Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

One-Pot Multicomponent Synthesis of Imidazole Rings in Acidic Ionic Liquids: A Review

Author(s): Cosmas Chinweike Eze*, Mercy Amarachi Ezeokonkwo, Benjamin Ebere Ezema, Abraham Efeturi Onoabedje, Fidelia Ngozika Ibeanu, David Izuchukwu Ugwu, Leonard Ebuka Onyeyilim and James Anayochwkwu Ezugwu

Volume 17, Issue 8, 2020

Page: [975 - 990] Pages: 16

DOI: 10.2174/1570193X17666200226110645

Price: $65

Abstract

The design of the environmentally friendly approach to the synthesis of biologically important compounds without compromising the yield has been the focus of many chemists in recent years. The development of the one-pot synthesis of heterocycles in the presence of Ionic Liquids (ILs), used as both environmental media and catalysts, is efficient and environmentally sustainable. This review highlights the one-pot synthesis of imidazoles in acidic ILs in the past decade. Some reviews have been conducted on imidazoles, such as their pharmacological importance. Hence, we decided to focus on their synthesis in acidic ionic liquids, which the authors are not aware of any published literature.

Keywords: Environmental sustainability, imidazole, ionic liquids, multicomponent, one-pot synthesis, organic synthesis.

« Previous
Graphical Abstract

[1]
Trost, B.M. On inventing reactions for atom economy. Acc. Chem. Res., 2002, 35(9), 695-705.
[http://dx.doi.org/10.1021/ar010068z] [PMID: 12234199]
[2]
Wender, P.A.; Verma, V.A.; Paxton, T.J.; Pillow, T.H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res., 2008, 41(1), 40-49.
[http://dx.doi.org/10.1021/ar700155p] [PMID: 18159936]
[3]
Robinson, R. A synthesis of tropinone. J. Chem. Soc. Trans., 1917, 111, 762-768.
[http://dx.doi.org/10.1039/CT9171100762]
[4]
Pozherskii, A.F.; Soldatenkov, A.T.; Katritxky, A.Y. Heterocycles in Life and Society; Wiley: New York, 1997, pp. 179-180.
[5]
Vijesh, A.M.; Arun, M.I.; Sandeep, T.T.; Hoong-Kun, F. Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab. J. Chem., 2013, 6(2), 197-204.
[http://dx.doi.org/10.1016/j.arabjc.2011.10.007]
[6]
Phillips, A.P.; White, H.L.; Rosen, S. Antithrombotic triphenylimidazoles. Eur. Pat. Appl. EP58890, 1982. Chem. Abstr., 1983, 98.
[7]
Liu, C.; Chen, Q.; Schneller, S.W. 3-Bromo-3-deazaneplanocin and 3-bromo-3-deazaaristeromycin: Synthesis and antiviral activity. Bioorg. Med. Chem. Lett., 2012, 22(16), 5182-5184.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.075] [PMID: 22795626]
[8]
Brzozowski, Z.; Saczewski, F.; Neamati, N. Synthesis and anti-HIV-1 activity of a novel series of 1,4,2-benzodithiazine-dioxides. Bioorg. Med. Chem. Lett., 2006, 16(20), 5298-5302.
[http://dx.doi.org/10.1016/j.bmcl.2006.07.089] [PMID: 16908143]
[9]
Misono, M. Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chem. Commun. (Camb.), 2001, 13, 1141-1152.
[http://dx.doi.org/10.1039/b102573m]
[10]
Black, J.W.; Durant, G.J.; Emmett, J.C.; Ganellin, C.R. Sulphur-methylene isosterism in the development of metiamide, a new histamine H2-receptor antagonist. Nature, 1974, 248(5443), 65-67.
[http://dx.doi.org/10.1038/248065a0] [PMID: 4150456]
[11]
Sondhi, S.M.; Jain, S.; Dinodia, M.; Kumar, A. Synthesis of some thiophene, imidazole and pyridine derivatives exhibiting good anti-inflammatory and analgesic activities. Med. Chem., 2008, 4(2), 146-154.
[http://dx.doi.org/10.2174/157340608783789194] [PMID: 18336334]
[12]
Liu, T.; Sun, C.; Xing, X.; Jing, L.; Tan, R.; Luo, Y.; Huang, W.; Song, H.; Li, Z.; Zhao, Y. Synthesis and evaluation of 2-[2-(phenylthiomethyl)-1H-benzo[d] imidazol-1-yl)acetohydrazide derivatives as antitumor agents. Bioorg. Med. Chem. Lett., 2012, 22(9), 3122-3125.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.061] [PMID: 22483608]
[13]
Balalaie, S.; Arabanian, A.; Hashtroudi, M.S. Zeolite HY and silica gel as new and efficient heterogenous catalysts for the synthesis of triarylimidazoles under microwave irradiation. Monatsh. Chem., 2000, 131(9), 945-948.
[http://dx.doi.org/10.1007/s007060070049]
[14]
de Laszlo, S.E.; Hacker, C.; Li, B.; Kim, D.; MacCoss, M.; Mantlo, N.; Pivnichny, J.V.; Colwell, L.; Koch, G.E.; Cascieri, M.A.; Hagmann, W.K. Potent, orally absorbed glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 1999, 9(5), 641-646.
[http://dx.doi.org/10.1016/S0960-894X(99)00081-5] [PMID: 10201821]
[15]
Newman, M.J.; Rodarte, J.C.; Benbatoul, K.D.; Romano, S.J.; Zhang, C.; Krane, S.; Moran, E.J.; Uyeda, R.T.; Dixon, R.; Guns, E.S.; Mayer, L.D. Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res., 2000, 60(11), 2964-2972.
[PMID: 10850444]
[16]
Balalaie, S.; Armin, A. One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem., 2000, 2(6), 274-276.
[http://dx.doi.org/10.1039/b006201o]
[17]
Karimi, A.R.; Alimohammadi, Z.; Azizian, J.; Mohammadi, A.A.; Mohammadizadeh, M.R. Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO4 support. Catal. Commun., 2006, 7(9), 728-732.
[http://dx.doi.org/10.1016/j.catcom.2006.04.004]
[18]
Sharma, S.D.; Hazarika, P.; Konwar, D. An efficient and one-pot synthesis of 2, 4, 5-trisubstituted and 1, 2, 4, 5-tetrasubstituted imidazoles catalyzed by InCl3•3H2O. Tetrahedron Lett., 2008, 49(14), 2216-2220.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.053]
[19]
Shen, M.G.; Cai, C.; Yi, W.B. Ytterbium perfluorooctanesulfonate as an efficient and recoverable catalyst for the synthesis of trisubstitut-ed imidazoles. J. Fluor. Chem., 2008, 129(6), 541-544.
[http://dx.doi.org/10.1016/j.jfluchem.2008.03.009]
[20]
Khosropour, A.R. Ultrasound-promoted greener synthesis of 2,4,5-trisubstituted imidazoles catalyzed by Zr(acac)4 under ambient conditions. Ultrason. Sonochem., 2008, 15(5), 659-664.
[http://dx.doi.org/10.1016/j.ultsonch.2007.12.005] [PMID: 18299244]
[21]
Kantevari, S.; Vuppalapati, S.V.; Biradar, D.O.; Nagarapu, L. Highly efficient, one-pot, solvent-free synthesis of tetrasubstituted imidaz-oles using HClO4-SiO2 as novel heterogeneous catalyst. J. Mol. Catal. Chem., 2007, 266(1-2), 109-113.
[http://dx.doi.org/10.1016/j.molcata.2006.10.048]
[22]
Nagarapu, L.; Apuri, S.; Kantevari, S. Potassium dodecatugstocobaltate trihydrate (K5CoW12O40• 3H2O): A mild and efficient reusable cata-lyst for the one-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. J. Mol. Catal. Chem., 2007, 266(1-2), 104-108.
[http://dx.doi.org/10.1016/j.molcata.2006.10.056]
[23]
Samai, S.; Nandi, G.C.; Singh, P.; Singh, M.S. L-Proline: an efficient catalyst for the one-pot synthesis of 2, 4, 5-trisubstituted and 1, 2, 4, 5-tetrasubstituted imidazoles. Tetrahedron, 2009, 65(49), 10155-10161.
[http://dx.doi.org/10.1016/j.tet.2009.10.019]
[24]
Wang, X.C.; Gong, H.P.; Quan, Z.J.; Li, L.; Ye, H.L. PEG-400 as an efficient reaction medium for the synthesis of 2, 4, 5-triaryl-1H-imidazoles and 1, 2, 4, 5-tetraaryl-1H-imidazoles. Chin. Chem. Lett., 2009, 20(1), 44-47.
[http://dx.doi.org/10.1016/j.cclet.2008.10.005]
[25]
Safari, J.; Gandomi-Ravandi, S.; Akbari, Z. Sonochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles using nanocrystalline MgAl2O4 as an effective catalyst. J. Adv. Res., 2013, 4(6), 509-514.
[http://dx.doi.org/10.1016/j.jare.2012.09.001] [PMID: 25685459]
[26]
Chary, M.V.; Keerthysri, N.C.; Vupallapati, S.V.; Lingaiah, N.; Kantevari, S. Tetrabutylammonium bromide (TBAB) in isopropanol: An efficient, novel, neutral and recyclable catalytic system for the synthesis of 2, 4, 5-trisubstituted imidazoles. Catal. Commun., 2008, 9(10), 2013-2017.
[http://dx.doi.org/10.1016/j.catcom.2008.03.037]
[27]
Shaterian, H.R.; Ranjbar, M.; Azizi, K. Synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, triphenyl (propyl-3-sulphonyl) phosphonium toluenesulfonate, as reusable catalyst. J. Iran Chem. Soc, 2011, 8(4), 1120-1134.
[http://dx.doi.org/10.1007/BF03246570]
[28]
Mirjalili, B.F.; Bamoniri, A.H.; Zamani, L. One-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles promoted by nano-TiCl4.SiO2. Sci. Iran., 2012, 19(3), 565-568.
[http://dx.doi.org/10.1016/j.scient.2011.12.013]
[29]
Heravi, M.M.; Derikvand, F.; Bamoharram, F.F. Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J. Mol. Catal. Chem., 2007, 263(1-2), 112-114.
[http://dx.doi.org/10.1016/j.molcata.2006.08.048]
[30]
Wang, L.M.; Wang, Y.H.; Tian, H.; Yao, Y.F.; Shao, J.H.; Liu, B. Ytterbium triflate as an efficient catalyst for one-pot synthesis of substituted imidazoles through three-component condensation of benzil, aldehydes and ammonium acetate. J. Fluor. Chem., 2006, 127(12), 1570-1573.
[http://dx.doi.org/10.1016/j.jfluchem.2006.08.005]
[31]
Siddiqui, S.A.; Narkhede, U.C.; Palimkar, S.S.; Daniel, T.; Lahoti, R.J.; Srinivasan, K.V. Room temperature ionic liquid promoted im-proved and rapid synthesis of 2, 4, 5-triaryl imidazoles from aryl aldehydes and 1, 2-diketones or α-hydroxyketone. Tetrahedron, 2005, 61(14), 3539-3546.
[http://dx.doi.org/10.1016/j.tet.2005.01.116]
[32]
Heravi, M.M.; Bakhtiari, K.; Oskooie, H.A.; Taheri, S. Synthesis of 2, 4, 5-triaryl-imidazoles catalyzed by NiCl2•6H2O under heterogene-ous system. J. Mol. Catal. Chem., 2007, 263(1-2), 279-281.
[http://dx.doi.org/10.1016/j.molcata.2006.08.070]
[33]
Kidwai, M.; Mothsra, P.; Bansal, V.; Somvanshi, R.K.; Ethayathulla, A.S.; Dey, S.; Singh, T.P. One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. J. Mol. Catal. Chem., 2007, 265(1-2), 177-182.
[http://dx.doi.org/10.1016/j.molcata.2006.10.009]
[34]
Meine, N.; Benedito, F.; Rinaldi, R. Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem., 2010, 12(10), 1711-1714.
[http://dx.doi.org/10.1039/c0gc00091d]
[35]
Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[36]
Ahrens, S.; Peritz, A.; Strassner, T. Tunable Aryl Alkyl Ionic Liquids (TAAILs): The next generation of ionic liquids. Angew. Chem. Int. Ed. Engl., 2009, 48(42), 7908-7910.
[http://dx.doi.org/10.1002/anie.200903399] [PMID: 19760688]
[37]
Greaves, T.L.; Weerawardena, A.; Fong, C.; Drummond, C.J. Many protic ionic liquids mediate hydrocarbon-solvent interactions and promote amphiphile self-assembly. Langmuir, 2007, 23(2), 402-404.
[http://dx.doi.org/10.1021/la062895k] [PMID: 17209586]
[38]
Timperman, L.; Skowron, P.; Boisset, A.; Galiano, H.; Lemordant, D.; Frackowiak, E.; Béguin, F.; Anouti, M. Triethylammonium bis(tetrafluoromethylsulfonyl)amide protic ionic liquid as an electrolyte for electrical double-layer capacitors. Phys. Chem. Chem. Phys., 2012, 14(22), 8199-8207.
[http://dx.doi.org/10.1039/c2cp40315c] [PMID: 22546714]
[39]
Du, Z.; Li, Z.; Guo, S.; Zhang, J.; Zhu, L.; Deng, Y. Investigation of physicochemical properties of lactam-based Brønsted acidic ionic liquids. J. Phys. Chem. B, 2005, 109(41), 19542-19546.
[http://dx.doi.org/10.1021/jp0529669] [PMID: 16853525]
[40]
Markusson, H.; Belières, J.P.; Johansson, P.; Angell, C.A.; Jacobsson, P. Prediction of macroscopic properties of protic ionic liquids by ab initio calculations. J. Phys. Chem. A, 2007, 111(35), 8717-8723.
[http://dx.doi.org/10.1021/jp072036k] [PMID: 17691754]
[41]
Miran, M.S.; Kinoshita, H.; Yasuda, T.; Susan, M.A.B.H.; Watanabe, M. Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. Chem. Commun. (Camb.), 2011, 47(47), 12676-12678.
[http://dx.doi.org/10.1039/c1cc14817f] [PMID: 22039587]
[42]
Johnson, K.E.; Richard, M.P.; John, B. Brønsted acids in ionic liquids: Fundamentals, organic reactions, and comparisons. Monatsh. Chem., 2007, 138(11), 1077-1101.
[http://dx.doi.org/10.1007/s00706-007-0755-6]
[43]
Dake, S.A.; Kulkarni, R.S.; Kadam, V.N.; Modani, S.S.; Bhale, J.J.; Tathe, S.B.; Pawar, R.P. Phosphonium ionic liquid: A novel catalyst for benzyl halide oxidation. Synth. Commun., 2009, 39(21), 3898-3904.
[http://dx.doi.org/10.1080/00397910902840835]
[44]
Pajuste, K.; Plotniece, A.; Kore, K.; Intenberga, L.; Cekavicus, B.; Kaldre, D.; Duburs, G.; Sobolev, A. Use of pyridinium ionic liquids as catalysts for the synthesis of 3, 5-bis (dodecyloxycarbonyl)-1, 4-dihydropyridine derivative. Cent. Eur. J. Chem., 2011, 9(1), 143-148.
[45]
Shelke, K.F.; Sapkal, S.; Sonal, S.; Madje, B.R.; Shingate, B.B.; Shingare, M.S. An efficient synthesis of 2, 4, 5-triaryl-1H-imidazole derivatives catalyzed by boric acid in aqueous media under ultrasound-irradiation. Bull. Korean Chem. Soc., 2009, 30(5), 1057-1060.
[http://dx.doi.org/10.5012/bkcs.2009.30.5.1057]
[46]
Sharma, G.V.M.; Jyothi, Y.; Lakshmi, P.S. Efficient room temperature synthesis of tri and tetrasubstituted imidazoles catalyzed by ZrCl4. Synth. Commun., 2006, 3(20), 2991-3000.
[http://dx.doi.org/10.1080/00397910600773825]
[47]
Mohammadizadeh, M.R.; Hasaninejad, A.; Bahramzadeh, M. Trifluoroacetic acid as an efficient catalyst for one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under microwave-assisted, solvent-free conditions. Synth. Commun., 2009, 39(18), 3232-3242.
[http://dx.doi.org/10.1080/00397910902737122]
[48]
Uçucu, O.; Karaburun, N.G.; Işikdağ, I. Synthesis and analgesic activity of some 1-benzyl-2-substituted-4,5-diphenyl-1H-imidazole derivatives. Farmaco, 2001, 56(4), 285-290.
[http://dx.doi.org/10.1016/S0014-827X(01)01076-X] [PMID: 11421256]
[49]
Gracias, V.; Darczak, D.; Gasiecki, A.F.; Djuric, S.W. Synthesis of fused triazolo-imidazoles derivatives by sequential van Leusen,
alkyne-azide cycloaddition reactions. Tetrahedron Lett., 2005, 46(52), 9053-9256.
[50]
Zhao, N.; Wang, Y.L.; Wang, J.Y. A rapid and convenient synthesis of derivatives of imidazoles under microwave irradiation. J. Chin. Chem. Soc. (Taipei), 2005, 52(3), 535-538.
[http://dx.doi.org/10.1002/jccs.200500078]
[51]
Heravi, M.M.; Zakeri, M.; Karimi, N.; Saeedi, M.; Oskooie, H.A.; Tavakoli-Hosieni, N. Acidic ionic liquid [(CH2)4SO3HMIM] [HSO4]: A green media for the simple and straightforward synthesis of 2, 4, 5-trisubstituted imidazoles. Synth. Commun., 2010, 40(13), 1998-2006.
[http://dx.doi.org/10.1080/00397910903219377]
[52]
Damavandi, S. New approach to the multicomponent one-pot synthesis of 2-aryl-1H-phenanthro [9, 10-d] imidazoles. Heterocycl. Commun., 2011, 17(1-2), 79-81.
[http://dx.doi.org/10.1515/hc.2011.018]
[53]
Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. Engl., 2004, 43(12), 1566-1568.
[http://dx.doi.org/10.1002/anie.200353240] [PMID: 15022235]
[54]
Akiyama, T.; Itoh, J.; Fuchibe, K. Recent progress in chiral Brønsted acid catalysis. Adv. Synth. Catal., 2006, 348(9), 999-1010.
[http://dx.doi.org/10.1002/adsc.200606074]
[55]
Storer, R.I.; Carrera, D.E.; Ni, Y.; MacMillan, D.W. Enantioselective organocatalytic reductive amination. J. Am. Chem. Soc., 2006, 128(1), 84-86.
[http://dx.doi.org/10.1021/ja057222n] [PMID: 16390133]
[56]
Jiang, J.; Yu, J.; Sun, X.X.; Rao, Q.Q.; Gong, L.Z. Organocatalytic asymmetric three-component cyclization of cinnamaldehydes and primary amines with 1,3-dicarbonyl compounds: Straightforward access to enantiomerically enriched dihydropyridines. Angew. Chem. Int. Ed. Engl., 2008, 47(13), 2458-2462.
[http://dx.doi.org/10.1002/anie.200705300] [PMID: 18293289]
[57]
Wang, X.B.; He, L.; Jian, T.Y.; Ye, S. Cyclic phosphoric acid catalyzed one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Chin. Chem. Lett., 2012, 23(1), 13-16.
[http://dx.doi.org/10.1016/j.cclet.2011.09.018]
[58]
Bigdeli, M.A.; Nemati, F.; Mahdavinia, G.H.; Doostmohammadi, H. A series of 1, 8-dioxooctahydroxanthenes are prepared using tri-chloroisocyanuric acid. Chin. Chem. Lett., 2009, 2(11), 1275-1278.
[http://dx.doi.org/10.1016/j.cclet.2009.06.024]
[59]
Bigdeli, M.A.; Jafari, S.; Mahdavinia, G.H.; Hazarkhani, H. Trichloroisocyanuric acid, a new and efficient catalyst for the synthesis of dihydropyrimidinones. Catal. Commun., 2007, 8(11), 1641-1644.
[http://dx.doi.org/10.1016/j.catcom.2007.01.022]
[60]
Veisi, H.; Gholbedaghi, R.; Malakootikhah, J.; Sedrpoushan, A.; Maleki, K.D. Trichloroisocyanuric acid-catalyzed reaction of indoles: An expeditious synthesis of bis-indolyl, tris-indolyl, di (bis-indolyl), tri (bis-indolyl), and tetra (bis-indolyl) methane under solid-state conditions. J. Heterocycl. Chem., 2010, 47(6), 1398-1405.
[http://dx.doi.org/10.1002/jhet.486]
[61]
Khazaei, A.; Zolfigol, M.A. Rostami, A.; Choghamarani, A.G. Trichloroisocyanuric acid (TCCA) as a mild and efficient catalyst for the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) under heterogonous conditions. Catal. Commun., 2007, 8(3), 543-547.
[http://dx.doi.org/10.1016/j.catcom.2006.06.018]
[62]
Zolfigol, M.A.; Khazaei, A.; Choghamarani, A.G.; Rostami, A.; Hajjami, M. Acylation of alcohols catalyzed by using 1, 3-dibromo-5, 5-dimethylhydentoin or trichloroisocyanuric acid. Catal. Commun., 2006, 7(6), 399-402.
[http://dx.doi.org/10.1016/j.catcom.2005.12.004]
[63]
Hojati, S.F.; Nezhadhoseiny, S.A.; Beykzadeh, Z. Trichloroisocyanuric acid-catalyzed one-pot synthesis of 2, 4, 5-trisubstituted imidaz-oles. Monatsh. Chem., 2013, 144(3), 387-390.
[http://dx.doi.org/10.1007/s00706-012-0830-5]
[64]
Deng, X.; Zhou, Z.; Zhang, A.; Xie, G. Brønsted acid ionic liquid [Et3 NH][HSO4] as an efficient and reusable catalyst for the synthesis of 2, 4, 5-triaryl-1H-imidazoles. Res. Chem. Intermed., 2013, 39(3), 1101-1108.
[http://dx.doi.org/10.1007/s11164-012-0669-8]
[65]
Ghorbani-Choghamarani, A.; Shiri, L.; Azadi, G.; Pourbahar, N. One-pot synthesis of 2, 4, 5-tri-substituted and 1, 2, 4, 5-tetra-substituted imidazoles catalyzed by poly (4-vinylpyridinium tribromide)(PVP Br3) or citric acid. Res. Chem. Intermed., 2015, 41(8), 4997-5005.
[http://dx.doi.org/10.1007/s11164-014-1583-z]
[66]
Hekmatshoar, R.; Kargar, M.; Mostashari, A.; Hashemi, Z.; Goli, F.; Mousavizadeh, F. A practical and highly efficient synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles using 2-ethylhexanoic acid as a reusable organocatalyst and reaction medium. GUJS, 2015, 28(1), 21-26.
[67]
Naureen, S.; Ijaz, F.; Nazeer, A.; Chaudhry, F.; Munawar, M.A.; Khan, M.A. Facile, eco-friendly, one-pot protocol for the synthesis of indole-imidazole derivatives catalyzed by amino acids. Synth. Commun., 2017, 47(16), 1478-1484.
[http://dx.doi.org/10.1080/00397911.2017.1332766]
[68]
Romanelli, G.P.; Baronetti, G.; Thomas, H.J.; Autino, J.C. Efficient method for tetrahydropyranylation/depyranylation of phenols and alcohols using a solid acid catalyst with Wells-Dawson structure. Tetrahedron Lett., 2002, 43(42), 7589-7591.
[http://dx.doi.org/10.1016/S0040-4039(02)01822-1]
[69]
Romanelli, G.P.; Bennardi, D.; Ruiz, D.M.; Baronetti, G.; Thomas, H.J.; Autino, J.C. A solvent-free synthesis of coumarins using a Wells-Dawson heteropolyacid as catalyst. Tetrahedron Lett., 2004, 45(48), 8935-8939.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.183]
[70]
Arabi, M.; Amini, M.M.; Abedini, M.; Nemati, A.; Alizadeh, M. Esterification of phthalic anhydride with 1-butanol and 2-ethylhexanol catalyzed by heteropolyacids. J. Mol. Catal. Chem., 2003, 200(1-2), 105-110.
[http://dx.doi.org/10.1016/S1381-1169(03)00043-8]
[71]
Heravi, M.M.; Ranjbar, L.; Derikvand, F.; Bamoharram, F.F.H. 6P2W18O62: An efficient and reusable catalyst for one-pot synthesis of β-acetamido ketone and esters. Catal. Commun., 2007, 8, 289-291.
[http://dx.doi.org/10.1016/j.catcom.2006.06.011]
[72]
Karimi, A.R.; Alimohammadi, Z.; Amini, M.M. Wells-Dawson heteropolyacid supported on silica: A highly efficient catalyst for synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Mol. Divers., 2010, 14(4), 635-641.
[http://dx.doi.org/10.1007/s11030-009-9197-x] [PMID: 19866367]
[73]
Jadhav, G.R.; Shaikh, M.U.; Kale, R.P.; Gill, C.H. 1-Heptanesulfonic acid sodium salt: One pot efficient synthesis of 2-aryl-1-arylmethyl-1H-1, 3-benzo [d] imidazoles. Chin. Chem. Lett., 2009, 20(5), 535-538.
[http://dx.doi.org/10.1016/j.cclet.2008.12.004]
[74]
Shelke, K.F.; Sapkal, S.B.; Kakade, G.K.; Shingate, B.B.; Shingare, M.S. Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the one-pot synthesis of 2, 4, 5-triarylimidazoles under microwave irradiation. Green Chem. Lett. Rev., 2010, 3(1), 27-32.
[http://dx.doi.org/10.1080/17518250903505246]
[75]
Javid, A.; Heravi, M.M.; Bamoharram, F.F.; Nikpour, M. One-pot synthesis of tetrasubstituted imidazoles catalyzed by preyssler-type heteropoly acid. J. Chem., 2011, 8(2), 547-552.
[76]
Kuarm, B.S.; Madhav, J.V.; Rajitha, B.; Reddy, Y.T.; Reddy, P.N.; Crooks, P.A. Cellulose sulfuric acid: Novel and efficient biodegradable and recyclable acid catalyst for the solid-state synthesis of thiadiazolo benzimidazoles. Synth. Commun., 2011, 41(5), 662-669.
[http://dx.doi.org/10.1080/00397911003632899]
[77]
Shaterian, H.R.; Ranjbar, M. An environmental friendly approach for the synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, N-methyl-2-pyrrolidonium hydrogen sulfate, as reusable catalyst. J. Mol. Liq., 2011, 160(1), 40-49.
[http://dx.doi.org/10.1016/j.molliq.2011.02.012]
[78]
Montazeri, N.; Pourshamsian, K.; Khoddadi, M.; Khoddadi, K. Poly phosphoric acid impregnated on silica gel (PPA-SiO2): A Versatile and reusable catalyst for the synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under solvent-free and microwave irradiation conditions. Orient. J. Chem., 2011, 27(3), 1023.
[79]
Niknam, K.; Deris, A.; Naeimi, F.; Majleci, F. Synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles using silica-bonded propylpiperazine N-sulfamic acid as a recyclable solid acid catalyst. Tetrahedron Lett., 2011, 52(36), 4642-4645.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.105]
[80]
Rafiee, E.; Mahdavi, H.; Joshaghani, M. Supported heteropoly acids offering strong option for efficient and cleaner processing for the synthesis of imidazole derivatives under solvent-free condition. Mol. Divers., 2011, 15(1), 125-134.
[http://dx.doi.org/10.1007/s11030-009-9213-1] [PMID: 20101458]
[81]
Fang, D.; Yang, J.; Jiao, C. Thermal-regulated PEG1000 -based ionic liquid/PM for one-pot three-component synthesis of 2, 4, 5-trisubstituted imidazoles. Catal. Sci. Technol., 2011, 1(2), 243-245.
[http://dx.doi.org/10.1039/c0cy00016g]
[82]
Shaterian, H.R.; Ranjbar, M.; Azizi, K. Synthesis of highly substituted imidazoles using Brønsted acidic ionic liquid, triphenyl (propyl-3-sulphonyl) phosphonium toluenesulfonate, as teusable catalyst. J. Iran Chem. Soc, 2011, 8(4), 1120-1134.
[http://dx.doi.org/10.1007/BF03246570]
[83]
Zolfigol, M.A.; Khazaei, A.; Moosavi-Zare, A.R.; Zare, A.; Asgari, Z.; Khakyzadeh, V.; Hasaninejad, A. Design of ionic liquid 1, 3-disulfonic acid imidazolium hydrogen sulfate as a dual-catalyst for the one-pot multi-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. J. Ind. Eng. Chem., 2013, 19(3), 721-726.
[http://dx.doi.org/10.1016/j.jiec.2012.10.014]
[84]
Maleki, B.; Shirvan, H.K.; Taimazi, F.; Akbarzadeh, E. Sulfuric acid immobilized on silica gel as highly efficient and heterogeneous catalyst for the one-pot synthesis of 2, 4, 5-triaryl-1H-imidazoles. Int. J. Org. Chem. (Irvine), 2012, 2(01), 93.
[http://dx.doi.org/10.4236/ijoc.2012.21015]
[85]
Marzouk, A.A.; Abbasov, V.M.; Talybov, A.H. Short time one-spot synthesis of 2, 4, 5-trisubstituted-imidazoles using morpholinium hydrogen sulphate as green and reusable catalysts. Chem. J., 2012, 2, 179-184.
[86]
Zhang, Y.; Zhou, Z. One-pot synthesis of 2,4,5-trisubstituted imidazoles using [BPy]H2PO4, an efficient and recyclable catalyst. Prep. Biochem. Biotechnol., 2013, 43(2), 189-196.
[http://dx.doi.org/10.1080/10826068.2012.719845] [PMID: 23302106]
[87]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthe-sis of 2, 4, 5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab. J. Chem., 2017, 10, S2754-S2761.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.022]
[88]
Eshghi, H.; Rahimizadeh, M.; Hasanpour, M.; Bakavoli, M. A novel imidazolium-based acidic ionic liquid as an efficient and reusable catalyst for the synthesis of 2-aryl-1H-phenanthro [9, 10-d] imidazoles. Res. Chem. Intermed., 2015, 41(7), 4187-4197.
[http://dx.doi.org/10.1007/s11164-013-1522-4]
[89]
Ziarani, G.M.; Badiei, A.; Lashgari, N.; Farahani, Z. Efficient one-pot synthesis of 2, 4, 5-trisubstituted and 1, 2, 4, 5-tetrasubstituted imidazoles using SBA-Pr-SO3 H as a green nano catalyst. J. Saudi Chem. Soc., 2016, 20(4), 419-427.
[http://dx.doi.org/10.1016/j.jscs.2013.01.005]
[90]
Safari, J.; Zarnegar, Z. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation. J. Chem. Sci., 2013, 12(4), 835-841.
[http://dx.doi.org/10.1007/s12039-013-0462-2]
[91]
Das, P.J.; Das, J.; Ghosh, M.; Sultana, S. Solvent free one-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles catalyzed by secondary amine based ionic liquid and defective Keggin Heteropoly acid. Green Sustain. Chem., 2013, 3(0), 4-6.
[92]
Ran, Y.; Li, M.; Zhang, Z.Z. β-Cyclodextrin-propyl sulfonic acid catalysed one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles as local anesthetic agents. Molecules, 2015, 20(11), 20286-20296.
[http://dx.doi.org/10.3390/molecules201119696] [PMID: 26569210]
[93]
Shoar, R.H.; Rahimzadeh, G.; Derikvand, F.; Farzaneh, M. Four-component, one-pot synthesis of tetra-substituted imidazoles using a catalytic amount of MCM-41 or p-TsOH. Synth. Commun., 2010, 40(9), 1270-1275.
[http://dx.doi.org/10.1080/00397910903068204]
[94]
Nikoofar, K.; Dizgarani, S.M. HNO3@ nano SiO2: An efficient catalytic system for the synthesis of multi-substituted imidazoles under solvent-free conditions. J. Saudi Chem. Soc., 2017, 21(7), 787-794.
[http://dx.doi.org/10.1016/j.jscs.2015.11.006]
[95]
Nasr-Esfahani, M.; Montazerozohori, M.; Abdizadeh, T. Multi-component synthesis of highly substituted imidazoles catalyzed by nano-rod vanadatesulfuric acid. Chem. Pap., 2015, 69(11), 1491-1499.
[http://dx.doi.org/10.1515/chempap-2015-0156]
[96]
Chavan, L.D.; Shankarwar, S.G. KSF supported 10-molybdo-2-vanadophosphoric acid as an efficient and reusable catalyst for one-pot synthesis of 2, 4, 5-trisubstituted imidazole derivatives under solvent-free condition. Chin. J. Catal., 2015, 36(7), 1054-1059.
[http://dx.doi.org/10.1016/S1872-2067(15)60830-0]
[97]
Mirsafaei, R.; Heravi, M.M.; Ahmadi, S.; Hosseinnejad, T. Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2, 4, 5-triaryl-1 H-imidazoles. Chem. Pap., 2016, 70(4), 418-429.
[http://dx.doi.org/10.1515/chempap-2015-0228]
[98]
Heravi, M.M.; Karimi, N.; Pooremami, S. One-Pot three Components Synthesis of 2, 4, 5-Triaryl-imidazoles catalyzed by Caro’s acid-silica gel under solvent-free condition. Adv. J. Chem. Sec. A., 2019, 2(1), 73-78.
[99]
Kanaani, E.; Nasr‐Esfahani, M. Citrate trisulfonic acid: A heterogeneous organocatalyst for the synthesis of highly substituted Imidazoles. J. Chin. Chem. Soc. (Taipei), 2019, 66(1), 119-125.
[http://dx.doi.org/10.1002/jccs.201800015]
[100]
Sonyanaik, B.; Ashok, K.; Rambabu, S.; Ravi, D.; Kurumanna, A.; Madhu, P.; Sakram, B. Facile one pot multi-component solvent-free synthesis of 2, 4, 5-trisubstituted imidazoles using “green” and expeditious ionic liquid catalyst under microwave irradiation. Russ. J. Gen. Chem., 2018, 88(3), 537-540.
[http://dx.doi.org/10.1134/S1070363218030234]
[101]
Teymoori, E.; Davoodnia, A.; Khojastehnezhad, A.; Hosseininasab, N. Nanomagnetic organic-inorganic hybrid (CuFe2O4@ Si-Imid-PMo): An efficient green catalyst for the Synthesis of 2, 4, 5-trisubstituted imidazoles. Iran Chem. Commun, 2019, 7, 271-282.
[102]
Maleki, A.; Rahimi, J.; Valadi, K. Sulfonated Fe3O4@ PVA superparamagnetic nanostructure: Design, in situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic-inorganic Bronsted acid catalyst. Nano-Struct. Nano-Objects, 2019, 18, 100264.
[http://dx.doi.org/http://dx.doi.org/10.1016/j.nanoso.2019.100264]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy