Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Organic Polymer and Metal Nano-particle Based Composites for Improvement of the Analytical Performance of Electrochemical Biosensors

Author(s): Prasad Minakshi*, Hari Mohan, Manjeet, Ravina , Basanti Brar, Mohammad Shafiq and C.S. Pundir*

Volume 20, Issue 11, 2020

Page: [1029 - 1041] Pages: 13

DOI: 10.2174/1568026620666200309092957

Price: $65

Abstract

Metal nanoparticles (NPs) are described in the nanoscale and made from either pure metals or their compounds such as oxides. Metallic NPs have certain indistinct functional groups due to which these can bind with any type of ligand, antibody and drugs. Organic polymers, which conduct electricity, are called conducting polymers (intrinsically conducting polymers). They behave like semiconductors by exhibiting metallic conductivity. Process-ability is the major advantage of conducting polymers. Nanocomposite is a novel material having nano-fillers scattered in a matrix with morphology and interfacial characteristics of nano-composites including their individual property that influence their characteristics. Conducting polymers and NP composites can enhance the rate of electron transport between the current collector material (electrode) and the electrolyte; therefore they have been employed in the construction of improved electrochemical sensors such as amperometric, catalytic and potentiodynamic affinity sensors.

Keywords: Metal nanoparticles, Zinc oxide nano-particles, Gold nanoparticles, Conducting polymers, Electrochemical biosensor, Electrode.

Graphical Abstract

[1]
Pradeep, T. Noble metal nanoparticles for water purification: a critical review. Thin Solid Films, 2009, 517(24), 6441-6778.
[http://dx.doi.org/10.1016/j.tsf.2009.03.195]
[2]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[3]
Raksha, K.R.; Ananda, S.; Madegowda, N.M. Study of kinetics of photocatalysis, bacterial inactivation and• OH scavenging activity of electrochemically synthesized Se4+ doped ZnS nanoparticles. J. Mol. Catal. Chem., 2015, 396, 319-327.
[http://dx.doi.org/10.1016/j.molcata.2014.10.005]
[4]
Ghanipour, M.; Dorranian, D. Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater., 2013.
[http://dx.doi.org/10.1155/2013/897043]
[5]
Mahendia, S.; Tomar, A.K.; Kumar, S. Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J. Alloys Compd., 2010, 508(2), 406-411.
[http://dx.doi.org/10.1016/j.jallcom.2010.08.075]
[6]
Clemenson, S.; Léonard, D.; Sage, D.; David, L.; Espuche, E. Metal nanocomposite films prepared in situ from PVA and silver nitrate. Study of the nanostructuration process and morphology as a function of the in situ routes. J. Polym. Sci., 2008, 46(6), 2062-2071.
[http://dx.doi.org/10.1002/pola.22541]
[7]
Narwal, V.; Kumar, P.; Joon, P.; Pundir, C.S. Fabrication of an amperometric sarcosine biosensor based on sarcosine oxidase/chitosan/CuNPs/c-MWCNT/Au electrode for detection of prostate cancer. Enzyme Microb. Technol., 2018, 113, 44-51.
[http://dx.doi.org/10.1016/j.enzmictec.2018.02.010] [PMID: 29602386]
[8]
Mirela, D. Metallic Nanoparticles., PhD Thesis,University Of Nova Gorica. 2009.
[9]
Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 2016, 9, 49-67.
[http://dx.doi.org/10.2147/NSA.S99986] [PMID: 27578966]
[10]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[11]
Cuenya, B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films, 2010, 518(12), 3127-3150.
[http://dx.doi.org/10.1016/j.tsf.2010.01.018]
[12]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[13]
Wu, S.; Sun, A.; Zhai, F.; Wang, J.; Xu, W.; Zhang, Q.; Volinsky, A.A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett., 2012, 65(12), 1882-1884.
[http://dx.doi.org/10.1016/j.matlet.2011.03.065]
[14]
Wang, T.X.; Lou, T.J. Solvothermal synthesis and photoluminescence properties of ZnO nanorods and nanorod assemblies from ZnO2 nanoparticles. Mater. Lett., 2008, 62, 2329-2331.
[http://dx.doi.org/10.1016/j.matlet.2007.11.083]
[15]
Ding, Y.; Wang, Z.L. Structures of planar defects in ZnO nanobelts and nanowires. Micron, 2009, 40(3), 335-342.
[http://dx.doi.org/10.1016/j.micron.2008.10.008] [PMID: 19081262]
[16]
Kakiuchi, K.; Hosono, E.; Kimura, T.; Imai, H.; Fujihara, S. Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions. J. Sol-Gel Sci. Technol., 2006, 39, 63-72.
[http://dx.doi.org/10.1007/s10971-006-6321-6]
[17]
Wang, Z.L. Nanostructures of zinc oxide. Mater. Today, 2004, 7, 26-33.
[http://dx.doi.org/10.1016/S1369-7021(04)00286-X]
[18]
Siddiqi, K.S.; Ur Rahman, A.; Tajuddin, ; Husen, A. ur Rahman, A.; & Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[19]
Deb, S.; Patra, H.K.; Lahiri, P.; Dasgupta, A.K.; Chakrabarti, K.; Chaudhuri, U. Multistability in platelets and their response to gold nanoparticles. Nanomedicine (Lond.), 2011, 7(4), 376-384.
[http://dx.doi.org/10.1016/j.nano.2011.01.007] [PMID: 21310267]
[20]
Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[21]
Guo, Q.; Guo, Q.; Yuan, J.; Zeng, J. Biosynthesis of gold nanoparticles using a kind of flavonol. Dihydromyricetin. Colloids Surf., 2014, 441, 127-132.
[http://dx.doi.org/10.1016/j.colsurfa.2013.08.067]
[22]
Lan, M.Y.; Hsu, Y.B.; Hsu, C.H.; Ho, C.Y.; Lin, J.C.; Lee, S.W. Induction of apoptosis by high-dose gold nanoparticles in nasopharyngeal carcinoma cells. Auris Nasus Larynx, 2013, 40(6), 563-568.
[http://dx.doi.org/10.1016/j.anl.2013.04.011] [PMID: 23722198]
[23]
Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev., 2011, 40(3), 1647-1671.
[http://dx.doi.org/10.1039/C0CS00018C] [PMID: 21082078]
[24]
Murphy, C.J.; Thompson, L.B.; Alkilany, A.M.; Sisco, P.N.; Boulos, S.P.; Sivapalan, S.T.; Huang, J. The many faces of gold nanorods. J. Phys. Chem. Lett., 2010, 1(19), 2867-2875.
[http://dx.doi.org/10.1021/jz100992x]
[25]
Hrelescu, C.; Sau, T.K.; Rogach, A.L.; Jäckel, F.; Laurent, G.; Douillard, L.; Charra, F. Selective excitation of individual plasmonic hotspots at the tips of single gold nanostars. Nano Lett., 2011, 11(2), 402-407.
[http://dx.doi.org/10.1021/nl103007m] [PMID: 21244014]
[26]
Hu, M.; Chen, J.; Li, Z.Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev., 2006, 35(11), 1084-1094.
[http://dx.doi.org/10.1039/b517615h] [PMID: 17057837]
[27]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[28]
Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci., 2016, 17(9), 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[29]
Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int. J. Nanomedicine, 2015, 10, 4203-4222.
[http://dx.doi.org/10.2147/IJN.S83953] [PMID: 26170659]
[30]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[31]
Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Renu, P.; Ajaykumar, P.V.; Alam, M.; Kumar, R. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett., 2001, 1, 515-519.
[http://dx.doi.org/10.1021/nl0155274]
[32]
Korbekandi, H.; Iravani, S. Silver nanoparticles. In: The delivery of nanoparticles; IntechOpen: London, 2012.
[http://dx.doi.org/10.5772/34157]
[33]
Senapati, S. Biosynthesis and immobilization of nanoparticles and their applications., PhD Thesis, University Of Pune: Pune. 2005.
[34]
Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol., 2001, 19(1), 15-20.
[http://dx.doi.org/10.1016/S0167-7799(00)01514-6] [PMID: 11146098]
[35]
Chandra, S.; Kumar, A.; Tomar, P.K. Synthesis and characterization of copper nanoparticles by reducing agent. J. Saudi Chem. Soc., 2014, 18(2), 149-153.
[http://dx.doi.org/10.1016/j.jscs.2011.06.009]
[36]
Sołoducho, J.; Cabaj, J. Conducting polymers in sensor design; InTech: Rijeka, 2016, pp. 27-48.
[37]
Wegner, G. Polymers with metal‐like conductivity—a review of their synthesis, structure and properties. Angewandte Chemie., 1981, 20(4), 361-381.
[38]
Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Applications of conducting polymer composites to electrochemical sensors: a review. Appl. Mater. Today, 2017, 9, 419-433.
[http://dx.doi.org/10.1016/j.apmt.2017.09.001]
[39]
Uddin, A.J. Coatings for technical textile yarns In: ; Technical Textile Yarns; Woodhead Publishing: Sawston, 2010; pp. 140-184.
[http://dx.doi.org/10.1533/9781845699475.1.140]
[40]
Stejskal, J.; Trchová, M.; Bober, P.; Humpolíček, P.; Kašpárková, V.; Sapurina, I.; Varga, M. Conducting polymers: polyaniline. In: Encyclopedia of polymer science and technology; Wiley-VCH: Weinheim, 2002; pp. 1-44.
[41]
Berneth, H. Methine dyes and pigments. In: Ullmann’s encyclopedia of industrial chemistry; Wiley-VCH: Weinheim, 2001.
[42]
MacDiarmid, A.G. “Synthetic metals”: A novel role for organic polymers. Angew. Chem., 2001, 40(14), 2581-2590.
[http://dx.doi.org/10.1002/1521-3773(20010716)40:14<2581:AID-ANIE2581>3.0.CO;2-2]
[43]
Tat’yana, V.V.; Efimov, O.N. Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev., 1997, 66(5), 443.
[http://dx.doi.org/10.1070/RC1997v066n05ABEH000261]
[44]
Ateh, D.D.; Navsaria, H.A.; Vadgama, P. Polypyrrole-based conducting polymers and interactions with biological tissues. J. R. Soc. Interface, 2006, 3(11), 741-752.
[http://dx.doi.org/10.1098/rsif.2006.0141] [PMID: 17015302]
[45]
Yussuf, A.; Al-Saleh, M.; Al-Enezi, S.; Abraham, G. Synthesis and characterization of conductive polypyrrole: the influence of the oxidants and monomer on the electrical, thermal, and morphological properties. Int. J. Polym. Sci., 2018.
[http://dx.doi.org/10.1155/2018/4191747]
[46]
Baksi, S.; Biswas, S. Nanocomposites–an overview. Scitech J., 2014, 1(5), 22-30.
[47]
Darekar, A.; Bele, M.; Wagh, M.; Nawale, V.; Saudagar, R. A review on Nanocomposite Drug Delivery. J. Drug Deliv. Sci. Technol., 2019, 9(2-s), 529-536.
[48]
Mittal, V. Polymer layered silicate nanocomposites: a review. Materials (Basel), 2009, 2, 992-1057.
[http://dx.doi.org/10.3390/ma2030992]
[49]
Di, Y.; Iannace, S.; Maio, E.D.; Nicolais, L. Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J. Polym. Sci., B, Polym. Phys., 2003, 41, 670-678.
[http://dx.doi.org/10.1002/polb.10420]
[50]
Zapata, P.; Quijada, R.; Retuer, J.; Moncada, E. Preparation of nanocomposites by in situ polimerization. J. Chil. Chem. Soc., 2008, 53(1), 1359-1360.
[http://dx.doi.org/10.4067/S0717-97072008000100006]
[51]
Okpala, C.C. Nanocomposites -An Overview. Int. J Engg. Res. Dev., 2013, 8(11), 17-23.
[52]
Dagar, K.; Pundir, C.S. An improved amperometric L-lactate biosensor based on covalent immobilization of microbial lactate oxidase onto carboxylated multiwalled carbon nanotubes/copper nanoparticles/polyaniline modified pencil graphite electrode. Enzyme Microb. Technol., 2017, 96, 177-186.
[http://dx.doi.org/10.1016/j.enzmictec.2016.10.014] [PMID: 27871380]
[53]
Batra, B.; Lata, S.; Pundir, C.S. Construction of an improved acrylamide biosensor based on hemoglobin immobilized onto cMWCNT/Fe3O4NPs/CHIT composite film. Bioprocess Biosys. Engg., 2013, 36, 1591-1599.
[54]
Chawla, S.; Pundir, C.S. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles-polypyrrole film. Anal. Biochem., 2012, 430(2), 156-162.
[http://dx.doi.org/10.1016/j.ab.2012.08.002] [PMID: 22906687]
[55]
Devi, R.; Pundir, C.S. Construction and application of an amperometric uric acid biosensor based on covalent immobilization of uricase on iron oxide nanoparticles/chitosan-g-polyaniline composite film electrodeposited on Pt electrode. Sens. Actuat. Biol. Chem., 2013, 193, 608-615.
[56]
Chauhan, N.; Singh, A.; Narang, J.; Dahiya, S.; Pundir, C.S. Development of amperometric lysine biosensor based on Au-NPs/c-MWCNT/conducting polymer modified gold electrode. Analyst (Lond.), 2012, 137, 5113-5122.
[http://dx.doi.org/10.1039/c2an35629e] [PMID: 22986735]
[57]
Narang, J.; Chauhan, N.; Rani, P.; Pundir, C.S. Construction of an amperometric TG biosensor based on AuPPy nanocomposite and poly (indole-5-carboxylic acid) modified Au electrode. Bioprocess Biosyst. Eng., 2013, 36(4), 425-432.
[http://dx.doi.org/10.1007/s00449-012-0799-9] [PMID: 22903594]
[58]
Devi, R.; Narang, J.; Yadav, S.; Pundir, C.S. Amperometric determination of xanthine in tea, coffee and fish with pencil graphite rod bound xanthine oxidase. J. Anal. Chem., 2012, 67(3), 273-277.
[http://dx.doi.org/10.1134/S1061934812030045]
[59]
Suman, Lata.; Batra, B.; Karwasra, N.; Pundir, C.S. An amperometric H2O2 biosensor based on Cytochrome c immobilized onto nickel oxide nano particles/carboxylated multiwalled carbon nano tubes/polyaniline modified gold electrode. Process Biochem., 2012, 47(6), 992-998.
[http://dx.doi.org/10.1016/j.procbio.2012.03.018]
[60]
Rawal, R.; Chawla, S. Devende, Pundir C.S. An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract. Enz. Microb. Technol., 2012, 51, 179-185.
[61]
Batra, B.; Lata, S.; Rani, S.; Pundir, C.S. Fabrication of a cytochrome c biosensor based on cytochrome oxidase/NiO-NPs/cMWCNT/PANI modified Au electrode. J. Biomed. Nanotechnol., 2013, 9(3), 409-416.
[http://dx.doi.org/10.1166/jbn.2013.1549] [PMID: 23620996]
[62]
Yadav, S.; Devi, R.; Bhar, P.; Singhla, S.; Pundir, C.S. Immobilization of creatininase, creatinase and sarcosine oxidase on iron oxide nanoparticles/chitosan-g-polyaniline modified Pt electrode for detection of creatinine. Enzyme Microb. Technol., 2012, 50(4-5), 247-254.
[http://dx.doi.org/10.1016/j.enzmictec.2012.01.008] [PMID: 22418265]
[63]
Chawla, S.; Rawal, R.; Shrama, S.; Pundir, C.S. An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/caroboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juice. Biochem. Eng. J., 2012, 68, 76-84.
[http://dx.doi.org/10.1016/j.bej.2012.07.008]
[64]
Narang, J.; Chauhan, N.; Jain, P.; Pundir, C.S. Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int. J. Biol. Macromol., 2012, 50(3), 672-678.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.01.023] [PMID: 22300999]
[65]
Batra, B.; Lata, S.; Sharma, M.; Pundir, C.S. An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/polyaniline hybrid film. Anal. Biochem., 2013, 433(2), 210-217.
[http://dx.doi.org/10.1016/j.ab.2012.10.026] [PMID: 23103399]
[66]
Narang, J.; Chauhan, N.; Pundir, C.S. Construction of triglyceride biosensor based on nickel oxide-chitosan/zinc oxide/zinc hexacyanoferrate film. Int. J. Biol. Macromol., 2013, 60, 45-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.05.007] [PMID: 23707748]
[67]
Batra, B.; Pundir, C.S. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto cMWCNT/AuNPs/CHIT composite film modified Au electrode. Biosens. Bioelectron., 2013, 47, 496-501.
[http://dx.doi.org/10.1016/j.bios.2013.03.063] [PMID: 23628843]
[68]
Batra, B.; Lata, S.; Sunny, ; Rana, J.S.; Pundir, C.S. Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles/chitosan hybrid film. Biosens. Bioelectron., 2013, 44, 64-69.
[http://dx.doi.org/10.1016/j.bios.2012.12.034] [PMID: 23395724]
[69]
Lata, S.; Batra, B.; Singla, N.; Pundir, C.S. Construction of amperometric L-amino acids biosensor based on L-amino acid oxidase immobilized onto ZnONPs/cMWCNT/PANI/AuE. Sens. Actuat. Biol. Chem., 2013, 188, 1080-1088.
[70]
Lata, S.; Batra, B.; Pundir, C.S. Construction of an amperometric D-amino acid biosensor based on DAOO/c-MWCNT/CuNP/PANI modified Au electrode. Anal. Biochem., 2013, 437, 1-9.
[http://dx.doi.org/10.1016/j.ab.2013.01.030] [PMID: 23399389]
[71]
Chauhan, N.; Pundir, C.S. Amperometric determination of acetylcholine-A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode. Biosens. Bioelectron., 2014, 61, 1-8.
[http://dx.doi.org/10.1016/j.bios.2014.04.048] [PMID: 24836212]
[72]
Batra, B.; Pundir, C.S. Construction and application of β-(3-N-Oxalyl-L-2,3- diaminopropanoic acid) biosensor based on carboxylated multiwalled carbon nanotubes/goldnanoparticles/ chitosan/Au electrode. RSC Advances, 2014, 4, 42723-42731.
[http://dx.doi.org/10.1039/C4RA05977H]
[73]
Batra, B.; Yadav, M. Pundir C.S.L-Glutamate biosensor based on L-glutamate oxidase immobilized onto ZnOnanorods/polypyrrole modified pencil graphite electrode. Biochem. Eng. J., 2015, 105, 428-436.
[http://dx.doi.org/10.1016/j.bej.2015.10.012]
[74]
Chauhan, N.; Chawla, S.; Pundir, C.S.; Jain, U. An electrochemical sensor for detection of neurotransmitter-acetylcholine using metal nanoparticles, 2D material and conducting polymer modified electrode. Biosens. Bioelectron., 2017, 89(Pt 1), 377-383.
[http://dx.doi.org/10.1016/j.bios.2016.06.047] [PMID: 27342368]
[75]
Zhuang, X.; Tian, C.; Luan, F.; Wu, X.; Chen, L. One-step electrochemical fabrication of a nickel oxide nanoparticle/polyaniline nanowire/graphene oxide hybrid on a glassy carbon electrode for use as a non-enzymatic glucose biosensor. RSC Advances, 2016, 6(95), 92541-92546.
[http://dx.doi.org/10.1039/C6RA14970G]
[76]
Kariuki, V.M.; Fasih-Ahmad, S.A.; Osonga, F.J.; Sadik, O.A. An electrochemical sensor for nitrobenzene using π-conjugated polymer-embedded nanosilver. Analyst (Lond.), 2016, 141(7), 2259-2269.
[http://dx.doi.org/10.1039/C6AN00029K] [PMID: 26936406]
[77]
Karim-Nezhad, G.; Khorablou, Z.; Zamani, M.; Seyed Dorraji, P.; Alamgholiloo, M. Voltammetric sensor for tartrazine determination in soft drinks using poly (p-aminobenzenesulfonic acid)/zinc oxide nanoparticles in carbon paste electrode. Yao Wu Shi Pin Fen Xi, 2017, 25(2), 293-301.
[http://dx.doi.org/10.1016/j.jfda.2016.10.002] [PMID: 28911670]
[78]
Tığ, G.A. Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on Ag nanoparticles and poly (l-arginine)-graphene oxide composite. J. Electroanal. Chem. (Lausanne Switz.), 2017, 807, 19-28.
[http://dx.doi.org/10.1016/j.jelechem.2017.11.008]
[79]
Panacek, A.; Kvítek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizúrova, N.; Sharma, V.K.; Nevecna, T.; Zboril, R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem., 2006, B, 110, 16248-16253.
[80]
Kvitek, L.; Panacek, A.; Soukupova, J.; Kolar, M.; Vecerova, R.; Prucek, R.; Holecova, M.; Zboril, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles. J. Phys. Chem. C, 2008, 112, 5825-5834.
[http://dx.doi.org/10.1021/jp711616v]
[81]
Kang, Y.O.; Choi, S.H.; Gopalan, A.; Lee, K.P.; Kang, H.D.; Song, Y.S. Tuning of morphplogy of Ag nanoparticles in the Ag/polyaniline nanocomposites prepared by γ-ray irradiation. J. Non-Crystal. Solid., 2005, 352, 463-468.
[82]
Owens, D.E., III; Eby, J.K.; Jian, Y.; Peppas, N.A. Temperatureresponsive polymer-gold nanocomposites as intelligent therapeutic systems. J. Biomed. Matr. Res. A pp, 2007, 692-695.
[83]
Zhai, D.; Liu, B.; Shi, Y.; Pan, L.; Wang, Y.; Li, W.; Zhang, R.; Yu, G. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano, 2013, 7(4), 3540-3546.
[http://dx.doi.org/10.1021/nn400482d] [PMID: 23472636]
[84]
Boopathi, M.; Won, M.S.; Kim, Y.H.; Shin, S.C.; Shim, Y.B. Electrocatalytic reduction of molecular oxygen using a poly(terthiophenes carboxylic acid) appended by 1,5-diaminonaphthalene copper complex. J. Electrochem. Soc., 2002, 149, E265-E271.
[http://dx.doi.org/10.1149/1.1482769]
[85]
Park, H.; Kwon, T.G.; Park, D.S.; Shim, Y.B. Electrocatalytic reduction of molecular oxygen at poly(1,8-diaminonaphthalene) and poly(Co(II)-(1,8-diaminonaphthalene)) coated electrodes. Bull. Korean Chem. Soc., 2006, 27, 1763.
[http://dx.doi.org/10.5012/bkcs.2006.27.11.1763]
[86]
Shim, Y.B.; Park, J.H. Humidity sensor using chemically synthesized poly(1,5-diaminonaphthalene) doped with carbon. J. Electrochem. Soc., 2000, 147, 381-385.
[http://dx.doi.org/10.1149/1.1393204]
[87]
Mir, T.A.; Akhtar, M.H.; Gurudatt, N.G.; Kim, J.I.; Choi, C.S.; Shim, Y.B. An amperometric nanobiosensor for the selective detection of K-induced dopamine released from living cells. Biosens. Bioelectron., 2015, 68, 421-428.
[http://dx.doi.org/10.1016/j.bios.2015.01.024] [PMID: 25617752]
[88]
Noh, H.B.; Kumar, P.; Biswas, T.K.; Park, D.S.; Shim, Y.B. Improved performance of an biosensor with polydiaminonaphthalene on electrochemically deposited Au Nanoparticles. Electroanalysis, 2010, 22, 632-638.
[http://dx.doi.org/10.1002/elan.200900484]
[89]
Hathoot, A.A.; Yousef, U.S.; Shatla, A.S.; Abdel-Azzem, M. Voltammetric simultaneous determination of glucose, ascorbic acid and dopamine on glassy carbon electrode modified byNiNPs@poly 1,5-diaminonaphthalene. Electrochim. Acta, 2012, 85, 531-537.
[http://dx.doi.org/10.1016/j.electacta.2012.08.063]
[90]
German, N.; Ramanavicius, A.; Ramanaviviene, A. Amperometric glucose biosensor based on electrochemically deposited gold nanoparticles covered by polypyrrole. Electroanalysis, 2017, 29, 1267-1277.
[http://dx.doi.org/10.1002/elan.201600680]
[91]
Tiwari, I.; Gupta, M.; Pandey, C.M.; Mishra, V. Gold nanoparticle decorated graphene sheet-polypyrrole based nanocomposite: its synthesis, characterization and genosensing application. Dalton Trans., 2015, 44(35), 15557-15566.
[http://dx.doi.org/10.1039/C5DT01193K] [PMID: 26242385]
[92]
Devi, R.; Thakur, M.; Pundir, C.S. Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles-polypyrrole composite film. Biosens. Bioelectron., 2011, 26(8), 3420-3426.
[http://dx.doi.org/10.1016/j.bios.2011.01.014] [PMID: 21324666]
[93]
Fabregat, G.; Armelin, E.; Alemán, C. Selective detection of dopamine combining multilayers of conducting polymers with gold nanoparticles. J. Phys. Chem. B, 2014, 118(17), 4669-4682.
[http://dx.doi.org/10.1021/jp412613g] [PMID: 24750032]
[94]
Liu, S.; Ma, Y.; Zhang, R.; Luo, X. Three-dimensional nanoporous conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) decorated with copper nanoparticles: electrochemical preparation and enhanced nonenzymatic glucose sensing. ChemElectroChem, 2016, 3, 1799-1804.
[http://dx.doi.org/10.1002/celc.201600439]
[95]
Kim, D.M.; Moon, J.M.; Lee, W.C.; Yoon, J.H.; Choi, C.S.; Shim, Y.B. A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer. Biosens. Bioelectron., 2017, 91, 276-283.
[http://dx.doi.org/10.1016/j.bios.2016.12.046] [PMID: 28024285]
[96]
Zhang, W. Poly(indole-5-carboxylic acid)-functionalized ZnO nanocomposite for the electrochemical DNA hybridization detection. J. Solid State Electrochem., 2016, 20, 499-506.
[http://dx.doi.org/10.1007/s10008-015-3071-9]
[97]
Kim, M.Y.; Naveen, M.H.; Gurudatt, N.G.; Shim, Y.B. Detection of nitric oxide from living cells using polymeric zinc organic framework-derived zinc oxide composite with conducting polymer. Small, 2017, 13(26) 1700502
[http://dx.doi.org/10.1002/smll.201700502] [PMID: 28544611]
[98]
Chauhan, N.; Narang, J.; Jain, U. Amperometric acetylcholinesterase biosensor for pesticides monitoring utilizing iron oxide nanoparticles and poly(indole-5-carboxylic acid). J. Exp. Nanosci., 2016, 11, 111-122.
[http://dx.doi.org/10.1080/17458080.2015.1030712]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy