deposition. J. Supercrit. Fluids, 2009, 49(2), 239-248.
[http://dx.doi.org/10.1016/j.supflu.2009.01.002]
[19]
Pinilla, J.L.; Purón, H.; Torres, D.; Suelves, I.; Millan, M. Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation. Carbon, 2015, 81(0), 574-586.
[http://dx.doi.org/10.1016/j.carbon.2014.09.092]
[20]
Pinnavaia, T.J.; Zhang, Z.; Hicks, R.W. An overview of mesostructured forms of alumina with crystalline framework walls. Stud. Surf. Sci. Catal., 2005, 156, 1-10.
[http://dx.doi.org/10.1016/S0167-2991(05)80184-3]
[21]
Yu, Q.Y.; Zhang, L.; Guo, R.; Sun, J.; Fu, W.Q.; Tang, T.; Tang, T.D. Catalytic performance of CoMo catalysts supported on mesoporous ZSM-5 zeolite-alumina composites in the hydrodesulfurization of 4,6-dimethyldibenzothiophene. Fuel Process. Technol., 2017, 159, 76-87.
[http://dx.doi.org/10.1016/j.fuproc.2017.01.023]
[22]
Wang, C-M.; Tsai, T-C.; Wang, I. Deep hydrodesulfurization over Co/Mo catalysts supported on oxides containing vanadium. J. Catal., 2009, 262(2), 206-214.
[http://dx.doi.org/10.1016/j.jcat.2008.12.012]
[23]
Yin, H.; Zhou, T.; Liu, Y.; Chai, Y.; Liu, C. NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel. J. Nat. Gas Chem., 2011, 20(4), 441-448.
[http://dx.doi.org/10.1016/S1003-9953(10)60204-6]
[24]
Wan, G.; Duan, A.; Zhang, Y.; Zhao, Z.; Jiang, G.; Zhang, D.; Liu, J.; Chung, K. NiW/AMBT catalysts for the production of ultra-low sulfur diesel. Catal. Today, 2010, 158(3-4), 521-529.
[http://dx.doi.org/10.1016/j.cattod.2010.08.021]
[25]
Fang, X.; Guo, R.; Yang, C. The development and application of catalysts for ultra-deep hydrodesulfurization of diesel. Chin. J. Catal., 2013, 34(1), 130-139.
[http://dx.doi.org/10.1016/S1872-2067(11)60506-8]
[26]
Liu, H.; Yin, C.; Li, H.; Liu, B.; Li, X.; Chai, Y.; Li, Y.; Liu, C. Synthesis, characterization and hydrodesulfurization properties of nickel–copper–molybdenum catalysts for the production of ultra-low sulfur diesel. Fuel, 2014, 129, 138-146.
[http://dx.doi.org/10.1016/j.fuel.2014.03.055]
[27]
Deng, Z.; Wang, T.; Wang, Z. Hydrodesulfurization of diesel in a slurry reactor. Chem. Eng. Sci., 2010, 65(1), 480-486.
[http://dx.doi.org/10.1016/j.ces.2009.05.046]
[28]
Zhou, W.; Zhang, Q.; Zhou, Y.; Wei, Q.; Du, L.; Ding, S.; Jiang, S.; Zhang, Y. Effects of Ga-and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels. J Catalysis Today, 2018, 305, 171-181.
[http://dx.doi.org/10.1016/j.cattod.2017.07.006]
[29]
Hailiang, Y.; Xinliang, L.; Tongna, Z.; Yunqi, L. Novel NiMo Catalysts Supported on Sol-Gel Nanosized HY Zeolite-Alumina Composites for Hydrodesulfurization of Diesel. J China Petroleum Process. Petrochem. Technol. (IJCPT), 2019, 21(1), 15-22.
[30]
Yoshimura, Y.; Toba, M.; Matsui, T.; Harada, M.; Ichihashi, Y.; Bando, K.; Yasuda, H.; Ishihara, H.; Morita, Y.; Kameoka, T. Active phases and sulfur tolerance of bimetallic Pd–Pt catalysts used for hydrotreatment. Appl. Catal. A Gen., 2007, 322, 152-171.
[http://dx.doi.org/10.1016/j.apcata.2007.01.009]
[31]
Kouzu, M.; Kuriki, Y.; Hamdy, F.; Sakanishi, K.; Sugimoto, Y.; Saito, I. Catalytic potential of carbon-supported NiMo-sulfide for ultra-deep hydrodesulfurization of diesel fuel. Appl. Catal. A Gen., 2004, 265(1), 61-67.
[http://dx.doi.org/10.1016/j.apcata.2004.01.003]
[32]
Rashidi, F.; Sasaki, T.; Rashidi, A.M.; Nemati Kharat, A.; Jozani, K.J. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. J. Catal., 2013, 299, 321-335.
[http://dx.doi.org/10.1016/j.jcat.2012.11.012]
[33]
Muhammad, Y.; Lu, Y.; Shen, C.; Li, C. Dibenzothiophene hydrodesulfurization over Ru promoted alumina based catalysts using in situ generated hydrogen. Energy Convers. Manage., 2011, 52(2), 1364-1370.
[http://dx.doi.org/10.1016/j.enconman.2010.09.034]
[34]
Da Costa, P.; Potvin, C.; Manoli, J-M.; Lemberton, J-L.; Perot, G.; Djéga-Mariadassou, G. New catalysts for deep hydrotreatment of diesel fuel: Kinetics of 4, 6-dimethyldibenzothiophene hydrodesulfurization over alumina-supported molybdenum carbide. J. Mol. Catal. Chem., 2002, 184(1-2), 323-333.
[http://dx.doi.org/10.1016/S1381-1169(02)00021-3]
[35]
Song, H.; Chang, Y.; Wan, X.; Dai, M.; Song, H.; Jin, Z. Equilibrium, kinetic, and thermodynamic studies on adsorptive desulfurization onto CuICeIVY zeolite. Ind. Eng. Chem. Res., 2014, 53(14), 5701-5708.
[http://dx.doi.org/10.1021/ie403177t]
[36]
Sawada, A.; Kanda, Y.; Sugioka, M.; Uemichi, Y. Rhodium phosphide catalyst for hydrodesulfurization: Low temperature synthesis by sodium addition. Catal. Commun., 2014, 56, 60-64.
[http://dx.doi.org/10.1016/j.catcom.2014.06.027]
[37]
Feng, X.J.; Yang, J.X.; Yu, W.T.; Fun, H.K.; Wu, J.Y.; Tian, Y.P. Synthesis and crystal structure of a novel coordination polymer of [Cd(SCN)(2)(POM)(2)](n). Wuji Huaxue Xuebao, 2004, 20(4), 403-406.
[38]
Jiang, Z.; Lü, H.; Zhang, Y. Oxidative desulfurization of fuel oils. Chin. J. Catal., 2011, 32(5), 707-715.
[http://dx.doi.org/10.1016/S1872-2067(10)60246-X]
[39]
Yazu, K.; Yamamoto, Y.; Furuya, T.; Miki, K.; Ukegawa, K. Oxidation of dibenzothiophenes in an organic biphasic system and its application to oxidative desulfurization of light oil. Energy Fuels, 2001, 15(6), 1535-1536.
[http://dx.doi.org/10.1021/ef0101412]
[40]
Caero, L.C.; Hernández, E.; Pedraza, F.; Murrieta, F. Oxidative desulfurization of synthetic diesel using supported catalysts: Part I. Study of the operation conditions with a vanadium oxide based catalyst. Catal. Today, 2005, 107, 564-569.
[http://dx.doi.org/10.1016/j.cattod.2005.07.017]
[41]
Bernal, H.; Cedeño, L. Solvent effects during oxidation-extraction desulfurization process of aromatic sulfur compounds from fuels. Int. J. Chem. React. Eng., 2005, 2005, 3.
[42]
Deshpande, A.; Bassi, A.; Prakash, A. Ultrasound-assisted, base-catalyzed oxidation of 4, 6-dimethyldibenzothiophene in a biphasic diesel-acetonitrile system. Energy Fuels, 2005, 19(1), 28-34.
[http://dx.doi.org/10.1021/ef0340965]
[43]
De Filippis, P.; Scarsella, M.; Verdone, N. Oxidative desulfurization I: peroxyformic acid oxidation of benzothiophene and dibenzothiophene. Ind. Eng. Chem. Res., 2010, 49(10), 4594-4600.
[http://dx.doi.org/10.1021/ie9017622]
[44]
Mondal, S.; Hangun-Balkir, Y.; Alexandrova, L.; Link, D.; Howard, B.; Zandhuis, P.; Cugini, A.; Horwitz, C.P.; Collins, T.J. Oxidation of sulfur components in diesel fuel using Fe-TAML® catalysts and hydrogen peroxide. Catal. Today, 2006, 116(4), 554-561.
[http://dx.doi.org/10.1016/j.cattod.2006.06.025]
[45]
Tang, N.; Jiang, Z.; Li, C. Oxidation of refractory sulfur-containing compounds with molecular oxygen catalyzed by vanadoperiodate. Green Chem., 2015, 17(2), 817-820.
[http://dx.doi.org/10.1039/C4GC01790K]
[46]
Julião, D.; Gomes, A.C.; Pillinger, M.; Cunha-Silva, L.; de Castro, B.; Gonçalves, I.S.; Balula, S.S. Desulfurization of model diesel by extraction/oxidation using a zinc-substituted polyoxometalate as catalyst under homogeneous and heterogeneous (MIL-101 (Cr) encapsulated) conditions. Fuel Process. Technol., 2015, 131, 78-86.
[http://dx.doi.org/10.1016/j.fuproc.2014.10.030]
[47]
Julião, D.; Gomes, A. C.; Cunha-Silva, L.; Pillinger, M.; Lopes, A. D.; Valença, R.; Ribeiro, J. C.; Gonçalves, I. S.; Balula, S. S. Dichlorodioxomolybdenum (VI) complexes bearing oxygen-donor ligands as catalysts for oxidative desulfurization of simulated and real diesel. J Catalysis Communications, 2019, 105704.
[48]
Sachdeva, T.; Pant, K. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst. Fuel Process. Technol., 2010, 91(9), 1133-1138.
[http://dx.doi.org/10.1016/j.fuproc.2010.03.027]
[49]
Wang, R.; Zhang, G.; Zhao, H. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil. Catal. Today, 2010, 149(1-2), 117-121.
[http://dx.doi.org/10.1016/j.cattod.2009.03.011]
[50]
Craven, M.; Xiao, D.; Kunstmann-Olsen, C.; Kozhevnikova, E.F.; Blanc, F.; Steiner, A.; Kozhevnikov, I.V. Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica. J. Appl. Catal. B, 2018, 231, 82-91.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.005]
[51]
Liu, W.; Liu, X.; Yang, Y.; Zhang, Y.; Xu, B. Selective removal of benzothiophene and dibenzothiophene from gasoline using double-template molecularly imprinted polymers on the surface of carbon microspheres. Fuel, 2014, 117, 184-190.
[http://dx.doi.org/10.1016/j.fuel.2013.09.031]
[52]
Banisharif, F.; Dehghani, M.; Capel-Sanchez, M.; Campos-Martin, J. Highly catalytic oxidative desulfurization and denitrogenation of diesel using anchored-silica-gel vanadium-substituted Dawson-type polyoxometalate. J Catalysis Today, 2019, 333, 219-225.
[http://dx.doi.org/10.1016/j.cattod.2018.07.009]
[53]
Andevary, H.H.; Akbari, A.; Omidkhah, M. High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim] FeCl4 as catalyst/extractant. Fuel Process. Technol., 2019, 185, 8-17.
[http://dx.doi.org/10.1016/j.fuproc.2018.11.014]
[54]
Rakhmanov, E.; Baranova, S.; Wang, Z.; Tarakanova, A.; Kardashev, S.; Akopyan, A.; Naranov, E.; Oshchepkov, M.; Anisimov, A. Hydrogen peroxide oxidative desulfurization of model diesel mixtures using azacrown ethers. Petrol. Chem., 2014, 54(4), 316-322.
[http://dx.doi.org/10.1134/S0965544114030098]
[55]
Basfar, A.; Mohamed, K. Radiation-induced desulfurization of Arabian crude oil and straight-run diesel. Radiat. Phys. Chem., 2011, 80(11), 1289-1290.
[http://dx.doi.org/10.1016/j.radphyschem.2011.06.007]
[56]
Nunes, M.A.; Mello, P.A.; Bizzi, C.A.; Diehl, L.O.; Moreira, E.M.; Souza, W.F.; Gaudino, E.C.; Cravotto, G.; Flores, E.M. Evaluation of nitrogen effect on ultrasound-assisted oxidative desulfurization process. Fuel Process. Technol., 2014, 126, 521-527.
[http://dx.doi.org/10.1016/j.fuproc.2014.05.031]
[57]
Hosseini, H.; Hamidi, A. Sulfur Removal of Crude Oil by Ultrasound-Assisted Oxidative Method., 2014.
[58]
Flores, R.; Rodas, A.; Chavarria, W. Desulfurization of fuel oils using an advanced oxidation method., 2004, 49 .
[59]
Choi, A.E.S.; Roces, S.; Dugos, N.; Futalan, C.M.; Lin, S-S.; Wan, M-W. Optimization of ultrasound-assisted oxidative desulfurization of model sulfur compounds using commercial ferrate (VI). J. Taiwan Inst. Chem. Eng., 2014, 45(6), 2935-2942.
[http://dx.doi.org/10.1016/j.jtice.2014.08.003]
[60]
Na, P.; Zhao, B.; Gu, L.; Liu, J.; Na, J. Deep desulfurization of model gasoline over photoirradiated titanium-pillared montmorillonite. J. Phys. Chem. Solids, 2009, 70(12), 1465-1470.
[http://dx.doi.org/10.1016/j.jpcs.2009.08.004]
[61]
Zhang, J.; Wang, G.; Zhang, L.; Fu, X.; Liu, Y. Catalytic oxidative desulfurization of benzothiophene with hydrogen peroxide catalyzed by Fenton-like catalysts. React. Kinet. Mech. Catal., 2014, 113(2), 347-360.
[http://dx.doi.org/10.1007/s11144-014-0750-y]
[62]
Khan, Z.; Ali, S. Oxidative desulphurization followed by catalytic adsorption method. South African J. Chem. Eng., 2013, 18(2), 14-28.
[63]
Afsharpour, M.; Dini, Z. One-pot functionalization of carbon nanotubes by WO3/MoO3 nanoparticles as oxidative desulfurization catalysts. Fuller. Nanotub. Carbon Nanostruct., 2019, 27(3), 198-205.
[http://dx.doi.org/10.1080/1536383X.2018.1538132]
[64]
Deshpande, A.; Bassi, A.; Prakash, A. Ultrasound-assisted, base-catalyzed oxidation of 4, 6-dimethyldibenzothiophene in a biphasic diesel− acetonitrile system. Energy Fuels, 2005, 19(1), 28-34.
[http://dx.doi.org/10.1021/ef0340965]
[65]
Hosseini, H.; Hamidi, A. In Sulfur Removal of Crude Oil by Ultrasound- Assisted Oxidative MethodProceedings of the International Conference on Biological, Civil and Environmental Engineering (BCEE-2014); Dubai, United Arab Emirates, 2014, pp. 17-18.
[66]
Boniek, D.; Figueiredo, D.; dos Santos, A.F.B.; de Resende Stoianoff, M.A. Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol. Environ. Policy, 2015, 17(1), 29-37.
[http://dx.doi.org/10.1007/s10098-014-0812-x]
[67]
Khedkar, S.; Shanker, R. Isolation and classification of a soil actinomycete capable of sulphur-specific biotransformation of dibenzothiophene, benzothiophene and thianthrene. J. Appl. Microbiol., 2015, 118(1), 62-74.
[http://dx.doi.org/10.1111/jam.12665] [PMID: 25319398]
[68]
Bhatia, S.; Sharma, D.K. Biodesulfurization of dibenzothiophene, its alkylated derivatives and crude oil by a newly isolated strain Pantoea agglomerans D23W3. Biochem. Eng. J., 2010, 50(3), 104-109.
[http://dx.doi.org/10.1016/j.bej.2010.04.001]
[69]
Bordoloi, N.K.; Rai, S.K.; Chaudhuri, M.K.; Mukherjee, A.K. Deep-desulfurization of dibenzothiophene and its derivatives present in diesel oil by a newly isolated bacterium Achromobacter sp. to reduce the environmental pollution from fossil fuel combustion. Fuel Process. Technol., 2014, 119, 236-244.
[http://dx.doi.org/10.1016/j.fuproc.2013.10.014]
[70]
Tang, H.; Li, Q.; Wang, Z.; Yan, D.; Xing, J. Simultaneous Removal of Thiophene and Dibenzothiophene by Immobilized Pseudomonas delafieldii R-8 cells. Chin. J. Chem. Eng., 2012, 20(1), 47-51.
[http://dx.doi.org/10.1016/S1004-9541(12)60362-0]
[71]
Zhang, T.; Li, W-L.; Chen, X-X.; Tang, H.; Li, Q.; Xing, J-M.; Liu, H-Z. Enhanced biodesulfurization by magnetic immobilized Rhodococcus erythropolis LSSE8-1-vgb assembled with nano-γ-Al2O3. World J. Microbiol. Biotechnol., 2011, 27(2), 299-305.
[http://dx.doi.org/10.1007/s11274-010-0459-7]
[72]
Labana, S.; Pandey, G.; Jain, R.K. Desulphurization of dibenzothiophene and diesel oils by bacteria. Lett. Appl. Microbiol., 2005, 40(3), 159-163.
[http://dx.doi.org/10.1111/j.1472-765X.2004.01648.x] [PMID: 15715638]
[73]
Li, G-Q.; Li, S-S.; Qu, S-W.; Liu, Q-K.; Ma, T.; Zhu, L.; Liang, F-L.; Liu, R-L. Improved biodesulfurization of hydrodesulfurized diesel oil using Rhodococcus erythropolis and Gordonia sp. Biotechnol. Lett., 2008, 30(10), 1759-1764.
[http://dx.doi.org/10.1007/s10529-008-9748-8] [PMID: 18516503]
[74]
Rhee, S-K.; Chang, J.H.; Chang, Y.K.; Chang, H.N. Desulfurization of dibenzothiophene and diesel oils by a newly isolated gordona strain, CYKS1. Appl. Environ. Microbiol., 1998, 64(6), 2327-2331.
[http://dx.doi.org/10.1128/AEM.64.6.2327-2331.1998] [PMID: 9603863]
[75]
Li, W.; Wang, M-D.; Chen, H.; Chen, J-M.; Shi, Y. Biodesulfurization of dibenzothiophene by growing cells of Gordonia sp. in batch cultures. Biotechnol. Lett., 2006, 28(15), 1175-1179.
[http://dx.doi.org/10.1007/s10529-006-9070-2] [PMID: 16802103]
[76]
Grossman, M.J.; Lee, M.K.; Prince, R.C.; Minak-Bernero, V.; George, G.N.; Pickering, I.J. Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. strain ECRD-1. Appl. Environ. Microbiol., 2001, 67(4), 1949-1952.
[http://dx.doi.org/10.1128/AEM.67.4.1949-1952.2001] [PMID: 11282654]
[77]
Li, W.; Zhang, Y.; Wang, M.D.; Shi, Y. Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol. Lett., 2005, 247(1), 45-50.
[http://dx.doi.org/10.1016/j.femsle.2005.04.025] [PMID: 15927746]
[78]
Xu, P.; Li, F.; Yu, J.; Ma, C.; Zhong, J.; Qu, Y.; Blankespoor, H. Microbial desulfurization of fuel oil. Chin. Sci. Bull., 2002, 47(5), 365-369.
[http://dx.doi.org/10.1360/02tb9086]
[79]
Etemadi, N.; Sepahy, A. A.; Mohebali, G.; Yazdian, F.; Omidi, M. Enhancement of bio-desulfurization capability of a newly isolated thermophilic bacterium using starch/iron nanoparticles in a controlled system. Int. J. Biol. Macromol., 2018, 120(Pt B), 1801-1809.
[80]
Silva, T.A.; Schwartz, M.; Souza, P.M.; Garrard, I.; Campos-Takaki, G.M.; Tambourgi, E.B. Desulfurization of Dibenzothiophene by Pseudomonas fluorescens (UCP 1514) Leading to the Production of Biphenyl. In: Recent Insights in Petroleum Science and Engineering; IntechOpen, 2017.
[81]
Karimi, E.; Yazdian, F.; Rasekh, B.; Jeffryes, C.; Rashedi, H.; Sepahi, A.A.; Shahmoradi, S.; Omidi, M.; Azizi, M.; Bidhendi, M.E.; Hatamian, A. DBT desulfurization by decorating bacteria using modified carbon nanotube. Fuel, 2018, 216, 787-795.
[http://dx.doi.org/10.1016/j.fuel.2017.10.030]
[82]
Chen, S.; Zhao, C.; Liu, Q.; Zhang, X.; Sun, S.; Zang, M. Biodesulfurization of diesel oil in oil-water two phase reaction system by Gordonia sp. SC-10. Biotechnol. Lett., 2019, 41(4-5), 547-554.
[http://dx.doi.org/10.1007/s10529-019-02663-9] [PMID: 30915612]
[83]
Zhang, T.; Li, W-L.; Chen, X-X.; Tang, H.; Li, Q.; Xing, J-M.; Liu, H-Z. Enhanced biodesulfurization by magnetic immobilized Rhodococcus erythropolis LSSE8-1-vgb assembled with nano-γ-Al 2 O 3. World J. Microbiol. Biotechnol., 2011, 27(2), 299-305.
[http://dx.doi.org/10.1007/s11274-010-0459-7]
[84]
Galiński, M.; Lewandowski, A.; Stępniak, I. Ionic liquids as electrolytes. Electrochim. Acta, 2006, 51(26), 5567-5580.
[http://dx.doi.org/10.1016/j.electacta.2006.03.016]
[85]
Gao, H.; Guo, C.; Xing, J.; Liu, H. Deep desulfurization of diesel oil with extraction using pyridinium-based ionic liquids. Sep. Sci. Technol., 2012, 47(2), 325-330.
[http://dx.doi.org/10.1080/01496395.2011.620583]
[86]
Nie, Y.; Dong, Y.; Bai, L.; Dong, H.; Zhang, X. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids. Fuel, 2013, 103, 997-1002.
[http://dx.doi.org/10.1016/j.fuel.2012.07.071]
[87]
Enayati, M.; Faghihian, H. N-butyl-pyridinium tetrafluoroborate as a highly efficient ionic liquid for removal of dibenzothiophene from organic solutions. J. Fuel Chem. Technol., 2015, 43(2), 195-201.
[http://dx.doi.org/10.1016/S1872-5813(15)30003-7]
[88]
Chen, X.; Liu, G.; Yuan, S.; Asumana, C.; Wang, W.; Yu, G. Extractive desulfurization of fuel oils with thiazolium-based ionic liquids. Sep. Sci. Technol., 2012, 47(6), 819-826.
[http://dx.doi.org/10.1080/01496395.2011.637281]
[89]
Mehdizadeh, A.; Ahmadi, A.N.; Fateminassab, F. Deep Desulfurization of Fuel Diesels Using Alkyl Sulfate and Nitrate Containing Imidazolium as Ionic Liquids %J. J. Appl. Chem. Res., 2013, 7(1), 75-85.
[90]
He, L.; Li, H.; Zhu, W.; Guo, J.; Jiang, X.; Lu, J.; Yan, Y. Deep oxidative desulfurization of fuels using peroxophosphomolybdate catalysts in ionic liquids. Ind. Eng. Chem. Res., 2008, 47(18), 6890-6895.
[http://dx.doi.org/10.1021/ie800857a]
[91]
Chen, X.; Guan, Y.; Abdeltawab, A.A.; Al-Deyab, S.S.; Yuan, X.; Wang, C.; Yu, G. Using functional acidic ionic liquids as both extractant and catalyst in oxidative desulfurization of diesel fuel: An investigation of real feedstock. Fuel, 2015, 146, 6-12.
[http://dx.doi.org/10.1016/j.fuel.2014.12.091]
[92]
Domańska, U.; Wlazło, M. Effect of the cation and anion of the ionic liquid on desulfurization of model fuels. Fuel, 2014, 134, 114-125.
[http://dx.doi.org/10.1016/j.fuel.2014.05.048]
[93]
Zhao, D-s.; Sun, Z-m.; Li, F-t.; Shan, H-d. Optimization of oxidative desulfurization of dibenzothiophene using acidic ionic liquid as catalytic solvent. J. Fuel Chem. Technol., 2009, 37(2), 194-198.
[http://dx.doi.org/10.1016/S1872-5813(09)60015-3]
[94]
Zhao, D.; Sun, Z.; Li, F.; Liu, R.; Shan, H. Oxidative desulfurization of thiophene catalyzed by (C4H9) 4NBr• 2C6H11NO coordinated ionic liquid. Energy Fuels, 2008, 22(5), 3065-3069.
[http://dx.doi.org/10.1021/ef800162w]
[95]
Lu, X.; Yue, L.; Hu, M.; Cao, Q.; Xu, L.; Guo, Y.; Hu, S.; Fang, W. Piperazinium-based ionic liquids with lactate anion for extractive desulfurization of fuels. Energy Fuels, 2014, 28(3), 1774-1780.
[http://dx.doi.org/10.1021/ef402154j]
[96]
Dharaskar, S.A.; Wasewar, K.L.; Varma, M.N.; Shende, D.Z.; Yoo, C.K. Extractive Desulfurization of Liquid Fuels by Energy Efficient Green Thiazolium based Ionic Liquids. Ind. Eng. Chem. Res., 2014, 53(51), 19845-19854.
[http://dx.doi.org/10.1021/ie501108w]
[97]
Shu, C.; Sun, T.; Guo, Q.; Jia, J.; Lou, Z. Desulfurization of diesel fuel with nickel boride in situ generated in an ionic liquid. Green Chem., 2014, 16(8), 3881-3889.
[http://dx.doi.org/10.1039/C4GC00695J]
[98]
Xun, S.; Jiang, W.; Guo, T.; He, M.; Ma, R.; Zhang, M.; Zhu, W.; Li, H. Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. J. Colloid Interface Sci., 2019, 534, 239-247.
[http://dx.doi.org/10.1016/j.jcis.2018.08.115] [PMID: 30227380]
[99]
Xun, S.; Yu, Z.; He, M.; Wei, Y.; Li, X.; Zhang, M.; Zhu, W.; Li, H. Supported phosphotungstic-based ionic liquid as an heterogeneous catalyst used in the extractive coupled catalytic oxidative desulfurization in diesel; J Research on Chemical Intermediates, 2019.
[http://dx.doi.org/10.1007/s11164-019-03833-0]
[100]
Hernandez-Maldonado, A.J.; Yang, R.T. Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu (I)-Y zeolite. Ind. Eng. Chem. Res., 2003, 42(13), 3103-3110.
[http://dx.doi.org/10.1021/ie0301132]
[101]
Fu, H.; Li, H.; Zhao, H.; Cai, T. Preparation and modification of NaY/beta composite zeolite and adsorption performance. Petrol. Chem., 2014, 54(3), 239-244.
[http://dx.doi.org/10.1134/S0965544114030049]
[102]
Faghihian, H.; Naeimi, S. Removal of benzothiophene from organic solution by a combined photodegradation-adsorption method. Petrochemical Technology (IJCPT), 2012, 2(1), 16-25.
[103]
Martins, A.V.; Ramos, J.E.; Coelho, J.A.; Vidal, C.B.; Cavalcante, C.L., Jr; Azevedo, D.C. Metal-impregnated carbon applied as adsorbent for removal of sulphur compounds using fixed-bed column technology. Environ. Technol., 2014, 35(9-12), 1367-1377.
[http://dx.doi.org/10.1080/09593330.2013.868530] [PMID: 24701935]
[104]
Shakirulla, M.; Ahmad, W.; Ahmad, I.; Ishaq, M.; Khan, M.I. Desulfurization of Liquid Fuels by Selective Adsorption through Mineral Clays as Adsorbents. J. Chil. Chem. Soc., 2012, 57, 1375-1380.
[http://dx.doi.org/10.4067/S0717-97072012000400009]
[105]
Hou, X-M.; Shen, B-X.; Zhao, J-G. Reactive Adsorption Desulfurization of FCC Gasoline over NiO/ZnO-Al2O3-SiO2 in a Fixed-fluidized Bed Reactor. Energy Sources A Recovery Util. Environ. Effects, 2014, 36(14), 1517-1522.
[http://dx.doi.org/10.1080/15567036.2011.585382]
[106]
Sun, H-Y.; Sun, L-P.; Li, F.; Zhang, L. Adsorption of benzothiophene from fuels on modified NaY zeolites. Fuel Process. Technol., 2015, 134, 284-289.
[http://dx.doi.org/10.1016/j.fuproc.2015.02.010]
[107]
Baeza, P.; Aguila, G.; Gracia, F.; Araya, P. Desulfurization by adsorption with copper supported on zirconia. catalysis communications. 2008, 9(5), 751-755.
[108]
Lu, M-C.; Agripa, M.L.; Wan, M-W.; Dalida, M.L.P. Removal of oxidized sulfur compounds using different types of activated carbon, aluminum oxide, and chitosan-coated bentonite. Desalination Water Treat., 2014, 52(4-6), 873-879.
[http://dx.doi.org/10.1080/19443994.2013.826330]
[109]
Alhamed, Y.A.; Bamufleh, H.S. Sulfur removal from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl2. Fuel, 2009, 88(1), 87-94.
[http://dx.doi.org/10.1016/j.fuel.2008.07.019]
[110]
Marín-Rosas, C.; Ramírez-Verduzco, L.F.; Murrieta-Guevara, F.R.; Hernandez-Tapia, G.; Rodríguez-Otal, L.M. Desulfurization of low sulfur diesel by adsorption using activated carbon: Adsorption isotherms. Ind. Eng. Chem. Res., 2010, 49(9), 4372-4376.
[http://dx.doi.org/10.1021/ie901756b]
[111]
Al Zubaidy, I.A.; Tarsh, F.B.; Darwish, N.N.; Majeed, B.; Sharafi, A.; Chacra, L.A. Adsorption process of sulfur removal from diesel oil using sorbent materials. J. Clean Energy Technol., 2013, 1(1), 66-68.
[http://dx.doi.org/10.7763/JOCET.2013.V1.16]
[112]
Selvavathi, V.; Chidambaram, V.; Meenakshisundaram, A.; Sairam, B.; Sivasankar, B. Adsorptive desulfurization of diesel on activated carbon and nickel supported systems. Catal. Today, 2009, 141(1-2), 99-102.
[http://dx.doi.org/10.1016/j.cattod.2008.05.009]
[113]
Safieh, K.A.A.; Al-Degs, Y.S.; Sunjuk, M.S.; Saleh, A.I.; Al-Ghouti, M.A. Selective removal of dibenzothiophene from commercial diesel using manganese dioxide-modified activated carbon: a kinetic study. Environ. Technol., 2015, 36(1-4), 98-105.
[http://dx.doi.org/10.1080/09593330.2014.938125] [PMID: 25409588]
[114]
Saleh, T.A.; Sulaiman, K.O.; Al-Hammadi, S.A.; Dafalla, H.; Danmaliki, G.I. Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: with column system evaluation. J. Clean. Prod., 2017, 154, 401-412.
[http://dx.doi.org/10.1016/j.jclepro.2017.03.169]
[115]
Srivastav, A.; Srivastava, V.C. Adsorptive desulfurization by activated alumina. J. Hazard. Mater., 2009, 170(2-3), 1133-1140.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.088] [PMID: 19523762]
[116]
Neubauer, R.; Kienzl, N.; Hochenauer, C. Integration of an adsorptive desulfurization unit into an SOFC-based auxiliary power unit operated with diesel fuel. Chem. Eng. Res. Des., 2019, 141, 47-55.
[http://dx.doi.org/10.1016/j.cherd.2018.10.024]
[117]
Yang, Y.; Li, J.; Lv, G.; Zhang, L. Novel method to synthesize Ni2P/SBA-15 adsorbents for the adsorptive desulfurization of model diesel fuel. J. Alloys Compounds, 2018, 745, 467-476.
[http://dx.doi.org/10.1016/j.jallcom.2018.02.156]
[118]
Thepwatee, S.; Chekuntod, N.; Chanchawee, A. InLight-Enhanced Adsorptive Desulfurization of Dibenzothiophene Using Supported TiO2-ZrO2; Key Engineering Materials, Trans Tech Publ:, 2019, pp. 391-396.
[119]
Zhao, S.; Ge, C.; Yan, Z.; Zhang, J.; Ren, S.; Liang, H.; Chen, F.; Li, X. One-pot microwave-assisted combustion synthesis of NiFe2O4-reduced graphene oxide composite for adsorptive desulfurization of diesel fuel. Mater. Chem. Phys., 2019, 229, 294-302.
[http://dx.doi.org/10.1016/j.matchemphys.2019.03.004]
[120]
Jha, D.; Mubarak, N.M.; Haider, M.B.; Kumar, R.; Balathanigaimani, M.S.; Sahu, J.N. Adsorptive removal of dibenzothiophene from diesel fuel using microwave synthesized carbon nanomaterials. Fuel, 2019, 244, 132-139.
[http://dx.doi.org/10.1016/j.fuel.2019.01.006]
[121]
Fallah, R.N.; Azizian, S.; Dwivedi, A.D.; Sillanpää, M. Adsorptive desulfurization using different passivated carbon nanoparticles by PEG-200. Fuel Process. Technol., 2015, 130, 214-223.
[http://dx.doi.org/10.1016/j.fuproc.2014.10.018]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy