Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Dietary Baicalin Zinc Supplementation Alleviates Oxidative Stress and Enhances Nutrition Absorption in Deoxynivalenol Challenged Pigs

Author(s): Andong Zha, Zhijuan Cui, Ming Qi, Simeng Liao, Lixin Chen, Peng Liao* and Bie Tan*

Volume 21, Issue 8, 2020

Page: [614 - 625] Pages: 12

DOI: 10.2174/1389200221666200302124102

Price: $65

Abstract

Background: Deoxynivalenol contamination is increasing worldwide, presenting great challenges to food security and causing great economic losses in the livestock industry.

Objective: This study was conducted to determine the protective effect of baicalin zinc as a dietary supplement on pigs fed with a deoxynivalenol contaminated diet.

Methods: A total of 40 weaned pigs (21 d of age; 6.13 ± 0.42 kg average BW) were randomly assigned (10 pigs/group) to 4 dietary treatments: basal diet (Con group), basal diet + 4 mg/kg DON (DON group), basal diet + 5 g/kg BZN (BZN group), and basal diet + 5 g/kg BZN + 4 mg/kg DON (DBZN group) for a 14-d period. Seven randomly-selected pigs from each treatment were killed for blood and tissue sampling.

Results: The results showed that piglets challenged with DON exhibited significantly reduced levels of ADG, ADFI, and F/G (p < 0.05). BZN supplemented diets significantly suppressed the protein expression of p-Nrf2, p-NF-kB, and HO-1 in the jejunum of DON challenged piglets (p < 0.05). In liver, DON markedly increased the mRNA expression of P70S6K and HSP70 in piglets fed the basal diet, but significantly reduced that of HO-1, NQO-1, NF-kB, AMPKα2 and HSP70 in piglets fed the BZN supplemented diet (p < 0.05). Dietary supplementation with BZN markedly increased the T-AOC level of serum in weaned piglets (p < 0.05). In jejunum, dietary supplementation with BZN activated the mRNA expression of ZIP4 in piglets (p < 0.05), BZN supplementation significantly suppressed the activity of sucrose and increased the protein concentration in chyme (p < 0.05).

Conclusion: BZN can play a protective role by reducing oxidative stress and enhancing nutrient absorption in pigs fed DON-contaminated diets.

Keywords: Piglets, baicalin zinc, deoxynivalenol, growth performance, antioxidant capacity, intestinal morphology, nutrition absorption.

Graphical Abstract

[1]
Gareis, M.; Wolff, J. Relevance of mycotoxin contaminated feed for farm animals and carryover of mycotoxins to food of animal origin. Mycoses, 2000, 43(Suppl. 1), 79-83.
[PMID: 11098632 ]
[2]
Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev., 2005, 8(1), 39-69.
[http://dx.doi.org/10.1080/10937400590889458] [PMID: 15762554]
[3]
Pinton, P.; Oswald, I.P. Effect of deoxynivalenol and other type B trichothecenes on the intestine: a review. Toxins (Basel), 2014, 6(5), 1615-1643.
[http://dx.doi.org/10.3390/toxins6051615] [PMID: 24859243]
[4]
Liao, P.; Liao, M.; Li, L.; Tan, B.; Yin, Y. Effect of deoxynivalenol on apoptosis, barrier function, and expression levels of genes involved in nutrient transport, mitochondrial biogenesis and function in IPEC-J2 cells. Toxicol. Res. (Camb.), 2017, 6(6), 866-877.
[http://dx.doi.org/10.1039/C7TX00202E] [PMID: 30090549]
[5]
Pestka, J.J. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol., 2010, 84(9), 663-679.
[http://dx.doi.org/10.1007/s00204-010-0579-8] [PMID: 20798930]
[6]
Ren, Z.; Yang, Z.; Li, Y.; Liu, X.; Cai, C.; Zhang, R.; Yang, H. Effect of HBZn in repairing BNB in mice by alleviating anti-oxidative stress and activating hematogenous factors in optic nerve injury. Zhongguo Shiyan Fangjixue Zazhi, 2017, 23(21), 124-129.
[7]
Chen, H.; Xu, Y.; Wang, J.; Zhao, W.; Ruan, H. Baicalin ameliorates isoproterenol-induced acute myocardial infarction through iNOS, inflammation and oxidative stress in rat. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10139-10147.
[PMID: 26617721]
[8]
Dou, J.; Wang, Z.; Ma, L.; Peng, B.; Mao, K.; Li, C.; Su, M.; Zhou, C.; Peng, G. Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget, 2018, 9(28), 20089-20102.
[http://dx.doi.org/10.18632/oncotarget.24015] [PMID: 29732005]
[9]
Li, X.; Zou, K.; Gou, J.; Du, Q.; Li, D.; He, X.; Li, Z. Effect of baicalin-copper on the induction of apoptosis in human hepatoblastoma cancer HepG2 cells. Med. Oncol., 2015, 32(3), 72.
[http://dx.doi.org/10.1007/s12032-015-0527-9] [PMID: 25694047]
[10]
Wu, L.; Wang, W.; Yao, K.; Zhou, T.; Yin, J.; Li, T.; Yang, L.; He, L.; Yang, X.; Zhang, H.; Wang, Q.; Huang, R.; Yin, Y. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One, 2013, 8(7)e69502
[http://dx.doi.org/10.1371/journal.pone.0069502] [PMID: 23922725]
[11]
Wu, M.; Xiao, H.; Ren, W.; Yin, J.; Tan, B.; Liu, G.; Li, L.; Nyachoti, C.M.; Xiong, X.; Wu, G. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol. PLoS One, 2014, 9(7)e100591
[http://dx.doi.org/10.1371/journal.pone.0100591] [PMID: 24984001]
[12]
Tong-Zhou, L.I.; Hou, W.G.; Zang, S.M.; Xue, L.F. Study of baicalin on immune function in weaning piglet. Zhongguo Xumu Zazhi, 2008.
[14]
Yin, Y.L.; Baidoo, S.K.; Schulze, H.; Simmins, P.H. Effects of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with beta-glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs. Livest. Prod. Sci., 2001, 71(2/3), 97-107.
[http://dx.doi.org/10.1016/S0301-6226(01)00214-7]
[15]
Wang, J.; Zeng, L.; Tan, B.; Li, G.; Huang, B.; Xiong, X.; Li, F.; Kong, X.; Liu, G.; Yin, Y. Developmental changes in intercellular junctions and Kv channels in the intestine of piglets during the suckling and post-weaning periods. J. Anim. Sci. Biotechnol., 2016, 7(4), 4.
[http://dx.doi.org/10.1186/s40104-016-0063-2] [PMID: 26819706]
[16]
Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; O’Doherty, J.V. Effect of dietary laminarin and fucoidan on selected microbiota, intestinal morphology and immune status of the newly weaned pig. Br. J. Nutr., 2013, 110(9), 1630-1638.
[http://dx.doi.org/10.1017/S0007114513000834] [PMID: 23531383]
[17]
Pei, X.; Xiao, Z.; Liu, L.; Wang, G.; Tao, W.; Wang, M.; Zou, J.; Leng, D. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. J. Sci. Food Agric., 2019, 99(3), 1366-1374.
[http://dx.doi.org/10.1002/jsfa.9312] [PMID: 30094852]
[18]
Wu, G. Amino acids: metabolism, functions, and nutrition. Amino Acids, 2009, 37(1), 1-17.
[http://dx.doi.org/10.1007/s00726-009-0269-0] [PMID: 19301095]
[19]
Luo, J.J.; Zhang, Y.; Sun, H.; Wei, J.T.; Khalil, M.M.; Wang, Y.W.; Dai, J.F.; Zhang, N.Y.; Qi, D.S.; Sun, L.H. The response of glandular gastric transcriptome to T-2 toxin in chicks. Food Chem. Toxicol., 2019.132110658
[http://dx.doi.org/10.1016/j.fct.2019.110658] [PMID: 31299295]
[20]
Gao, X.; Xiao, Z.H.; Liu, M.; Zhang, N.Y.; Khalil, M.M.; Gu, C.Q.; Qi, D.S.; Sun, L.H. Dietary silymarin supplementation alleviates zearalenone-induced hepatotoxicity and reproductive toxicity in rats. J. Nutr., 2018, 148(8), 1209-1216.
[http://dx.doi.org/10.1093/jn/nxy114] [PMID: 30137478]
[21]
Sun, L.H.; Zhang, N.Y.; Zhu, M.K.; Zhao, L.; Zhou, J.C.; Qi, D.S. Prevention of aflatoxin B1 hepatoxicity by dietary selenium is associated with inhibition of cytochrome P450 isozymes and up-regulation of 6 selenoprotein genes in chick liver. J. Nutr., 2015, 146(4), 655-661.
[http://dx.doi.org/10.3945/jn.115.224626] [PMID: 26962192]
[22]
Duan, Y.; Zheng, C.; Zhong, Y.; Song, B.; Yan, Z.; Kong, X.; Deng, J.; Li, F.; Yin, Y. Beta-hydroxy beta-methyl butyrate decreases muscle protein degradation via increased Akt/FoxO3a signaling and mitochondrial biogenesis in weanling piglets after lipopolysaccharide challenge. Food Funct., 2019, 10(8), 5152-5165.
[http://dx.doi.org/10.1039/C9FO00769E] [PMID: 31373594]
[23]
Bullerman, L.B.; Bianchini, A. Stability of mycotoxins during food processing. Int. J. Food Microbiol., 2007, 119(1-2), 140-146.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.07.035] [PMID: 17804104]
[24]
Eriksen, G.S.; Pettersson, H. Toxicological evaluation of trichothecenes in animal feed. Anim. Feed Sci. Technol., 2004, 114(1), 205-239.
[http://dx.doi.org/10.1016/j.anifeedsci.2003.08.008]
[25]
Bergsjø, B.; Matre, T.; Nafstad, I. Effects of diets with graded levels of deoxynivalenol on performance in growing pigs. Zentralbl. Veterinärmed. A, 1992, 39(10), 752-758.
[http://dx.doi.org/10.1111/j.1439-0442.1992.tb00240.x] [PMID: 1492508]
[26]
Goyarts, T.; Dänicke, S.; Rothkötter, H.J.; Spilke, J.; Tiemann, U.; Schollenberger, M. On the effects of a chronic deoxynivalenol intoxication on performance, haematological and serum parameters of pigs when diets are offered either for ad libitum consumption or fed restrictively. J. Vet. Med. A Physiol. Pathol. Clin. Med., 2005, 52(6), 305-314.
[http://dx.doi.org/10.1111/j.1439-0442.2005.00734.x] [PMID: 16050913]
[27]
Rotter, B.A.; Thompson, B.K.; Lessard, M. Effects of deoxynivalenol-contaminated diet on performance and blood parameters in growing swine. Can. J. Anim. Sci., 1995, 75(3), 297-302.
[http://dx.doi.org/10.4141/cjas95-046]
[28]
Chattopadhyay, P.; Pandey, A.; Goyary, D.; Chaurasia, A.; Singh, L.; Veer, V. Technetium-99m-labeled deoxynivalenol from Fusarium mycotoxin alters organ toxicity in BALB/c mice by oral and intravenous route. J. Venom. Anim. Toxins Incl. Trop. Dis., 2012, 18(3), 258-263.
[http://dx.doi.org/10.1590/S1678-91992012000300002]
[29]
Park, S.W.; Lee, C.H.; Kim, Y.S.; Kang, S.S.; Jeon, S.J.; Son, K.H.; Lee, S.M. Protective effect of baicalin against carbon tetrachloride-induced acute hepatic injury in mice. J. Pharmacol. Sci., 2008, 106(1), 136-143.
[http://dx.doi.org/10.1254/jphs.FP0071392] [PMID: 18187930]
[30]
Peng, X-D.; Dai, L-L.; Huang, C-Q.; He, C-M.; Chen, L-J. Correlation between anti-fibrotic effect of baicalin and serum cytokines in rat hepatic fibrosis. World J. Gastroenterol., 2009, 15(37), 4720-4725.
[http://dx.doi.org/10.3748/wjg.15.4720] [PMID: 19787836]
[31]
Li, D.; Ye, Y.; Lin, S.; Deng, L.; Fan, X.; Zhang, Y.; Deng, X.; Li, Y.; Yan, H.; Ma, Y. Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: cell-cycle arrest, oxidative stress, and apoptosis. Environ. Toxicol. Pharmacol., 2014, 37(1), 141-149.
[http://dx.doi.org/10.1016/j.etap.2013.11.015] [PMID: 24322622]
[32]
Ng, T.B.; Liu, F.; Wang, Z.T. Antioxidative activity of natural products from plants. Life Sci., 2000, 66(8), 709-723.
[http://dx.doi.org/10.1016/S0024-3205(99)00642-6] [PMID: 10680579]
[33]
Shi, L.; Hao, Z.; Zhang, S.; Wei, M.; Lu, B.; Wang, Z.; Ji, L. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: the involvement of ERK1/2 and PKC. Biochem. Pharmacol., 2018, 150(12), 9-23.
[http://dx.doi.org/10.1016/j.bcp.2018.01.026] [PMID: 29338970]
[34]
Shieh, D.E.; Liu, L.T.; Lin, C.C. Antioxidant and free radical scavenging effects of baicalein, baicalin and wogonin. Anticancer Res., 2000, 20(5A), 2861-2865.
[PMID: 11062694]
[35]
Waisundara, V.Y.; Siu, S.Y.; Hsu, A.; Huang, D.; Tan, B.K. Baicalin upregulates the genetic expression of antioxidant enzymes in Type-2 diabetic Goto-Kakizaki rats. Life Sci., 2011, 88(23-24), 1016-1025.
[http://dx.doi.org/10.1016/j.lfs.2011.03.009] [PMID: 21439975]
[36]
Rotter, B.A.; Prelusky, D.B.; Pestka, J.J. Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health, 1996, 48(1), 1-34.
[http://dx.doi.org/10.1080/009841096161447] [PMID: 8637056]
[37]
Pestka, J.J. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(9), 1128-1140.
[http://dx.doi.org/10.1080/02652030802056626] [PMID: 19238623]
[38]
Xiao, H.; Tan, B.E.; Wu, M.M.; Yin, Y.L.; Li, T.J.; Yuan, D.X.; Li, L. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function. J. Anim. Sci., 2013, 91(10), 4750-4756.
[http://dx.doi.org/10.2527/jas.2013-6427] [PMID: 23965392]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy