Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Developments on the Synthesis of Biologically Significant bis/tris(indolyl)methanes under Various Reaction Conditions: A Review

Author(s): Arvind Singh, Gurpreet Kaur and Bubun Banerjee*

Volume 24, Issue 6, 2020

Page: [583 - 621] Pages: 39

DOI: 10.2174/1385272824666200228092752

Price: $65

Abstract

Bis(indolyl)methane skeleton is the main building block of many naturally occurring bioactive compounds. Bis(indolyl)methanes are found to possess a wide range of pharmaceuitical efficacies. These important scaffolds are being used as anti-cancer, antioxidant, anti-bacterial, anti-inflammatory, and anti-proliferative agents. In this review, we summarized the latest developments on the synthesis of various bis/tris(indolyl)methane derivatives from the reactions of two equivalents of indoles and one equivalent of aldehydes or indole-3-carbaldehydes under various reaction conditions. More than hundred different catalysts were employed for these transformations which include various metal catalysts, ionic liquids, organocatalysts, surfactants, homogeneous, heterogeneous catalysts etc.

Keywords: Bis(indolyl)methanes, tris(indolyl)methanes, homogeneous catalysts, heterogeneous catalysts, biological activities, indole-3- carbaldehydes.

Next »
Graphical Abstract

[1]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multi-component synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[2]
Banerjee, B. [Bmim]BF4: a versatile ionic liquid for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2017, 2(27), 8362-8376.
[http://dx.doi.org/10.1002/slct.201701700]
[3]
Banerjee, B. Bismuth(III) triflate: an efficient catalyst for the synthesis of diverse biologically relevant heterocycles. ChemistrySelect, 2017, 2, 6744-6757.
[http://dx.doi.org/10.1002/slct.201701441]
[4]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: an efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83, 1071-1097.
[http://dx.doi.org/10.2298/JSC180103052K]
[5]
Brahmachari, G.; Banerjee, B. Facile and one-pot access of 3,3-bis(indol-3-yl)indolin-2-ones and 2,2-bis(indol-3-yl)acenaphthylen-1(2H)-one derivatives via an eco-friendly pseudo-multicomponent reaction at room temperature using sulfamic acid as an organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 2802-2812.
[http://dx.doi.org/10.1021/sc500575h]
[6]
Vicente, R. Recent advances in indole syntheses: new routes for a classic target. Org. Biomol. Chem., 2011, 9, 6469-6480.
[http://dx.doi.org/10.1039/c1ob05750b]
[7]
Gribble, G.W. Heterocyclic scaffolds II: reactions and applications of indoles. Top. Heterocycl. Chem., 2010, 26, 1-480.
[http://dx.doi.org/10.1007/978-3-642-15733-2]
[8]
Lounasmaa, M.; Tolvanen, A. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2000, 17(2), 175-191.
[http://dx.doi.org/10.1039/a809402k]
[9]
Hibino, S.; Choshi, T. Simple indole alkaloids and those with a nonrearranged onoterpenoid unit. Nat. Prod. Rep., 2001, 18, 66-87.
[http://dx.doi.org/10.1039/b004055j]
[10]
Wu, Y.J. New indole-containing medicinal compounds. Top. Heterocycl. Chem., 2010, 26, 1-29.
[http://dx.doi.org/10.1007/7081_2010_37]
[11]
Chao, W.R.; Yean, D.; Amin, K.; Green, C.; Jong, L. Computer aided rational drug design: a novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. J. Med. Chem., 2007, 50, 3412-3415.
[http://dx.doi.org/10.1021/jm070040e]
[12]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Landi, L.; Prata, C.; Berridge, M.V.; Grasso, C.; Fiebig, H.H.; Kelter, G.; Burger, A.M.; Kunkel, M.W. Antitumor activity of bis-indole derivatives. J. Med. Chem., 2008, 51, 4563-4570.
[http://dx.doi.org/10.1021/jm800194k]
[13]
Praveena, P.J.; Parameswaran, P.S.; Majik, M.S. Bis(indolyl)methane alkaloids: isolation, bioactivity, and syntheses. Synthesis, 2015, 47, 1827-1837.
[http://dx.doi.org/10.1055/s-0034-1380415]
[14]
Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis and trisindolylmethanes (BIMs and TIMs). Chem. Rev., 2010, 110, 2250-2293.
[http://dx.doi.org/10.1021/cr900195a]
[15]
Gaisina, I.N.; Gallier, F.; Ougolkov, A.V.; Kim, K.H.; Kurome, T.; Guo, S.; Holzle, D.; Luchini, D.N.; Blond, S.Y.; Billadeau, D.D.; Kozikowski, A.P. From a natural product lead to the identification of potent and selective benzofuran-3-yl-(indol-3-yl)maleimides as glycogen synthase kinase 3β inhibitors that suppress proliferation and survival of pancreatic cancer cells. J. Med. Chem., 2009, 52, 1853-1863.
[http://dx.doi.org/10.1021/jm801317h]
[16]
Queiroz, M.R.P.; Abreu, A.S.; Carvalho, M.S.D.; Ferreira, P.M.T.; Nazareth, N.; Nascimento, M.S.J. Synthesis of new heteroaryl and heteroannulated indoles from dehydrophenylalanines: antitumor evaluation. Bioorg. Med. Chem., 2008, 16, 5584-5589.
[http://dx.doi.org/10.1016/j.bmc.2008.04.004]
[17]
Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: a comprehensive review from 2000-2008. Anticancer. Agents Med. Chem., 2009, 9, 397-414.
[http://dx.doi.org/10.2174/1871520610909040397]
[18]
Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem. Pharm. Bull. (Tokyo), 1994, 42(12), 2449-2451.
[http://dx.doi.org/10.1248/cpb.42.2449]
[19]
Bal, R.T.; Anand, B.; Yogeeswari, P.; Sriram, D. Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2005, 15, 4451-4455.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.046]
[20]
Natarajan, A.; Fan, Y.H.; Chen, H.; Guo, Y.; Iyasere, J.; Harbinski, F.; Christ, W.J.; Aktas, H.; Halperin, J.A. 3,3-Diaryl-1,3-dihydroindol-2-ones as antiproliferatives mediated by translation initiation inhibition. J. Med. Chem., 2004, 47, 1882-1885.
[http://dx.doi.org/10.1021/jm0499716]
[21]
Kamal, A.; Srikanth, Y.V.V.; Khan, M.N.A.; Shaik, T.B.; Ashraf, M. Synthesis of 3,3-diindolyl oxyindoles efficiently catalysed by FeCl3 and their in vitro evaluation for anticancer activity. Bioorg. Med. Chem. Lett., 2010, 20, 5229-5231.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.152]
[22]
Reddy, B.V.S.; Rajeswari, N.; Sarangapani, M.; Prashanthi, Y.; Ganji, R.J.; Addlagatta, A. Iodine-catalyzed condensation of isatin with indoles: a facile synthesis of di(indolyl)indolin-2-ones and evaluation of their cytotoxicity. Bioorg. Med. Chem. Lett., 2012, 22, 2460-2463.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.011]
[23]
Praveen, C.; Ayyanar, A.; Perumal, P.T. Practical synthesis, anticonvulsant, and antimicrobial activity of N-allyl and N-propargyl di(indolyl)indolin-2-ones. Bioorg. Med. Chem. Lett., 2011, 21, 4072-4077.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.117]
[24]
Qin, W.B.; Chang, Q.; Bao, Y.H.; Wang, N.; Chen, Z.W.; Liu, L.X. Metal-free catalyzed oxidative trimerization of indoles by using TEMPO in air: a biomimetic approach to 2-(1H-indol-3-yl)-2,3′-biindolin-3-ones. Org. Biomol. Chem., 2012, 10, 8814-8821.
[http://dx.doi.org/10.1039/c2ob26390d]
[25]
Veluri, R.; Oka, I.; Döbler, I.W.; Laatsch, H. New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus Bio249. J. Nat. Prod., 2003, 66, 1520-1523.
[http://dx.doi.org/10.1021/np030288g]
[26]
Cai, S.X.; Li, D.H.; Zhu, T.J.; Wang, F.P.; Xiao, X.; Gu, Q.Q. Two new indole alkaloids from the marine-derived bacterium Aeromonas sp. CB101. Helv. Chim. Acta, 2010, 93(4), 791-795.
[http://dx.doi.org/10.1002/hlca.200900360]
[27]
Bell, R.; Carmeli, S. Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolytzcus, isolated from the toxic mucus of the boxfish Ostraczon cubzcus. J. Nat. Prod., 1994, 57, 1587-1590.
[http://dx.doi.org/10.1021/np50113a022]
[28]
Zendah, I.; Shaaban, K.A.; Helmke, E.; Maier, A.; Fiebig, H.H.; Laatsch, H. Barakacin: A thiazolylindole alkaloid isolated from a ruminal Pseudomonas sp. Z. Naturforsch. B, 2012, 67b, 417-420.
[http://dx.doi.org/10.5560/znb.2011-0277]
[29]
Lin, L.P.; Yuan, P.; Jiang, N.; Mei, Y.N.; Zhang, W.J.; Wu, H.M.; Zhang, A.H.; Cao, J.M.; Xiong, Z.X.; Lu, Y.; Tan, R.X. Gene-inspired mycosynthesis of skeletally new indole alkaloids. Org. Lett., 2015, 17, 2610-2613.
[http://dx.doi.org/10.1021/acs.orglett.5b00882]
[30]
Osawa, T.; Namiki, M. Structure elucidation of streptindole, a novel genotoxic metabolite isolated from intestinal bacteria. Tetrahedron Lett., 1983, 24(43), 4719-4722.
[http://dx.doi.org/10.1016/S0040-4039(00)86237-1]
[31]
Queiroz, M.M.F.; Queiroz, E.F.; Zeraik, M.L.; Ebrahimi, S.N.; Marcourt, L.; Cuendet, M.; Gamboa, I.C.; Hamburger, M.; Bolzani, V.S.; Wolfender, J.L. Chemical composition of the bark of Tetrapterys mucronata and identification of acetylcholinesterase inhibitory constituents. J. Nat. Prod., 2014, 77(3), 650-656.
[http://dx.doi.org/10.1021/np401003p]
[32]
Fahy, E.; Potts, B.C.M.; Faulkner, D.J. 6-Bromotryptamine derivatives from the Gulf of California tunicate Didemnum candidum. J. Nat. Prod., 1991, 54(2), 564-569.
[http://dx.doi.org/10.1021/np50074a032]
[33]
Chakrabarty, M.; Basak, R.; Harigaya, Y. A sojourn in the synthesis and bioactivity of diindolylalkanes. Heterocycles, 2001, 55(12), 2431-2447.
[http://dx.doi.org/10.3987/REV-01-541]
[34]
Wright, C.W.; Phillipson, J.D. Natural products and the development of selective antiprotozoal drugs. Phytother. Res., 1990, 4, 127-139.
[http://dx.doi.org/10.1002/ptr.2650040402]
[35]
Wright, C.W.; Allen, D.; Cai, Y.; Phillipson, J.D.; Said, I.M.; Kirby, G.C.; Warhurst, D.C. In vitro antiamoebic and antiplasmodial activities of alkaloids isolated from Alstonia angustifolia roots. Phytother. Res., 1992, 6, 121-124.
[http://dx.doi.org/10.1002/ptr.2650060303]
[36]
Bonnesen, C.; Eggleston, I.M.; Hayes, J.D. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res., 2001, 61, 6120-6130.
[37]
York, M.; Abdelrahim, M.; Chintharlapalli, S.; Lucero, S.D.; Safe, S. 1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes induce apoptosis and inhibit renal cell carcinoma growth. Clin. Cancer Res., 2007, 13, 6743-6752.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-0967]
[38]
Inamoto, T.; Papineni, S.; Chintharlapalli, S.; Cho, S.D.; Safe, S.; Kamat, A.M. 1,1-Bis(3′-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth. Mol. Cancer Ther., 2008, 7(12), 3825-3833.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0730]
[39]
Ichite, N.; Chougule, M.B.; Jackson, T.; Fulzele, S.V.; Safe, S.; Singh, M. Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin. Cancer Res., 2009, 15, 543-552.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1558]
[40]
Cho, S.D.; Yoon, K.; Chintharlapalli, S.; Abdelrahim, M.; Lei, P.; Hamilton, S.; Khan, S.; Ramaiah, S.K.; Safe, S. Nur77 agonists induce proapoptotic genes and responses in colon cancer cells through nuclear receptor-dependent and nuclear receptor-independent pathways. Cancer Res., 2007, 67, 674-683.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2907]
[41]
Chintharlapalli, S.; Papineni, S.; Baek, S.J.; Liu, S.; Safe, S. 1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor γ agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol. Pharmacol., 2005, 68, 1782-1792.
[http://dx.doi.org/10.1124/mol.105.017046]
[42]
Imran, S.; Taha, M.; Ismail, N.H.; Fayyaz, S.; Khan, K.M.; Choudhary, M.I. Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhydrase II inhibitor. Bioorg. Chem., 2015, 62, 83-93.
[http://dx.doi.org/10.1016/j.bioorg.2015.08.001]
[43]
Giannini, G.; Marzi, M.; Marzo, M.D.; Battistuzzi, G.; Pezzi, R.; Brunetti, T.; Cabri, W.; Vesci, L.; Pisano, C. Exploring bis-(indolyl)methane moiety as an alternative and innovative CAP group in the design of Histone Deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett., 2009, 19, 2840-2843.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.101]
[44]
Praveen, C.; Kumar, P.D.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20, 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075]
[45]
Mandal, S.M.; Pegu, R.; Porto, W.F.; Franco, O.L.; Pratihar, S. Novel boronic acid derivatives of bis(indolyl) methane as anti-MRSA agents. Bioorg. Med. Chem. Lett., 2017, 27, 2135-2138.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.070]
[46]
Jamsheena, V.; Shilpa, G.; Saranya, J.; Harry, N.A.; Lankalapalli, R.S.; Priya, S. Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells. Chem. Biol. Interact., 2016, 247, 11-21.
[http://dx.doi.org/10.1016/j.cbi.2016.01.017]
[47]
Sarva, S.; Harinath, J.S.; Sthanikam, S.P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S.R. Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin. Chem. Lett., 2016, 27, 16-20.
[http://dx.doi.org/10.1016/j.cclet.2015.08.012]
[48]
Grosso, C.; Cardoso, A.L.; Lemos, A.; Varela, J.; Rodrigues, M.J.; Custódio, L.; Barreira, L.; Pinho e Melo, T.M.V.D. Novel approach to bis(indolyl)methanes: de novo synthesis of 1-hydroxyiminomethyl derivatives with anti-cancer properties. Eur. J. Med. Chem., 2015, 93, 9-15.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.050]
[49]
Maestro, A.; Martín-Encinas, E.; Alonso, C.; de-Marigorta, E.M.; Rubiales, G.; Vicario, J.; Palacios, F. Synthesis of novel antiproliferative hybrid bis-(3-indolyl)methane phosphonate derivatives. Eur. J. Med. Chem., 2018, 158, 874-883.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.011]
[50]
Sathiyaraj, S.; Shanavas, A.; Kumar, K.A.; Sathiyaseelan, A.; Senthilselvan, J.; Kalaichelvan, P.T.; Nasar, A.S. The first example of bis(indolyl)methane based hyperbranched polyurethanes: synthesis, solar cell application and anti-bacterial and anti-oxidant properties. Eur. Polym. J., 2017, 95, 216-231.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.08.021]
[51]
Sujatha, K.; Perumal, P.T.; Muralidharan, D.; Rajendran, M. Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes. Indian J. Chem., 2009, 48B, 267-272.
[52]
Marrelli, M.; Cachet, X.; Conforti, F.; Sirianni, R.; Chimento, A.; Pezzi, V.; Michel, S.; Statti, G.A.; Menichini, F. Synthesis of a new bis(indolyl)methane that inhibits growth and induces apoptosis in human prostate cancer cells. Nat. Prod. Res., 2013, 27, 2039-2045.
[http://dx.doi.org/10.1080/14786419.2013.824440]
[53]
Safe, S.; Papinenia, S.; Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and synthetic analogs. Cancer Lett., 2008, 269(2), 326-338.
[http://dx.doi.org/10.1016/j.canlet.2008.04.021]
[54]
Bradfield, C.A.; Bjeldanes, L.F. Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism. J. Toxicol. Environ. Health, 1987, 21, 311-323.
[http://dx.doi.org/10.1080/15287398709531021]
[55]
Dashwood, R.H.; Uyetake, L.; Fong, A.T.; Hendricks, J.D.; Bailey, G.S. In vivo disposition of the natural anti-carcinogen indole-3-carbinol after PO administration to rainbow trout. Food Chem. Toxicol., 1989, 27, 385-392.
[http://dx.doi.org/10.1016/0278-6915(89)90144-0]
[56]
Zeligs, M.A. Diet and estrogen status: the cruciferous connection. J. Med. Food, 1998, 1, 67-82.
[http://dx.doi.org/10.1089/jmf.1998.1.67]
[57]
Benabadji, S.H.; Wen, R.; Zheng, J.B.; Dong, X.C.; Yuan, S.G. Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta Pharmacol. Sin., 2004, 25, 666-671.
[58]
Simha, P.R.; Mangali, M.S.; Gari, D.K.; Venkatapuram, P.; Adivireddy, P. Benzenesulfonic acid: a versatile catalyst for the synthesis of bis(indolyl)methanes as antioxidants. J. Heterocycl. Chem., 2017, 54, 2717-2724.
[http://dx.doi.org/10.1002/jhet.2873]
[59]
Pisano, C.; Kollar, P.; Gianní, M.; Kalac, Y.; Giordano, V.; Ferrara, F.F.; Tancredi, R.; Devoto, A.; Rinaldi, A.; Rambaldi, A.; Penco, S.; Marzi, M.; Moretti, G.; Vesci, L.; Tinti, O.; Carminati, P.; Terao, M.; Garattini, E. Bis-indols: a novel class of molecules enhancing the cytodifferentiating properties of retinoids in myeloid leukemia cells. Blood, 2002, 100, 3719-3730.
[http://dx.doi.org/10.1182/blood-2002-03-0720]
[60]
Parkin, D.R.; Lu, Y.; Bliss, R.L.; Malejka-Giganti, D. Inhibitory effects of a dietary phytochemical 3,3′-diindolylmethane on the phenobarbital-induced hepatic CYP mRNA expression and CYP-catalyzed reactions in female rats. Food Chem. Toxicol., 2008, 46, 2451-2458.
[http://dx.doi.org/10.1016/j.fct.2008.03.029]
[61]
Borse, A.U.; Patil, M.N.; Patil, N.L. Expeditious, mild and solvent free synthesis of bis(indolyl)methanes, using a mixture of phosphorus pentoxide in methanesulfonic acid. E-J. Chem., 2012, 9, 1313-1319.
[http://dx.doi.org/10.1155/2012/637536]
[62]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R.; Crooks, P.A. An eco-friendly improved protocol for the synthesis of bis(3-indolyl)methanes using poly(4-vinylpyridinium)hydrogen sulfate as efficient, heterogeneous, and recyclable solid acid catalyst. ISRN Org. Chem., 2013, 2013, 616932
[63]
Ji, S.J.; Wang, S.Y.; Zhang, Y.; Loh, T.P. Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron, 2004, 60, 2051-2055.
[http://dx.doi.org/10.1016/j.tet.2003.12.060]
[64]
Bandgar, B.P.; Shaikh, K.A. Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions. Tetrahedron Lett., 2003, 44, 1959-1961.
[http://dx.doi.org/10.1016/S0040-4039(03)00032-7]
[65]
Koshima, H.; Matsusaka, W. N-Bromosuccinimide catalyzed condensations of indoles with carbonyl compounds under solvent-free conditions. J. Heterocycl. Chem., 2002, 39, 1089-1091.
[http://dx.doi.org/10.1002/jhet.5570390539]
[66]
Pasha, M.A.; Jayashankara, V.P. p-Toluenesulfonic Acid (p-TSA) catalyzed efficient synthesis of bis(indolyl)methanes under grindstone method. J. Pharmacol. Taxicol., 2006, 1, 585-590.
[http://dx.doi.org/10.3923/jpt.2006.585.590]
[67]
Suresh, D.K.; Sandhu, J.S. CuSO4.5H2O, A novel and efficient catalyst for the synthesis of bisindolylmethanes. J. Indian Chem. Soc., 2009, 86, 488-490.
[68]
Baruah, M. Facile synthesis of bis(indolyl)alkanes catalyzed by Cu(ClO4)2.6H2O under solvent free conditions. Lett. Org. Chem., 2011, 8, 461-463.
[http://dx.doi.org/10.2174/157017811796504963]
[69]
Siddiqui, Z.N.; Tarannum, S. Xanthan sulphuric acid: an efficient and biodegradable solid acid catalyst for the synthesis of bis(indolyl)methanes under solvent-free conditions. C. R. Chim., 2013, 16, 829-837.
[http://dx.doi.org/10.1016/j.crci.2013.04.013]
[70]
Shirini, F.; Khaligh, N.G.; Jolodar, O.G. An efficient and practical synthesis of bis(indolyl)methanes catalyzed by N-sulfonic acid poly(4-vinylpyridinium) chloride. Dyes Pigments, 2013, 98, 290-296.
[http://dx.doi.org/10.1016/j.dyepig.2013.03.003]
[71]
Khalafi-Nezhad, A.; Parhami, A.; Zare, A.; Zare, A.R.M.; Hasaninejad, A.; Panahi, F. Trityl chloride as a novel and efficient organic catalyst for room temperature preparation of bis(indolyl)methanes under solvent-free conditions in neutral media. Synthesis, 2008, 2008, 617-621.
[http://dx.doi.org/10.1055/s-2008-1032159]
[72]
Khodaei, M.M.; Mohammadpoor-Baltork, I.; Memarian, H.R.; Khosropour, A.R.; Nikoofar, K.; Ghanbary, P. Synthesis of 3-substituted indoles promoted by pulverization-activation method catalyzed by Bi(NO3)3‧5H2O. J. Heterocycl. Chem., 2008, 45, 377-381.
[http://dx.doi.org/10.1002/jhet.5570450213]
[73]
Hasaninejad, A.; Zare, A.; Sharghi, H.; Niknam, K.; Shekouhya, M.P. 2O5/SiO2 as an efficient, mild, and heterogeneous catalytic system for the condensation of indoles with carbonyl compounds under solvent-free conditions. ARKIVOC, 2007, 2007(14), 39-50.
[74]
Bandgar, B.P.; Patil, A.V.; Kamble, V.T. Fluoroboric acid adsorbed on silica gel catalyzed synthesis of bisindolyl alkanes under mild and solvent-free conditions. ARKIVOC, 2007, 16, 252-259.
[75]
Pore, D.M.; Desai, U.V.; Thopate, T.S.; Wadgaonkar, P.P. A mild, expedient, solventless synthesis of bis(indolyl)alkanes using silica sulfuric acid as a reusable catalyst. ARKIVOC, 2006, 12, 75-80.
[76]
Chakrabarty, M.; Ghosh, N.; Basak, R.; Harigaya, Y. Dry reaction of indoles with carbonyl compounds on montmorillonite K10 clay: a mild, expedient synthesis of diindolylalkanes and vibrindole A. Tetrahedron Lett., 2002, 43(22), 4075-4078.
[http://dx.doi.org/10.1016/S0040-4039(02)00682-2]
[77]
Karthik, M.; Palanichamy, M.; Murugesan, V. A mild, eco-friendly and efficient zeolite catalyzed synthesis of vibrindole A and bis(indolyl)methanes. Stud. Surf. Sci. Catal., 2005, 156, 873-878.
[http://dx.doi.org/10.1016/S0167-2991(05)80299-X]
[78]
Shelke, G.M.; Rao, V.K.; Tiwari, R.K.; Chhikara, B.S.; Parang, K.; Kumar, A. Bismuth triflate-catalyzed condensation of indoles with acetone. RSC Advances, 2013, 3, 22346-22352.
[http://dx.doi.org/10.1039/c3ra44693j]
[79]
Siadatifard, S.H.; Abdoli-Senejani, M.; Bodaghifard, M.A. An efficient method for synthesis of bis(indolyl) methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS. Cogent Chem., 2016, 2(1), 188435
[80]
Hosseini-Sarvari, M. Titania (TiO2)-catalyzed expedient, solvent-less and mild synthesis of bis(indolyl)methanes. Acta Chim. Slov., 2007, 54, 354-359.
[81]
Sarvari, M.H. Synthesis of bis(indolyl)methanes using a catalytic amount of ZnO under solvent-free conditions. Synth. Commun., 2008, 38, 832-840.
[http://dx.doi.org/10.1080/00397910701845274]
[82]
Heravi, M.M.; Nahavandi, F.; Sadjadi, S.; Oskooie, H.A.; Tajbakhsh, M. Convenient synthesis of bis(indol)alkanes by niobium(V) chloride. Synth. Commun., 2009, 39, 3285-3292.
[http://dx.doi.org/10.1080/00397910902752246]
[83]
Firouzabadi, H.; Iranpoor, N.; Jafarpour, M.; Ghaderi, A. ZrOCl2.8H2O/silica gel as a new efficient and a highly water-tolerant catalyst system for facile condensation of indoles with carbonyl compounds under solvent-free conditions. J. Mol. Catal. Chem., 2006, 253, 249-251.
[http://dx.doi.org/10.1016/j.molcata.2006.03.043]
[84]
Sheikhshoaie, I.; Khabazzadeh, H.; Nia, S.S. Iron(III)(salen) Cl as an efficient catalyst for synthesis of bis(indolyl)methanes. Trans. Met. Chem. (Weinh.), 2009, 34, 463-466.
[http://dx.doi.org/10.1007/s11243-009-9217-9]
[85]
Rekha, M.; Manjunath, H.R.; Nagaraju, N. Mn/Al2O3 and Mn/ZrO2 as selective catalysts for the synthesis of bis(indolyl)methanes: the role of surface acidity and particle morphology. J. Ind. Eng. Chem., 2013, 19, 337-346.
[http://dx.doi.org/10.1016/j.jiec.2012.08.022]
[86]
Matzkeit, Y.H.; Tornquist, B.L.; Manarin, F.; Botteselle, G.V. Rafique, J.; Saba, S.; Braga, A.L.; Felix, J.F.; Schneider, R. Borophosphate glasses: synthesis, characterization and application as catalyst for bis(indolyl)methanes synthesis under greener conditions. J. Non-Cryst. Solids, 2018, 498, 153-159.
[http://dx.doi.org/10.1016/j.jnoncrysol.2018.06.020]
[87]
Shirini, F.; Yahyazadeh, A.; Abedini, M.; Langroodi, D.I. Vanadium hydrogen sulfate catalyzed solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones and bis(indolyl) methanes. Bull. Korean Chem. Soc., 2010, 31, 1715-1718.
[http://dx.doi.org/10.5012/bkcs.2010.31.6.1715]
[88]
Kirti, S.; Kumar, D.; Mogha, N.K.; Singh, V.; Masram, D.T. An efficient synthesis of bis(indolyl) methanes under solvent free condition using silica supported polyphosphoric acid (PPA-SiO2) as recyclable catalyst. J. Sci. Tech. Res., 2016, 6, 15-20.
[http://dx.doi.org/10.21863/jstr/2016.6.1.003]
[89]
Kalla, R.M.N.; Hong, S.C.; Kim, I. Synthesis of bis(indolyl)methanes using hyper-cross-linked polyaromatic spheres decorated with bromomethyl groups as efficient and recyclable catalysts. ACS Omega, 2018, 3, 2242-2253.
[http://dx.doi.org/10.1021/acsomega.7b01925]
[90]
Karami, C.; Ahmadian, H.; Nouri, M.; Jamshidi, F.; Mohammadi, H.; Ghodrati, K.; Farrokhi, A.; Hamidi, Z. A novel method for synthesis of cobalt manganese oxide nano catalysts as a recyclable catalyst for the synthesis of some bis(indolyl) methane derivatives. Catal. Commun., 2012, 27, 92-96.
[http://dx.doi.org/10.1016/j.catcom.2012.06.024]
[91]
Heravi, M.M.; Bakhtiari, K.; Fatehi, A.; Bamoharram, F.F. A convenient synthesis of bis(indolyl)methanes catalyzed by diphosphooctadecatungstic acid. Catal. Commun., 2008, 9, 289-292.
[http://dx.doi.org/10.1016/j.catcom.2007.07.039]
[92]
Shirini, F.; Langroodi, M.S.; Abedini, M. Efficient synthesis of bis(indolyl) methanes catalyzed by (PhCH2PPh3)+Br3- under solvent-free conditions. Chin. Chem. Lett., 2010, 21, 1342-1345.
[http://dx.doi.org/10.1016/j.cclet.2010.05.028]
[93]
Soliman, H.A.; Mubarak, A.Y.; Elmorsy, S.S. An efficient synthesis of bis(indolyl) methanes and N,N′-alkylidene bisamides by Silzic under solvent free conditions. Chin. Chem. Lett., 2016, 27, 353-356.
[http://dx.doi.org/10.1016/j.cclet.2015.11.013]
[94]
Mendes, S.R.; Thurow, S.; Fortes, M.P.; Penteado, F.; Lenardão, E.J.; Alves, D.; Perin, G.; Jacob, R.G. Synthesis of bis(indolyl)methanes using silica gel as an efficient and recyclable surface. Tetrahedron Lett., 2012, 53, 5402-5406.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.118]
[95]
Patil, V.D.; Dere, G.B.; Rege, P.A.; Patil, J.J. Synthesis of bis(indolyl) methanes in catalyst- and solvent-free reaction. Synth. Commun., 2011, 41, 736-747.
[http://dx.doi.org/10.1080/00397911003642690]
[96]
Li, J.T.; Dai, H.G.; Xu, W.Z.; Li, T.S. An efficient and practical synthesis of bis(indolyl)methanes catalyzed by aminosulfonic acid under ultrasound. Ultrason. Sonochem., 2006, 13, 24-27.
[http://dx.doi.org/10.1016/j.ultsonch.2004.12.004]
[97]
Sonar, S.S.; Sadaphal, S.A.; Kategaonkar, A.H.; Pokalwar, R.U.; Shingate, B.B.; Shingare, M.S. Alum catalyzed simple and efficient synthesis of bis(indolyl)methanes by ultrasound approach. Bull. Korean Chem. Soc., 2009, 30, 825-828.
[http://dx.doi.org/10.5012/bkcs.2009.30.4.825]
[98]
Das, B.; Pal, M.; Banerjee, J.; Ramesh, C.; Mahender, G.; Venkateswarlu, K.A. Convenient, rapid and eco-friendly synthesis of bis-indolylmethanes under microwave irradiation. Indian J. Chem., 2005, 44B, 327-330.
[http://dx.doi.org/10.1002/chin.200524110]
[99]
Kapuriya, N.; Kakadiya, R.; Savant, M.M.; Pansuriya, A.M.; Bhuva, C.V.; Patel, A.S. Pipaliya, P.V.; Audichya, V.B.; Gangadharaiah, S.; Anandalwar, S.M.; Prasad, J.S.; Shah, A.; Naliapara, Y.T. Fuller’s earth catalyzed rapid synthesis of bis(indolyl)methanes under solvent free condition. Indian J. Chem., 2012, 51B, 1032-1038.
[100]
Xia, M.; Wang, S.H.; Yuan, W.B. Lewis acid catalyzed electrophilic substitution of indole with aldehydes and Schiff’s bases under microwave solvent-free irradiation. Synth. Commun., 2004, 34, 3175-3182.
[http://dx.doi.org/10.1081/SCC-200028611]
[101]
Zhang, D-W.; Zhang, Y-M.; Zhang, Y-L.; Zhao, T-Q.; Liu, H-W.; Gan, Y-M.; Gu, Q. Efficient solvent-free synthesis of bis(indolyl)methanes on SiO2 solid support under microwave irradiation. Chem. Pap., 2015, 69, 470-478.
[http://dx.doi.org/10.1515/chempap-2015-0036]
[102]
Pal, R. Microwave-assisted eco-friendly synthesis of bis-, tris(indolyl)methanes and synthesis of di-bis(indolyl)methanes catalyzed by fruit juice of Citrus limon under solvent-free conditions. IOSR J. Appl. Chem., 2013, 3, 1-8.
[http://dx.doi.org/10.9790/5736-0340108]
[103]
Moghaddam, F.M.; Bardajee, G.R.; Ismaili, H. Synthesis of bis(indolyl)methanes in presence of anhydrous copper(II) sulfate. Asian J. Chem., 2008, 20, 1063-1067.
[104]
Mhaldar, S.N.; Mandrekar, K.S.; Gawde, M.K.; Shet, R.V.; Tilve, S.G. Solventless mechanosynthesis of bis(indolyl)methanes. Synth. Commun., 2019, 49, 94-101.
[http://dx.doi.org/10.1080/00397911.2018.1542732]
[105]
Azizi, N.; Torkian, L.; Saidi, M.R. Highly efficient synthesis of bis(indolyl)methanes in water. J. Mol. Catal. Chem., 2007, 275, 109-112.
[http://dx.doi.org/10.1016/j.molcata.2007.05.024]
[106]
Zolfigol, M.A.; Salehi, P.; Shirl, M. An efficient procedure for the preparation of mono, and di-bis-indolylmethanescatalyzed by molibdatophosphoric acid. Phosphorus Sulfur Silicon Relat. Elem., 2004, 179, 2273-2277.
[http://dx.doi.org/10.1080/10426500490484904]
[107]
Ghorbani-Vaghei, R.; Veisi, H.; Keypour, H.; Firouzabadi, A.A.D. A practical and efficient synthesis of bis(indolyl)methanes in water, and synthesis of di-, tri-, and tetra(bis-indolyl)methanes under thermal conditions catalyzed by oxalic acid dehydrate. Mol. Divers., 2010, 14, 87-96.
[http://dx.doi.org/10.1007/s11030-009-9150-z]
[108]
Ghorbani-Vaghei, R.; Veisia, H. Poly(N,N′-dichloro-N-ethyl-benzene-1,3-disulfonamide) and N,N,N′,N′-tetrachlorobenzene-1,3-disulfonamide as novel catalytic reagents for synthesis of bis-indolyl, tris-indolyl, di(bis-indolyl), tri(bis-indolyl) and tetra(bis-indolyl) methanes under solid-state, solvent and water conditions. J. Braz. Chem. Soc., 2010, 21, 193-201.
[http://dx.doi.org/10.1590/S0103-50532010000200002]
[109]
Bandgar, B.P.; Shaikh, K.A. Organic reactions in aqueous media: InF3 catalysed synthesis of bis(indolyl)methanes in water under mild conditions. J. Chem. Res., 2004, 2004, 34-36.
[http://dx.doi.org/10.3184/030823404323000701]
[110]
Azizi, N.; Gholibeghlo, E.; Manocheri, Z. Green procedure for the synthesis of bis(indolyl)methanes in water. Scientia Irania C, 2012, 19, 574-578.
[http://dx.doi.org/10.1016/j.scient.2011.11.043]
[111]
Li, J.T.; Sun, M.X.; He, G.Y.; Xu, X.Y. Efficient and green synthesis of bis(indolyl)methanes catalyzed by ABS in aqueous media under ultrasound irradiation. Ultrason. Sonochem., 2011, 18, 412-414.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.016]
[112]
Gao, G.; Han, Y. Zhang. Z.-H. Catalyst free synthesis of bis(indolyl)methanes and 3,3-bis (indolyl)oxindoles in aqueous ethyl lactate. ChemistrySelect, 2017, 2, 11561-11564.
[http://dx.doi.org/10.1002/slct.201702326]
[113]
Malkania, L.; Bedi, P.; Pramanik, T. Lactic acid catalyzed and microwave-assisted green synthesis of pharmaceutically important bis(indolyl) methane analogs in aqueous medium. Drug Invention Today, 2018, 10, 1740-1744.
[114]
Seyedi, N.; Kalantari, M. An efficient green procedure for the synthesis of bis(indolyl) methanes in water. J. Sci. I. R. Iran., 2013, 24, 205-208.
[115]
Esmaielpour, M.; Akhlaghinia, B.; Jahanshahi, R. Green and efficient synthesis of aryl/alkylbis(indolyl)methanes using expanded perlite-PPA as a heterogeneous solid acid catalyst in aqueous media. J. Chem. Sci., 2017, 129, 313-328.
[http://dx.doi.org/10.1007/s12039-017-1246-x]
[116]
Chia, P.W.; Lim, B.S.; Tan, K.C.; Yong, F.S.J.; Kan, S.Y. Water extract of onion peel for the synthesis of bisindolylmethanes. J. King Saud. Univ. Sci., 2019, 31, 642-647.
[http://dx.doi.org/10.1016/j.jksus.2018.05.029]
[117]
Sobhani, S.; Safaei, E.; Hasaninejad, A.R.; Rezazadeh, S. An eco-friendly procedure for the efficient synthesis of bis(indolyl)methanes in aqueous media. J. Organomet. Chem., 2009, 694, 3027-3031.
[http://dx.doi.org/10.1016/j.jorganchem.2009.05.004]
[118]
Sobhani, S.; Asadi, S.; Salimi, M. Zarifi. F. Cu-isatin Schiff base complex supported on magnetic nanoparticles as an efficient and recyclable catalyst for the synthesis of bis(indolyl)methanes and bis(pyrazolyl)methanes in aqueous media. J. Organomet. Chem., 2016, 822, 154-164.
[http://dx.doi.org/10.1016/j.jorganchem.2016.08.021]
[119]
Baghbanian, S.M.; Babajani, Y.; Tashakorian, H.; Khaksar, S.; Farhang, M. p-sulfonic acid calix[4]arene: an efficient reusable organocatalyst for the synthesis of bis(indolyl)methanes derivatives in water and under solvent-free conditions. C. R. Chim., 2013, 16, 129-134.
[http://dx.doi.org/10.1016/j.crci.2012.10.014]
[120]
Wang, Y.; Sang, R.; Zheng, Y.; Guo, L.; Guan, M.; Wu, Y. Graphene oxide: an efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water. Catal. Commun., 2017, 89, 138-142.
[http://dx.doi.org/10.1016/j.catcom.2016.09.027]
[121]
Kasar, S.B.; Thopate, S.R. Synthesis of bis(indolyl)methanes using naturally occurring, biodegradable itaconic acid as a green and reusable catalyst. Curr. Org. Synth., 2018, 15, 110-115.
[http://dx.doi.org/10.2174/1570179414666170621080701]
[122]
Chen, D.; Yu, L.; Wang, P.G. Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones. Tetrahedron Lett., 1996, 37, 4467-4470.
[http://dx.doi.org/10.1016/0040-4039(96)00958-6]
[123]
Wang, L.; Han, J.; Tian, H.; Sheng, J.; Fan, Z.; Tang, X. Rare earth perfluorooctanoate [RE(PFO)3]-catalyzed condensations of indole with carbonyl compounds. Synlett, 2005, 2005, 337-339.
[http://dx.doi.org/10.1055/s-2004-837210]
[124]
Kundu, S.K.; Islam, S.; Hajra, A.; Majee, A. Tetrabutylammoniumtribromide as efficient catalyst in the synthesis of bis(indolyl)methanes. Russ. J. Org. Chem., 2010, 46, 126-128.
[http://dx.doi.org/10.1134/S1070428010010136]
[125]
Yaghoubi, A.; Dekamin, M.G.; Arefi, E.; Karimi, B. Propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (PMO-ICS-Pr-SO3H): a new and highly efficient recoverable nanoporous catalyst for the one-pot synthesis of bis(indolyl)methane derivatives. J. Coll. Inter. Sci., 2017, 505, 956-963.
[http://dx.doi.org/10.1016/j.jcis.2017.06.055]
[126]
Niknam, K.; Zolfigol, M.A.; Sadabadi, T.; Nejati, A. Preparation of indolylmethanes catalyzed by metal hydrogen sulfates. J. Iran. Chem. Soc., 2006, 3, 318-322.
[http://dx.doi.org/10.1007/BF03245953]
[127]
Nagarajan, R.; Perumal, P.T. Potassium hydrogen sulfate-catalyzed reactions of indoles: a mild, expedient synthesis of bis-indolylmethanes. Chem. Lett., 2004, 33, 288-289.
[http://dx.doi.org/10.1246/cl.2004.288]
[128]
Lin, X.F.; Cui, S.L.; Wang, Y.G. Mild and efficient synthesis of bis-indolylmethanes catalyzed by tetrabutylammonium tribromide. Synth. Commun., 2006, 36, 3153-3160.
[http://dx.doi.org/10.1080/00397910600908819]
[129]
Kamble, V.T.; Kadam, K.R.; Joshi, N.S.; Muley, D.B. HClO4-SiO2 as a novel and recyclable catalyst for the synthesis bis(indolyl)methanes and bis(indolyl)glycoconjugates. Catal. Commun., 2007, 8, 498-502.
[http://dx.doi.org/10.1016/j.catcom.2006.07.010]
[130]
Sheng, S-R.; Wang, Q-Y.; Ding, Y.; Liu, X-L.; Cai, M-Z. Synthesis of bis(indolyl)methanes using recyclable PEG-supported sulfonic acid as catalyst. Catal. Lett., 2009, 128, 418-422.
[http://dx.doi.org/10.1007/s10562-008-9767-z]
[131]
Babu, G.; Sridhar, N.; Perumal, P.T. A convenient method of synthesis of bisindolylmethanes: indium trichloridecatalyzed reactions of indole with aldehydes and Schiff’s bases. Synth. Commun., 2000, 30, 1609-1614.
[http://dx.doi.org/10.1080/00397910008087197]
[132]
Yadav, J.S.; Reddy, B.V.S.; Murthy, C.V.S.R.; Kumar, G.M.; Madan, C. Lithium perchlorate catalyzed reactions of indoles: an expeditious synthesis of bis(indolyl)methanes. Synthesis, 2001, 5, 783-787.
[http://dx.doi.org/10.1055/s-2001-12777]
[133]
Nagarajan, R.; Perumal, P.T. Electrophilic substitution of indoles catalyzed by triphenylphosphonium perchlorate: synthesis of 3-acetyl indoles and bis-indolylmethane derivatives. Synth. Commun., 2002, 32, 105-109.
[http://dx.doi.org/10.1081/SCC-120001515]
[134]
Nagarajan, R.; Perumal, P.T. InCl3 and In(OTf)3 catalyzed reactions: synthesis of 3- acetyl indoles, bis-indolylmethane and indolylquinoline derivatives. Tetrahedron, 2002, 58, 1229-1232.
[http://dx.doi.org/10.1016/S0040-4020(01)01227-3]
[135]
Magesh, C.J.; Nagarajan, R.; Karthik, M.; Perumal, P.T. Synthesis and characterization of bis(indolyl)methanes, tris(indolyl)methanes and new diindolylcarbazolylmethanes mediated by Zeokarb-225, a novel, recyclable, eco-benign heterogeneous catalyst. Appl. Catal. A Gen., 2004, 266, 1-10.
[http://dx.doi.org/10.1016/j.apcata.2004.01.024]
[136]
Sharma, G.V.M.; Reddy, J.J.; Lakshmi, P.S.; Krishna, P.R. A versatile and practical synthesis of bis(indolyl)methanes/bis(indolyl) glycoconjugatescatalyzed by trichloro-1,3,5- triazine. Tetrahedron Lett., 2004, 45, 7729-7732.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.084]
[137]
Nagawade, R.R.; Shinde, D.B. Zirconyl(IV) chloride-catalysed reaction of indoles: an expeditious synthesis of bis(indolyl)methanes. Acta Chim. Slov., 2006, 53, 210-213.
[138]
Firouzabadi, H.; Iranpoor, N.; Jafari, A.A. Aluminumdodecatungstophosphate (AlPW12O40), versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives. J. Mol. Catal. Chem., 2006, 244, 168-172.
[http://dx.doi.org/10.1016/j.molcata.2005.09.005]
[139]
Bandgar, B.P.; Bettigeri, S.V.; Joshi, N.S. Hexamethylenetetraamine-bromine catalyzed rapid and efficient synthesis of bis(indolyl)methanes. Monatsh. Chem., 2006, 135, 1265-1273.
[http://dx.doi.org/10.1007/s00706-004-0206-6]
[140]
Kamal, A.; Khan, M.N.A.; Reddy, K.S.; Srikanth, Y.V.V.; Ahmed, S.K.; Kumar, K.P.; Murthy, U.S.N. An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. J. Enzyme Inhib. Med. Chem., 2009, 24, 559-565.
[http://dx.doi.org/10.1080/14756360802292974]
[141]
Khaksar, S.; Ostad, S.M. Pentafluorophenylammonium triflate as an efficient, environmentally friendly and novel organocatalyst for synthesis of bis-indolyl methane derivatives. J. Fluor. Chem., 2011, 132, 937-939.
[http://dx.doi.org/10.1016/j.jfluchem.2011.07.011]
[142]
Patil, V.D.; Patil, K.P.; Sutar, N.R.; Gidh, P.V. Nickel acetate as efficient organometallic catalyst for synthesis of bis (indolyl) methanes. Int. J. Chem. Sci., 2015, 13, 857-862.
[143]
Nagawade, R.R.; Shinde, D.B. Zirconium(IV) chloride- catalyzed reaction of indoles: An expeditious synthesis of bis(indolyl)methanes. Bull. Korean Chem. Soc., 2005, 26, 1962-1964.
[http://dx.doi.org/10.5012/bkcs.2005.26.12.1962]
[144]
Vijayakumar, B.; Shakthi, N.D. A facile synthesis of indole derivatives catalyzed by CeCl3.7H2O under microwave irradiation. Ind. J. Adv. Chem. Sci., 2013, 1, 221-227.
[145]
Hasaninejad, A.; Zare, A.; Sharghi, H.; Khalifeh, R.; Zare, A.R.M. PCl5 as a mild and efficient catalyst for the synthesis of bis(indolyl)methanes and di-bis(indolyl)methanes. Bull. Chem. Soc. Ethiop., 2008, 22, 453-458.
[http://dx.doi.org/10.4314/bcse.v22i3.61243]
[146]
Prasanna, T.S.R.; Raju, K.M. Quick access to bis(indolyl) methanes: T3P as a novel catalyst system. J. Korean Chem. Society, 2012, 56, 74-77.
[http://dx.doi.org/10.5012/jkcs.2012.56.1.074]
[147]
Swetha, A.; Babu, B.M.; Meshram, H.M. An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes. Tetrahedron Lett., 2015, 56, 1775-1779.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.032]
[148]
Reddy, A.V.; Ravinder, K.; Reddy, V.L.N.; Goud, T.V.; Ravikanth, V.; Venkateswarlu, Y. Zeolite catalyzed synthesis of bis(indolyl)methanes. Synth. Commun., 2003, 33, 3687-3694.
[http://dx.doi.org/10.1081/SCC-120025177]
[149]
Karmakar, B.; Nayak, A.; Chowdhury, B.; Banerji, J. A highly efficient, eco-friendly, room temperature synthesis of bis(indol-3-yl)methanes using the mesoporous titanosilicate Ti-TUD-1: electrophilic substitution reactions of indoles-Part XXIII. ARKIVOC, 2009, 12, 209-216.
[150]
Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Silica supported sodium hydrogen sulfate and Amberlyst-15: two efficient heterogeneous catalysts for facile synthesis of bis and tris(1H-indol-3-yl)methanes from indoles and carbonyl compounds. Adv. Synth. Catal., 2003, 345, 557-559.
[http://dx.doi.org/10.1002/adsc.200303022]
[151]
Reddy, Y.T.; Reddy, P.N.; Kumar, B.S.; Rajitha, B. Efficient synthesis of bis(indolyl)methanescatalyzed by TiCl4. Indian J. Chem., 2005, 44B, 2393-2395.
[152]
Ma, Z-H.; Han, H-B.; Zhou, Z-B.; Nie, J. SBA-15-supported poly(4-styrenesulfonyl(perfluorobutylsulfonyl)imide) as heterogeneous Brønsted acid catalyst for synthesis of diindolylmethane derivatives. J. Mol. Catal. Chem., 2009, 311, 46-53.
[http://dx.doi.org/10.1016/j.molcata.2009.06.021]
[153]
Meshram, G.A.; Patil, V.D. Simple and efficient method for synthesis of bis(indolyl) methanes with Cu(BF4)2‧SiO2 under mild conditions. Synth. Commun., 2010, 40, 29-38.
[http://dx.doi.org/10.1080/00397910902916064]
[154]
Merinos, J.P.G.; Ruíz, H.L.; López, Y.; Lima, S.R. Synthesis of bis(indolyl)methanes catalyzed by triethylborane. Lett. Org. Chem., 2015, 12, 332-336.
[http://dx.doi.org/10.2174/1570178612666150220225335]
[155]
Kuwano, S.; Suzuki, T.; Arai, T. 2-Iodoimidazolinium salt- catalyzed Friedel-Crafts reaction: synthesis of bis(indolyl)methane alkaloids. Heterocycles, 2018, 97, 163-169.
[http://dx.doi.org/10.3987/COM-18-S(T)33]
[156]
Beltrá, J.; Gimeno, M.C.; Herrera, R.P. A new approach for the synthesis of bisindoles through AgOTf as catalyst. Beilstein J. Org. Chem., 2014, 10, 2206-2214.
[http://dx.doi.org/10.3762/bjoc.10.228]
[157]
El-Sayeda, M.; Mahmouda, K.; Hilgerotha, A. Glacial acetic acid as an efficient catalyst for simple synthesis of dindolylmethanes. Curr. Chem. Lett., 2014, 3, 7-14.
[http://dx.doi.org/10.5267/j.ccl.2013.10.003]
[158]
Zahran, M.; Abdin, Y.; Salama, H. Eco-friendly and efficient synthesis of bis(indolyl)methanes under microwave irradiation. ARKIVOC, 2008, 11, 256-265.
[159]
Imran, S.; Taha, M.; Ismail, N.H.; Khan, K.M.; Naz, F.; Hussain, M.; Tauseef, S. Synthesis of novel bisindolylmethane Schiff bases and their antibacterial activity. Molecules, 2014, 19, 11722-11740.
[http://dx.doi.org/10.3390/molecules190811722]
[160]
Silveira, C.C.; Mendes, S.R.; Libero, F.M.; Lenardo, E.J.; Peirn, G. Glycerin and CeCl3.7H2O: a new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Lett., 2009, 50, 6060-6063.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.062]
[161]
Handy, S.; Westbrook, N.M. A mild synthesis of bis(indolyl)methanes using a deep eutectic solvent. Tetrahedron Lett., 2014, 55, 4969-4971.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.024]
[162]
Seyedi, N.; Khabazzadeh, H.; Saeednia, S. ZnCl2/Urea as a deep eutectic solvent for the preparation of bis(indolyl)methanes under ultrasonic conditions. Synth. React. Inorg. Met.-Org. Nano-Metal, 2015, 45(10), 1501-1505.
[163]
Almshantaf, M.; Keshe, M.; Merza, J.; Karam, A. Synthesis of bis(indolyl) methane and some devices using heterogeneous catalysts (acidic) in eco-friendly media. Chem. Mat. Res., 2016, 8, 32-36.
[164]
Qu, H.E.; Xiao, C.; Wang, N.; Yu, K.H.; Hu, Q.S.; Liu, L.X. RuCl3‧3H2O catalyzed reactions: facile synthesis of bis(indolyl)methanes under mild conditions. Molecules, 2011, 16, 3855-3868.
[http://dx.doi.org/10.3390/molecules16053855]
[165]
Hagiwara, H.; Sekifuji, M.; Hoshi, T.; Qiao, K.; Yokoyama, C. Synthesis of bis(indolyl)methanes catalyzed by acidic Ionic Liquid Immobilized on Silica (ILIS). Synlett, 2007, 8, 1320-1322.
[http://dx.doi.org/10.1055/s-2007-977453]
[166]
Rajendran, A.; Raghupathy, D.; Priyadarshini, M. A domino green synthesis of bis(indolyl)methanes catalyzed by ionic liquid. [Et3NH]. [HSO4]. Int. J. Chemtech Res., 2011, 3, 298-302.
[167]
Chakraborti, A.K.; Roy, S.R.; Kumar, D.; Chopra, P. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem., 2008, 10, 1111-1118.
[http://dx.doi.org/10.1039/b807572g]
[168]
Mulla, S.A.R.; Sudalai, A.; Pathan, M.Y.; Siddique, S.A.; Inamdar, S.M.; Chavan, S.S.; Reddy, R.S. Efficient, rapid synthesis of bis(indolyl)methane using ethyl ammonium nitrate as an ionic liquid. RSC Advances, 2012, 2, 3525-3529.
[http://dx.doi.org/10.1039/c2ra00849a]
[169]
Noroouzi, M.; Elhamifar, D.; Mirbagheri, R. Self-assembled alkyl imidazolium based organosilica as efficient support for sulfonic acid catalyst in the synthesis of bis(indolyl)methanes. Polyhedron, 2018, 154, 229-235.
[http://dx.doi.org/10.1016/j.poly.2018.07.047]
[170]
Ji, S-J.; Zhou, M-F.; Gu, D-G.; Wang, S-Y.; Loh, T-P. Efficient synthesis of bis(indolyl)methanes catalyzed by Lewis acids in ionic liquids. Synlett, 2003, 13, 2077-2079.
[http://dx.doi.org/10.1055/s-2003-41464]
[171]
Ji, S-J.; Zhou, M-F.; Gu, D-G.; Jiang, Z-Q.; Loh, T-P. Efficient Fe(III) catalyzed synthesis of bis(indolyl)methanes in ionic liquids. Eur. J. Org. Chem., 2004, 2004, 1584-1587.
[http://dx.doi.org/10.1002/ejoc.200300719]
[172]
Mi, X.; Luo, S.; He, J.; Cheng, J-P. Dy(OTf)3 in ionic liquid: an efficient catalytic system for reactions of indole with aldehydes/ketones or imines. Tetrahedron Lett., 2004, 45, 4567-4570.
[http://dx.doi.org/10.1016/j.tetlet.2004.04.039]
[173]
D’Auria, M. Photochemical synthesis of diindolylmethanes. Tetrahedron, 1991, 47, 9225-9230.
[http://dx.doi.org/10.1016/S0040-4020(01)96210-6]
[174]
Carrillo, G.P.; Estrada, J.G.G.; Ramírez, J.L.G.; Toledano, C.A. Infrared-assisted eco-friendly selective synthesis of diindolylmethanes. Green Chem., 2003, 5, 337-339.
[http://dx.doi.org/10.1039/B211011C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy