Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Microwave Assisted Catalyst-free Synthesis of Bioactive Heterocycles

Author(s): Bubun Banerjee* and Gurpreet Kaur

Volume 7, Issue 1, 2020

Page: [5 - 22] Pages: 18

DOI: 10.2174/2213335607666200226102010

Price: $65

conference banner
Abstract

This review deals with the recent advances on the microwave-assisted synthesis of bioactive heterocycles without using any catalyst under various reaction conditions. Synthesis of various biologically promising N-heterocycles, O-heterocycles, S-heterocycles, N as well as O- or S-heterocycles reported so far under catalyst-free microwave-irradiated conditions are discussed in this review.

Keywords: Catalyst-free, microwave, heterocycles, sustainable synthesis, bioactive molecules, irradiated.

Graphical Abstract

[1]
Banerjee, B. [Bmim]BF4: A versatile ionic liquid for the synthesis of diverse bioactive heterocycles. Chemistry Select, 2017, 2, 8362-8376.
[http://dx.doi.org/10.1002/slct.201701700]
[2]
Banerjee, B. Bismuth(III) triflate: An efficient catalyst for the synthesis of diverse biologically relevant heterocycles. ChemistrySelect, 2017, 2, 6744-6757.
[http://dx.doi.org/10.1002/slct.201701441]
[3]
Banerjee, B. Recent developments on ultrasound-assisted synthesis of bioactive N-heterocycles at ambient temperature. Aust. J. Chem., 2017, 70, 872-888.
[http://dx.doi.org/10.1071/CH17080]
[4]
Banerjee, B. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason. Sonochem., 2017, 35(Pt A), 15-35.
[http://dx.doi.org/10.1016/j.ultsonch.2016.10.010] [PMID: 27771265]
[5]
Kaur, G.; Sharma, A.; Banerjee, B. [Bmim]PF6: An efficient tool for the synthesis of diverse bioactive heterocycles. J. Serb. Chem. Soc., 2018, 83, 1071-1097.
[http://dx.doi.org/10.2298/JSC180103052K]
[6]
Banerjee, B. Recent developments on nano-ZnO catalyzed synthesis of bioactive heterocycles. J. Nanostruct. Chem, 2017, 7, 389-413.
[http://dx.doi.org/10.1007/s40097-017-0247-0]
[7]
Banerjee, B. Recent developments on organo-bicyclo-bases catalyzed multi component synthesis of biologically relevant heterocycles. Curr. Org. Chem., 2018, 22, 208-233.
[http://dx.doi.org/10.2174/1385272821666170703123129]
[8]
Kaur, G.; Bala, K.; Devi, S.; Banerjee, B. Camphorsulfonic Acid (CSA): An efficient organocatalyst for the synthesis or derivatization of heterocycles with biologically promising activities. Curr. Green Chem., 2018, 5, 150-167.
[http://dx.doi.org/10.2174/2213346105666181001113413]
[9]
Kaur, G.; Devi, P.; Thakur, S.; Kumar, A.; Chandel, R.; Banerjee, B. Magnetically separable transition metal ferrites: versatile heterogeneous nano-catalysts for the synthesis of diverse bioactive heterocycles. ChemistrySelect, 2019, 4, 2181-2199.
[http://dx.doi.org/10.1002/slct.201803600]
[10]
Banerjee, B. Recent developments on ultrasound assisted catalyst-free organic synthesis., Ultrason. Sonochem., 2017, 35(Pt A), 1-14.
[http://dx.doi.org/10.1016/j.ultsonch.2016.09.023] [PMID: 27771266]
[11]
Brahmachari, G.; Banerjee, B. Catalyst-free organic synthesis at room temperature in aqueous and non-aqueous media: an emerging field of green chemistry practice and sustainability. Curr. Green Chem., 2015, 2, 274-305.
[http://dx.doi.org/10.2174/2213346102666150218195142]
[12]
Man, A.K.; Shahidan, R. Microwave-assisted chemical reactions. J. Macromol. Sci. Part A Pure Appl. Chem., 2007, 44, 651-657.
[http://dx.doi.org/10.1080/10601320701285136]
[13]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
[14]
Meshram, H.M.; Rao, N.N.; Rao, L.C.; Kumar, N.S. Microwave assisted catalyst-free synthesis of azaarene-substituted 3-hydroxy-2-oxindoles by the functionalization of sp3 C-H bond in methyl pyridine. Tetrahedron Lett., 2012, 53, 3963-3966.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.077]
[15]
Thakur, P.B.; Sirisha, K.; Sarma, A.V.S.; Meshram, H.M. Microwave assisted rapid, catalyst-free, and efficient synthesis of a new class of diversely functionalized 3-hydroxy-2-oxindole scaffolds under aqueous reaction media. Tetrahedron Lett., 2014, 55, 2459-2462.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.008]
[16]
Jablonkai, E.; Keglevich, G. Catalyst-free P-C coupling reactions of halobenzoic acids and secondary phosphine oxides under microwave irradiation in water. Tetrahedron Lett., 2015, 56, 1638-1640.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.015]
[17]
Ramana, K.V.; Rasheed, S.; Sekhar, K.C.; Adam, S.; Raju, C.N. One-pot and catalyst-free synthesis of novel α-aminophosphonates under microwave irradiation and their biological activity. Der. Pharm. Lett, 2012, 4, 456-463.
[18]
Vijayakumar, B. Microwave induced solvent-free and catalyst-free synthesis of 1,4-dihydropyridine derivatives using ammonium bicarbonate. Ind. J. Adv. Chem. Sci, 2013, 1, 77-83.
[19]
Gong, G-X.; Zhou, J-F.; An, L-T.; Duan, X-L.; Ji, S-J. Catalyst-free synthesis of α,α-bis(4-hydroxycoumarin-3-yl)toluene in aqueous media under microwave irradiation. Synth. Commun., 2009, 39, 497-505.
[http://dx.doi.org/10.1080/00397910802398272]
[20]
Mu, X-J.; Lei, M-Y.; Zoua, J-P.; Zhang, W. Microwave-assisted solvent-free and catalyst-free Kabachnik–Fields reactions for α-amino phosphonates. Tetrahedron Lett., 2006, 47, 1125-1127.
[http://dx.doi.org/10.1016/j.tetlet.2005.12.027]
[21]
Walsh, C.T.; Garneau-Tsodikova, S.; Howard-Jones, A.R. Biological formation of pyrroles: nature’s logic and enzymatic machinery. Nat. Prod. Rep., 2006, 23(4), 517-531.
[http://dx.doi.org/10.1039/b605245m] [PMID: 16874387]
[22]
Bürli, R.W.; McMinn, D.; Kaizerman, J.A.; Hu, W.; Ge, Y.; Pack, Q.; Jiang, V.; Gross, M.; Garcia, M.; Tanaka, R.; Moser, H.E. DNA binding ligands targeting drug-resistant Gram-positive bacteria. Part 1: Internal benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2004, 14(5), 1253-1257.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.042] [PMID: 14980676]
[23]
Bürli, R.W.; Jones, P.; McMinn, D.; Le, Q.; Duan, J.X.; Kaizerman, J.A.; Difuntorum, S.; Moser, H.E. DNA binding ligands targeting drug-resistant Gram-positive bacteria. Part 2: C-terminal benzimidazoles and derivatives. Bioorg. Med. Chem. Lett., 2004, 14(5), 1259-1263.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.043] [PMID: 14980677]
[24]
Demir, A.S.; Akhmedov, I.M.; Sesenoglu, O. Synthesis of 1,2,3,5-tetrasubstituted pyrrole derivatives from 2-(2-bromoallyl)-1,3-dicarbonyl compounds. Tetrahedron, 2002, 58, 9793-9799.
[http://dx.doi.org/10.1016/S0040-4020(02)01298-X]
[25]
Cocco, M.T.; Congiu, C.; Onnis, V. Synthesis and in vitro antitumoral activity of new N-phenyl-3-pyrrolecarbothioamides. Bioorg. Med. Chem., 2003, 11(4), 495-503.
[http://dx.doi.org/10.1016/S0968-0896(02)00465-0] [PMID: 12538014]
[26]
Denny, W.A.; Rewcastle, G.W.; Baguley, B.C. Potential antitumor agents. 59. Structure-activity relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of “minimal” DNA-intercalating agents which may not act via topoisomerase II. J. Med. Chem., 1990, 33(2), 814-819.
[http://dx.doi.org/10.1021/jm00164a054] [PMID: 2153829]
[27]
Carson, J.R.; Carmosin, R.J.; Pitis, P.M.; Vaught, J.L.; Almond, H.R.; Stables, J.P.; Wolf, H.H.; Swinyard, E.A.; White, H.S. Aroyl(aminoacyl)pyrroles, a new class of anticonvulsant agents. J. Med. Chem., 1997, 40(11), 1578-1584.
[http://dx.doi.org/10.1021/jm9606655] [PMID: 9171868]
[28]
Demopoulos, V.J.; Rekka, E. Isomeric benzoylpyrroleacetic acids: some structural aspects for aldose reductase inhibitory and anti-inflammatory activities. J. Pharm. Sci., 1995, 84(1), 79-82.
[http://dx.doi.org/10.1002/jps.2600840119] [PMID: 7714750]
[29]
Das, B.; Reddy, G.C.; Balasubramanyam, P.; Veeranjaneyulu, B. An efficient new method for the synthesis of polysubstituted pyrroles. Synthesis, 2010, 10, 1625-1628.
[http://dx.doi.org/10.1055/s-0029-1218703]
[30]
Ramesh, K.; Karnakar, K.; Satish, G.; Nageswar, Y.V.D. Novel and efficient supramolecular synthesis of pyrroles in the presence of β-cyclodextrin in water. Chin. Chem. Lett., 2012, 23, 1331-1334.
[http://dx.doi.org/10.1016/j.cclet.2012.11.005]
[31]
Nagarapu, L.; Mallepalli, R.; Yeramanchi, L.; Bantu, R. Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for one-pot synthesis of polysubstituted pyrroles under catalyst-free conditions. Tetrahedron Lett., 2011, 52, 3401-3404.
[http://dx.doi.org/10.1016/j.tetlet.2011.04.095]
[32]
Reddy, L.M.; Chandrashekar, P.; Reddy, A.R.; Reddy, C.K. Synthesis of polysubstituted pyrroles in aqueous medium directly from nitro compounds. Russ. J. Org. Chem., 2015, 85, 155-161.
[33]
Siddiqui, I.R.; Kumar, D.; Shamim, S. Ionic liquid promoted multicomponent reaction: A good strategy for the eco‐compatible synthesis of functionalized pyrroles. J. Heterocycl. Chem., 2013, 50, 111-115.
[http://dx.doi.org/10.1002/jhet.1085]
[34]
Mariappan, A.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Microwave-assisted catalyst-free synthesis of tetrasubstituted pyrroles using dialkyl acetylenedicarboxylates and monophenacylanilines. Synth. Commun., 2016, 46, 805-812.
[http://dx.doi.org/10.1080/00397911.2016.1176201]
[35]
Pozherskii, A.F.; Soldatenkov, A.T.; Katritzky, A.Y. Heterocycles in Life and Society, 1st ed; Wiley & Sons: New York, 1997.
[36]
Amir, M.; Ahsan, I.; Akhter, W.; Khan, S.A.; Ali, I. Design and synthesis of some azole derivatives containing 2,4,5-triphenyl imidazole moiety as anti-inflammatory and antimicrobial agents. Indian J. Chem. Sect. B, 2011, 50, 207-213.
[37]
Lombardino, J.G.; Wiseman, E.H. Preparation and antiinflammatory activity of some nonacidic trisubstituted imidazoles. J. Med. Chem., 1974, 17(11), 1182-1188.
[http://dx.doi.org/10.1021/jm00257a011] [PMID: 4415171]
[38]
Balalaie, S.; Arabanian, A.; Hashtroudi, M.S. Zeolite HY and Silica Gel as new and efficient heterogenous catalysts for the synthesis of triarylimidazoles under microwave irradiation. Monatsh. Chem., 2000, 131, 945-948.
[http://dx.doi.org/10.1007/s007060070049]
[39]
Kidwai, M.; Mothsra, P.; Bansal, V. Efficient elemental iodine catalyzed one-pot synthesis of 2,4,5-Triarylimidazoles. Monatsh. Chem., 2006, 137, 1189-1194.
[http://dx.doi.org/10.1007/s00706-006-0518-9]
[40]
Sharma, G.; Jyothi, Y.; Lakshmi, P. Efficient room‐temperature synthesis of tri- and tetrasubstituted imidazoles catalyzed by ZrCl4. Synth. Commun., 2006, 36, 2991-3000.
[http://dx.doi.org/10.1080/00397910600773825]
[41]
Sangshetti, J.; Kokare, N.; Kotharkar, A. Sodium Bisulfite as an efficient and inexpensive catalyst for the one-pot synthesis of 2,4,5-Triaryl-1H-imidazoles from Benzil or Benzoin and Aromatic aldehydes. Monatsh. Chem., 2008, 139, 125-127.
[http://dx.doi.org/10.1007/s00706-007-0766-3]
[42]
Siddiqui, S.A.; Narkhede, U.C.; Palimkar, S.S. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron, 2005, 61, 3539-3546.
[http://dx.doi.org/10.1016/j.tet.2005.01.116]
[43]
Mohammed, A.F.; Kokare, N.D.; Sangshetti, J.N.; Shinde, D.B. sulphanilic acid catalyzed facile one-pot synthesis of 2,4,5-Triarylimidazoles from Benzil/Benzoin and Aromatic aldehydes. J. Korean Chem. Soc, 2007, 51, 418-422.
[http://dx.doi.org/10.5012/jkcs.2007.51.5.418]
[44]
Ahmad, S.; Ali, M.; Maryam, B. Tandem oxidation process using Ceric Ammonium Nitrate: Three-component synthesis of trisubstituted imidazoles under aerobic oxidation conditions. Synth. Commun., 2009, 39, 102-110.
[45]
Zhou, J.F.; Gong, G.X.; Zhu, H.Q.; Zhu, F.X. Solvent-free and catalyst-free method for the synthesis of 2,4,5-triarylimidazoles under microwave irradiation. Chin. Chem. Lett., 2009, 20, 1198-1200.
[http://dx.doi.org/10.1016/j.cclet.2009.05.027]
[46]
Zhou, J.F.; Gong, G.X.; Sun, X-J.; Zhu, Y-L. Facile method for one-step synthesis of 2,4,5-triarylimidazoles under catalyst-free, solvent-free, and microwave-irradiation conditions. Synth. Commun., 2010, 40, 1134-1141.
[http://dx.doi.org/10.1080/00397910903043025]
[47]
Phuong, T.; Khac-Minh, T.; Van Ha, N.T.; Ngoc Phuong, H.T. Synthesis and antifungal activities of phenylenedithioureas. Bioorg. Med. Chem. Lett., 2004, 14(3), 653-656.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.044] [PMID: 14741262]
[48]
Rodríguez-Fernández, E.; Manzano, J.L.; Benito, J.J.; Hermosa, R.; Monte, E.; Criado, J.J. Thiourea, triazole and thiadiazine compounds and their metal complexes as antifungal agents. J. Inorg. Biochem., 2005, 99(8), 1558-1572.
[http://dx.doi.org/10.1016/j.jinorgbio.2005.05.004] [PMID: 16005979]
[49]
Duan, Y-C.; Ma, Y-C.; Zhang, E.; Shi, X-J.; Wang, M-M.; Ye, X-W.; Liu, H-M. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur. J. Med. Chem., 2013, 62, 11-19.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.046] [PMID: 23353743]
[50]
Singh, P.; Raj, R.; Kumar, V.; Mahajan, M.P.; Bedi, P.M.S.; Kaur, T.; Saxena, A.K. 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur. J. Med. Chem., 2012, 47(1), 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[51]
Tripathi, R.P.; Yadav, A.K.; Ajay, A.; Bisht, S.S.; Chaturvedi, V.; Sinha, S.K. Application of Huisgen (3+2) cycloaddition reaction: synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Eur. J. Med. Chem., 2010, 45(1), 142-148.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.036] [PMID: 19846238]
[52]
Zhang, H-Z.; Wei, J-J.; Kumar, K.V.; Rasheed, S.; Zhou, C-H. Application of Huisgen (3 + 2) cycloaddition reaction: Synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Med. Chem. Res., 2015, 24, 182-196.
[http://dx.doi.org/10.1007/s00044-014-1123-9]
[53]
Pasini, D. The click reaction as an efficient tool for the construction of macrocyclic structures. Molecules, 2013, 18(8), 9512-9530.
[http://dx.doi.org/10.3390/molecules18089512] [PMID: 23966075]
[54]
Hein, C.D.; Liu, X-M.; Wang, D. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res., 2008, 25(10), 2216-2230.
[http://dx.doi.org/10.1007/s11095-008-9616-1] [PMID: 18509602]
[55]
Rasmussen, L.K.; Boren, B.C.; Fokin, V.V. Ruthenium-catalyzed cycloaddition of aryl azides and alkynes. Org. Lett., 2007, 9(26), 5337-5339.
[http://dx.doi.org/10.1021/ol701912s] [PMID: 18052070]
[56]
Roshandel, S.; Suri, S.C.; Marcischak, J.C.; Rasula, G.; Prakash, G.K.S. Catalyst and solvent free microwave-assisted synthesis of substituted 1,2,3-triazoles. Green Chem., 2018, 20, 3700-3704.
[http://dx.doi.org/10.1039/C8GC01516C]
[57]
Medvedeva, A.S.; Demina, M.M.; Kon’kova, T.V.; Nguyen, T.L.H.; Afonin, A.V.; Ushakov, I.A. Microwave assisted solvent- and catalyst-free three-component synthesis of NH-1,2,3-triazoloimines. Tetrahedron, 2017, 73, 3979-3985.
[http://dx.doi.org/10.1016/j.tet.2017.05.077]
[58]
Al-Salahi, R.A.; Al-Omar, M.A.; Amr, Ael-G. Synthesis of chiral macrocyclic or linear pyridine carboxamides from pyridine-2,6-dicarbonyl dichloride as antimicrobial agents. Molecules, 2010, 15(9), 6588-6597.
[http://dx.doi.org/10.3390/molecules15096588] [PMID: 20877246]
[59]
Özdemir, A.; Turan-Zitouni, G.; Asim Kaplancikli, Z.; Işcan, G.; Khan, S.; Demirci, F. Synthesis and the selective antifungal activity of 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine derivatives. Eur. J. Med. Chem., 2010, 45(5), 2080-2084.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.023] [PMID: 20106559]
[60]
Abele, E.; Abele, R.; Lukevics, E. Pyridine Oximes: Synthesis, reactions, and biological activity. Chem. Heterocycl. Compd., 2003, 39, 825-865. [Review].
[http://dx.doi.org/10.1023/A:1026181918567]
[61]
Worachartcheewan, A.; Prachayasittikul, S.; Pingaew, R.; Nantasenamat, C.; Tantimongcolwat, T.; Ruchirawat, S.; Prachayasittikul, V. Antioxidant, cytotoxicity, and QSAR study of 1-adamantylthio derivatives of 3-picoline and phenylpyridines. Med. Chem. Res., 2012, 21, 3514-3522.
[http://dx.doi.org/10.1007/s00044-011-9903-y]
[62]
Firke, S.; Firake, B.; Chaudhari, R.; Patil, V. Synthetic and pharmacological evaluation of some pyridine containing thiazolidinones. Asian J. Res. Chem, 2009, 2, 157-161.
[63]
Yang, X.T.; Wu, H.; Ma, S.J.; Hu, J.J.; Wang, Y. Synthesis, crystal structure, and in vitro antitumor activities of copper(II) complexes containing tetradentate pyridine-based ligands. Transition Metal Chem, 2011, 36, 403-407.
[http://dx.doi.org/10.1007/s11243-011-9483-1]
[64]
Muthal, N.; Ahirwar, J.; Ahriwar, D.; Masih, P.; Mahmdapure, T.; Sivakumar, T. Synthesis, antimicrobial and anti-inflammatory activity of some 5-substituted-3-pyridine-1, 2, 4-triazoles. Synthesis, 2010, 2, 2450-2455.
[65]
Heravi, M.M.; Bakhtiari, K.H.; Daroogheha, Z.; Bamoharram, F.F. An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solvent-free conditions. Catal. Commun., 2007, 8, 1991-1994.
[http://dx.doi.org/10.1016/j.catcom.2007.03.028]
[66]
Nagarapu, L.; Peddiraju, A.R.; Apuri, S. HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Catal. Commun., 2007, 8, 1973-1976.
[http://dx.doi.org/10.1016/j.catcom.2007.08.003]
[67]
Ren, Y.M.; Cai, C. Three-components condensation catalyzed by molecular iodine for the synthesis of 2,4,6-triarylpyridines and 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Monatsh. Chem., 2009, 140, 49-52.
[http://dx.doi.org/10.1007/s00706-008-0011-8]
[68]
Tu, S.; Li, T.; Shi, F.; Fang, F.; Zhu, S.; Wei, X.; Zong, Z. An efficient improve for the Kröhnke Reaction: One-pot Synthesis of 2,4,6-Triarylpyridines using raw materials under microwave irradiation. Chem. Lett., 2005, 34, 732-733.
[http://dx.doi.org/10.1246/cl.2005.732]
[69]
Tu, S.; Jia, R.; Jiang, B.; Zhang, J.; Zhang, Y.; Yao, C.; Ji, S. Kröhnke reaction in aqueous media: One-pot clean synthesis of 4′-aryl-2,2′:6′,2″-terpyridines. Tetrahedron, 2007, 63, 381-388.
[http://dx.doi.org/10.1016/j.tet.2006.10.069]
[70]
Jiang, B.; Hao, W.J.; Wang, X.; Shi, F.; Tu, S.J.; Jiang, B.; Hao, W.J.; Wang, X.; Shi, F.; Tu, S.J. Diversity-oriented synthesis of Kröhnke pyridines. J. Comb. Chem., 2009, 11(5), 846-850.
[http://dx.doi.org/10.1021/cc900052b] [PMID: 19694408]
[71]
Adib, M.; Tahermansouri, H.; Koloogani, S.A.; Mohammadi, B.; Bijanzadeh, H.R. Kröhnke Pyridines: An efficient solvent-free synthesis of 2,4,6-triarylpyridines. Tetrahedron Lett., 2006, 47, 5957-5960.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.162]
[72]
Behmadi, H.; Naderipour, S.; Saadati, S.M.; Barghamadi, M.; Shaker, M.; Tavakoli-Hoseini, N. Solvent-free synthesis of new 2,4,6-triarylpyridines catalyzed by a Brønsted acidic ionic liquid as a green and reusable catalyst. J. Heterocycl. Chem., 2011, 48, 1117-1121.
[http://dx.doi.org/10.1002/jhet.697]
[73]
Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Tavakoli-Hoseini, N.; Khashi, M. Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst. Monatsh. Chem., 2010, 141, 867-870.
[http://dx.doi.org/10.1007/s00706-010-0329-x]
[74]
Yin, G.; Liu, Q.; Ma, J.; She, N. Solvent- and catalyst-free synthesis of new hydroxylated trisubstituted pyridines under microwave irradiation. Green Chem., 2012, 14, 1796-1798.
[http://dx.doi.org/10.1039/c2gc35243e]
[75]
Maddila, S.; Nagaraju, K.; Chinnam, S.; Jonnalagadda, S.B. Microwave-assisted multicomponent reaction: A green and catalyst-free method for the synthesis of polyfunctionalized 1,4-dihydropyridines. ChemistrySelect, 2019, 4, 9451-9454.
[http://dx.doi.org/10.1002/slct.201902779]
[76]
Seitz, L.E.; Suling, W.J.; Reynolds, R.C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem., 2002, 45(25), 5604-5606.
[http://dx.doi.org/10.1021/jm020310n] [PMID: 12459027]
[77]
Kim, Y.B.; Kim, Y.H.; Park, J.Y.; Kim, S.K. Synthesis and biological activity of new quinoxaline antibiotics of echinomycin analogues. Bioorg. Med. Chem. Lett., 2004, 14(2), 541-544.
[http://dx.doi.org/10.1016/j.bmcl.2003.09.086] [PMID: 14698199]
[78]
Hazeldine, S.T.; Polin, L.; Kushner, J.; White, K.; Corbett, T.H.; Biehl, J.; Horwitz, J.P. Synthetic modification of the 2-oxypropionic acid moiety in 2-4-[(7-chloro-2-quinoxalinyl)oxy]phenoxy propionic acid (XK469), and consequent antitumor effects, part 4. Bioorg. Med. Chem., 2005, 13, 3910-3920.
[http://dx.doi.org/10.1016/j.bmc.2005.04.011] [PMID: 15911307]
[79]
Raw, S.A.; Wilfred, C.D.; Taylor, R.J.K. Tandem oxidation processes for the preparation of nitrogen-containing heteroaromatic and heterocyclic compounds. Org. Biomol. Chem., 2004, 2(5), 788-796.
[http://dx.doi.org/10.1039/b315689c] [PMID: 14985820]
[80]
Huang, T.; Wang, R.; Shi, L.; Lu, X. Montmorillonite K-10: An efficient and reusable catalyst for the synthesis of quinoxaline derivatives in water. Catal. Commun., 2008, 9, 1143-1147.
[http://dx.doi.org/10.1016/j.catcom.2007.10.024]
[81]
Heravi, M.M.; Taheri, S.; Bakhtiari, K.; Oskooie, H.A. On water: A practical and efficient synthesis of quinoxaline derivatives catalyzed by CuSO4.5H2O. Catal. Commun., 2007, 8, 211-214.
[http://dx.doi.org/10.1016/j.catcom.2006.06.013]
[82]
Hossein, A.; Oskooie, M.M.; Heravi, K.B.; Shima, T. An efficient and facile synthesis of quinoxaline derivatives catalyzed by KHSO4 at room temperature. Monatsh. Chem., 2007, 138, 875-877.
[http://dx.doi.org/10.1007/s00706-007-0694-2]
[83]
Ajeet, K.; Santosh, K.; Amit, S.; Arnab, D.; Subho, M. Ni-nanoparticles: An efficient catalyst for the synthesis of quinoxalines. Catal. Commun., 2008, 9, 778-784.
[http://dx.doi.org/10.1016/j.catcom.2007.08.021]
[84]
Shi, D.Q.; Dou, G.L. Efficient synthesis of quinoxaline derivatives catalyzed by p-toluenesulfonic acid under solvent-free conditions. Synth. Commun., 2008, 38, 3329-3337.
[http://dx.doi.org/10.1080/00397910802136664]
[85]
Venkatesh, C.; Singh, B.; Mahata, P.K.; Ila, H.; Junjappa, H. Heteroannulation of nitroketene N,S-arylaminoacetals with POCl3: a novel highly regioselective synthesis of unsymmetrical 2,3-substituted quinoxalines. Org. Lett., 2005, 7(11), 2169-2172.
[http://dx.doi.org/10.1021/ol0505095] [PMID: 15901161]
[86]
More, S.V.; Sastry, M.N.V.; Yao, C.F. Cerium(IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient, and green approach for the synthesis of quinoxalines. Green Chem., 2006, 8, 91-95.
[http://dx.doi.org/10.1039/B510677J]
[87]
Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. An efficient and convenient protocol for the synthesis of quinoxalines and dihydropyrazines via cyclization–oxidation processes using HClO4.SiO2 as a heterogeneous recyclable catalyst. Tetrahedron Lett., 2007, 48, 5371-5374.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.036]
[88]
Heravi, M.M. Zn[(L)proline]: A powerful catalyst for the very fast synthesis of quinoxaline derivatives at room temperature. Catal. Commun., 2007, 8, 1341-1344.
[http://dx.doi.org/10.1016/j.catcom.2006.11.026]
[89]
Heravi, M.M.; Bakhtiari, K.; Bamoharram, F.F.; Tehrani, M.H. Wells-Dawson type heteropolyacid catalyzed synthesis of quinoxaline derivatives at room temperature. Monatsh. Chem., 2007, 138, 465-467.
[http://dx.doi.org/10.1007/s00706-007-0594-5]
[90]
Zhou, J-F.; Gong, G-X.; Zhi, S-J.; Duan, X-L. Microwave-assisted catalyst-free and solvent-free method for the synthesis of quinoxalines. Synth. Commun., 2009, 39, 3743-3754.
[http://dx.doi.org/10.1080/00397910902838862]
[91]
Zhou, J.F.; Gong, G.X.; Shi, K.B.; Zhi, S.J. Catalyst-free and solvent-free method for the synthesis of quinoxalines under microwave irradiation. Chin. Chem. Lett., 2009, 20, 672-675.
[http://dx.doi.org/10.1016/j.cclet.2009.02.007]
[92]
Zhou, J-F.; Gong, G-X.; An, L-T.; Liu, Y.; Zhu, F-X.; Zhu, Y-L.; Jib, S-J. An efficient synthesis of quinoxalines under catalyst-free and microwave irradiation conditions. Synlett, 2008, 2008, 3163-3166.
[http://dx.doi.org/10.1055/s-0028-1087280]
[93]
Kumar, V.; Mohan, C.; Gupta, M.; Mahajan, M.P. A catalyst- and solvent-free selective approach to biologically important quinazolines and benzo[g]quinazoline. Tetrahedron, 2005, 61, 3533-3538.
[http://dx.doi.org/10.1016/j.tet.2005.01.118]
[94]
Sarma, R.; Prajapati, D. Microwave-promoted efficient synthesis of dihydroquinazolines. Green Chem., 2011, 13, 718-722.
[http://dx.doi.org/10.1039/c0gc00838a]
[95]
Bossert, F.; Meyer, H.; Wehinger, E. 4-Aryldihydropyridines, a new class of highly active calcium antagonists. Angew. Chem. Int. Ed. Engl., 1981, 20, 762-769.
[http://dx.doi.org/10.1002/anie.198107621]
[96]
Nakayama, H.; Kasoaka, Y. Chemical identification of binding sites for calcium channel antagonists. Heterocyclic, 1996, 42, 901-909.
[http://dx.doi.org/10.3987/REV-95-SR4]
[97]
Godfraind, T.; Miller, R.; Wibo, M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev., 1986, 38(4), 321-416.
[PMID: 2432624]
[98]
Sausins, A.E.; Duburs, G. Synthesis of 1,4-dihydropyridines in cyclocondensation reactions. Chem. Heterocycl. Compd., 1992, 28, 363-391.
[http://dx.doi.org/10.1007/BF00766993]
[99]
Mager, P.P.; Coburn, R.A.; Solo, A.J.; Triggle, D.J.; Rothe, H. QSAR, diagnostic statistics and molecular modelling of 1,4-dihydropyridine calcium antagonists: a difficult road ahead. Drug Des. Discov., 1992, 8(4), 273-289.
[PMID: 1445993]
[100]
Mannhold, R.; Jablonka, B.; Viogdt, W.; Schoenafinger, K.; Schravan, K. Calcium- and calmodulin-antagonism of elnadipine derivatives: comparative SAR. Eur. J. Med. Chem., 1992, 27, 229-235.
[http://dx.doi.org/10.1016/0223-5234(92)90006-M]
[101]
Wang, L.; Sheng, J.; Zhang, L.; Han, J.; Fan, Z.; Tian, H.; Qian, C. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 2005, 61, 1539-1543.
[http://dx.doi.org/10.1016/j.tet.2004.11.079]
[102]
Ji, S-J.; Jiang, Z-Q.; Lu, J.; Loh, T-P. Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent free conditions. Synlett, 2004, 2004, 831-835.
[http://dx.doi.org/10.1055/s-2004-820035]
[103]
Sabitha, G.; Reddy, G.S.K.K.; Redddy, C.S.; Yadav, J.S. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett., 2003, 44, 4129-4131.
[http://dx.doi.org/10.1016/S0040-4039(03)00813-X]
[104]
Das, B.; Ravikanth, B.; Ramu, R.; Vittal Rao, B. An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite. Chem. Pharm. Bull. (Tokyo), 2006, 54(7), 1044-1045.
[http://dx.doi.org/10.1248/cpb.54.1044] [PMID: 16819229]
[105]
Maheswara, M.; Siddaiah, V.; Damu, G.L.V.; Rao, C.V. An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using a heterogeneous catalyst under solvent-free conditions. ARKIVOC, 2006, 2, 201-206.
[106]
Ko, S.; Yao, C.F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62, 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
[107]
Song, G.; Wang, B.; Wu, X.; Kang, Y.; Yang, L. Montmorillonite K10 Clay: An effective solid catalyst for one-pot synthesis of polyhydroquinoline derivatives. Synth. Commun., 2005, 35, 2875-2880.
[http://dx.doi.org/10.1080/00397910500297255]
[108]
Cherkupally, S.R.; Mekala, R. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 1002-1004.
[http://dx.doi.org/10.1248/cpb.56.1002] [PMID: 18591819]
[109]
Heravi, M.M.; Bakhtriri, K.; Javadi, N.M.; Bamoharram, F.F.; Saeedi, M.; Oskooi, H.A.K. 7[PW11CoO40]-catalyzed one-pot synthesis of polyhydroquinoline derivatives via the Hantzsch three component condensation. J. Mol. Catal. Chem., 2007, 264, 50-52.
[http://dx.doi.org/10.1016/j.molcata.2006.09.004]
[110]
Karade, N.N.; Budhewar, H.V.; Shinde, V.S.; Jadhav, W.N. L-Proline as an efficient organo-catalyst for the synthesis of polyhydroquinoline via multicomponent hantzsch reaction. Lett. Org. Chem., 2007, 4, 16-19.
[http://dx.doi.org/10.2174/157017807780037405]
[111]
Sapkal, B.S.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1754-1756.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.140]
[112]
Reddy, C.S.; Raghu, M. Facile ZrCl4 promoted four-component coupling one-pot synthesis of polyhydroquinonline derivatives through unsymmetric hantzsch reaction. Indian J. Chem., 2008, 47, 1578-1582.
[113]
Saha, M.; Luireingam, T.S.; Merry, T.; Pal, A.K. Catalyst-free, Knoevenagel–Michael addition reaction of dimedone under microwave irradiation: An efficient one-pot synthesis of polyhydroquinoline derivatives. J. Heterocycl. Chem., 2013, 50, 941-944.
[http://dx.doi.org/10.1002/jhet.1541]
[114]
Kappe, C.O. 100 years of the biginelli dihydropyrimidine synthesis. Tetrahedron, 1993, 49, 6937-6963.
[http://dx.doi.org/10.1016/S0040-4020(01)87971-0]
[115]
Biginelli, P.; Gazz, P. Synthesis of 3,4-dihydropyrimidin-2(1H)-Ones. Chim. Ital, 1893, 23, 360-413.
[116]
Hu, E.H.; Sidler, D.R.; Dolling, U.H. Unprecedented catalytic three component one-pot condensation reaction: An efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones. J. Org. Chem., 1998, 63, 3454-3457.
[http://dx.doi.org/10.1021/jo970846u]
[117]
Yadav, J.S.; Reddy, B.V.S.; Reddy, E.J.; Ramalingam, T. Microwave-assisted efficient synthesis of dihydro pyrimidines: improved high yielding protocol for the Biginelli reaction. J. Chem. Res. Synop., 2000, 2000, 354-355.
[http://dx.doi.org/10.3184/030823400103167633]
[118]
Xue, S.; Shen, Y.C.; Li, Y.L.; Shen, X.M.; Guo, Q.X. Synthesis of 4-Aryl-3,4-dihydropyrimidinones using microwave- assisted solventless biginelli reaction. Chin. J. Chem., 2002, 20, 385-389.
[http://dx.doi.org/10.1002/cjoc.20020200417]
[119]
Reddy, C.V.; Mahesh, M.; Raju, P.V.K.; Babu, T.R.; Reddy, V.V.N. Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2002, 43, 2657-2659.
[http://dx.doi.org/10.1016/S0040-4039(02)00280-0]
[120]
Varala, R.; Alam, M.M. Adapa, S.R. Bismuth Triflate Catalyzed one-pot synthesis of 3,4-Dihydropyrimidin-2 (1H)-ones: An improved protocol for the biginelli reaction. Synlett, 2003, 2003, 67-70.
[121]
Gourhari, M.; Pradip, K.; Chandrani, G. One-pot synthesis of dihydropyrimidinones catalysed by lithium bromide: An improved procedure for the Biginelli reaction. Tetrahedron Lett., 2003, 44, 2757-2758.
[http://dx.doi.org/10.1016/S0040-4039(02)02859-9]
[122]
Paraskar, A.S.; Dewkar, G.K.; Sudalai, A. Cu(OTf)2: A reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2003, 44, 3305-3308.
[http://dx.doi.org/10.1016/S0040-4039(03)00619-1]
[123]
Peng, J.; Deng, Y. Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett., 2001, 42, 5917-5919.
[http://dx.doi.org/10.1016/S0040-4039(01)01139-X]
[124]
Bigi, F.; Carloni, S.; Frullanti, B.; Magi, R.; Satori, G. A revision of the Biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF. Tetrahedron Lett., 1999, 40, 3465-3468.
[http://dx.doi.org/10.1016/S0040-4039(99)00424-4]
[125]
Ma, Y.; Qian, C.; Wang, L.; Yang, M. Lanthanide triflate catalyzed Biginelli reaction. one-pot synthesis of dihydropyrimidinones under solvent-free conditions. J. Org. Chem., 2000, 65(12), 3864-3868.
[http://dx.doi.org/10.1021/jo9919052] [PMID: 10864778]
[126]
Zhan, H.W.; Wang, J.X.; Wang, X.T. Solvent- and catalyst-free synthesis of dihydropyrimidinthiones in one-pot under focused microwave irradiation conditions. Chin. Chem. Lett., 2008, 19, 1183-1185.
[http://dx.doi.org/10.1016/j.cclet.2008.06.039]
[127]
Harikrishnan, P.S.; Rajesh, S.M.; Perumal, S.; Almansour, A.I. A microwave-mediated catalyst- and solvent-free regioselective Biginelli reaction in the synthesis of highly functionalized novel tetrahydropyrimidines. Tetrahedron Lett., 2013, 54, 1076-1079.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.034]
[128]
Kumar, P.; Matta, A.; Singh, S.; Van der Eycken, J.; Len, C.; Parmar, V.S.; Van der Eycken, E.V.; Singh, B.K. A facile, catalyst-free, microwave-assisted access towards the synthesis of 2-aryl/alkyl-3-(1H-benzo[d]imidazol-2-yl)-2,3-dihydroquinazolin-4(1H)-ones. Synth. Commun., 2016, 47, 756-763.
[http://dx.doi.org/10.1080/00397911.2016.1277761]
[129]
Selvi, S.T.; Nadaraj, V.; Mohan, S.; Sasi, R.; Hema, M. Solvent free microwave synthesis and evaluation of antimicrobial activity of pyrimido[4,5-b]- and pyrazolo[3,4-b]quinolines. Bioorg. Med. Chem., 2006, 14(11), 3896-3903.
[http://dx.doi.org/10.1016/j.bmc.2006.01.048] [PMID: 16464602]
[130]
Karthikeyan, C.; Malla, R.; Ashby, C.R., Jr; Amawi, H.; Abbott, K.L.; Moore, J.; Chen, J.; Balch, C.; Lee, C.; Flannery, P.C.; Trivedi, P.; Faridi, J.S.; Pondugula, S.R.; Tiwari, A.K. Pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolines: Novel compounds that reverse ABCG2-mediated resistance in cancer cells. Cancer Lett., 2016, 376(1), 118-126.
[http://dx.doi.org/10.1016/j.canlet.2016.03.030] [PMID: 27012188]
[131]
Dias, L.R.S.; Santos, M.B.; Albuquerque, Sd.; Castro, H.C.; de Souza, A.M.T.; Freitas, A.C.C.; DiVaio, M.A.V.; Cabral, L.M.; Rodrigues, C.R. Synthesis, in vitro evaluation, and SAR studies of a potential antichagasic 1H-pyrazolo[3,4-b]pyridine series. Bioorg. Med. Chem., 2007, 15(1), 211-219.
[http://dx.doi.org/10.1016/j.bmc.2006.09.067] [PMID: 17064907]
[132]
Lourenço, A.L.; Salvador, R.R.S.; Silva, L.A.; Saito, M.S.; Mello, J.F.R.; Cabral, L.M.; Rodrigues, C.R.; Vera, M.A.F.; Muri, E.M.F.; de Souza, A.M.T.; Craik, C.S.; Dias, L.R.S.; Castro, H.C.; Sathler, P.C. Synthesis and mechanistic evaluation of novel N′-benzylidene-carbohydrazide-1H-pyrazolo[3,4-b]pyridine derivatives as non-anionic antiplatelet agents. Eur. J. Med. Chem., 2017, 135, 213-229.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.023] [PMID: 28453995]
[133]
Azevedo, A.R.; Ferreira, V.F.; de Mello, H.; Leao-Ferreira, L.R.; Jabor, A.V.; Frugulhetti, I.C.P.P.; Pereira, H.S.; Moussatche, N.; Bernardino, A.M.R. Synthesis and biological evaluation of 1H-Pyrazolo [3,4-b] Pyridine-5 carboxylic acids against vaccinia virus. Heterocycl. Commun., 2000, 8, 427-432.
[134]
Hussin, A.M.; Abu-Shanab, F.A.; Ishak, E.A. Polycyclic pyridines: Synthesis of pyridothienopyrimidines pyridothienotriazines and pyridothienotriazepines. Phosphorus Sulfur Silicon Relat. Elem., 2000, 159, 55-68.
[http://dx.doi.org/10.1080/10426500008043650]
[135]
Mohamed, L.W.; Shaaban, M.A.; Zaher, A.F.; Alhamaky, S.M.; Elsahar, A.M. Synthesis of new pyrazoles and pyrozolo [3,4-b] pyridines as anti-inflammatory agents by inhibition of COX-2 enzyme. Bioorg. Chem., 2019, 83, 47-54.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.014] [PMID: 30342385]
[136]
Safaei-Ghomi, J.; Sadeghzadeh, R.; Shahbazi-Alavi, H. A pseudo six-component process for the synthesis of tetrahydrodipyrazolo pyridines using an ionic liquid immobilized on a FeNi3 nanocatalyst. RSC Advances, 2016, 6, 33676-33685.
[http://dx.doi.org/10.1039/C6RA02906J]
[137]
Khurana, J.M.; Chaudhary, A.; Nand, B. Lumb, A. Aqua mediated indium(III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett., 2012, 53, 3018-3022.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.001]
[138]
Paul, S.; Das, A.R. Dual role of the polymer supported catalyst PEG-OSO3H in aqueous reaction medium: Synthesis of highly substituted structurally diversified coumarin and uracil fused spirooxindoles. Tetrahedron Lett., 2013, 54, 1149-1154.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.079]
[139]
Bhattacharjee, D.; Kshiar, B.; Myrboh, B. L-Proline as an efficient enantioinduction organo-catalyst in the solvent-free synthesis of pyrazolo[3,4-b]quinoline derivatives via one-pot multi-component reaction. RSC Advances, 2016, 6, 95944-95950.
[http://dx.doi.org/10.1039/C6RA22429F]
[140]
Karnakar, K.; Murthy, S.N.; Ramesh, K.; Satish, G.; Nanubolu, J.B.; Nageswar, Y. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of pyrazolo[3,4-b]quinoline derivatives. Tetrahedron Lett., 2012, 53, 2897-2903.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.135]
[141]
Khumalo, M.R.; Maddila, S.N.; Maddila, S.; Jonnalagadda, S.B. A multicomponent, facile and catalyst-free microwave-assisted protocol for the synthesis of pyrazolo-[3,4-b]-quinolines under green conditions. RSC Advances, 2019, 9, 30768-30772.
[http://dx.doi.org/10.1039/C9RA04604F]
[142]
Goswami, S.; Jana, S.; Hazra, A.; Adak, A.K. One-pot solvent and catalyst-free synthesis of functionalized 1,8-naphthyridines and quinolines by microwave irradiation. J. Heterocycl. Chem., 2007, 44, 1191-1194.
[http://dx.doi.org/10.1002/jhet.5570440536]
[143]
Bhuyan, D.; Sarma, R.; Prajapati, D. Microwave-assisted efficient synthesis of spiroquinoline derivatives via a catalyst- and solvent-free aza-Diels-Alder reaction. Tetrahedron Lett., 2012, 53, 6460-6463.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.081]
[144]
Polshettiwar, V.; Varma, R.S. Ring-fused aminals: catalyst and solvent-free microwave-assisted α-amination of nitrogen heterocyclic. Tetrahedron Lett., 2008, 49, 7165-7167.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.166]
[145]
Sarma, R.; Sarmah, M.M.; Prajapati, D. Microwave-promoted catalyst- and solvent-free aza-Diels-Alder reaction of aldimines with 6-[2-(dimethylamino)vinyl]-1,3-dimethyluracil. J. Org. Chem., 2012, 77(4), 2018-2023.
[http://dx.doi.org/10.1021/jo202346w] [PMID: 22251228]
[146]
Bhuyan, D.; Sarmah, M.M.; Dommaraju, Y.; Prajapati, D. Microwave-promoted efficient synthesis of spiroindenotetrahydropyridine derivatives via a catalyst- and solvent-free pseudo one-pot five-component tandem Knoevenagel/aza-Diels–Alder reaction. Tetrahedron Lett., 2014, 55, 5133-5136.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.086]
[147]
Vaddula, B.R.; Varma, R.S.; Leazer, J. Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines. Tetrahedron Lett., 2013, 54, 1538-1541.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.029]
[148]
Bala, B.D.; Rajesh, S.M.; Perumal, S. An eco-friendly sequential catalyst- and solvent-free four-component stereoselective synthesis of novel 1,4-pyranonaphthoquinones. Green Chem., 2012, 14, 2484-2490.
[http://dx.doi.org/10.1039/c2gc35930h]
[149]
Paliwal, P.K.; Jetti, S.R.; Jain, S. Green approach towards the facile synthesis of dihydropyrano(c)chromene and pyrano[2,3-d]-pyrimidine derivatives and their biological evaluation. Med. Chem. Res., 2013, 22, 2984-2990.
[http://dx.doi.org/10.1007/s00044-012-0288-3]
[150]
Kumar, D.; Reddy, V.B.; Sharad, S.; Dube, U.; Kapur, S. A facile one-pot green synthesis and antibacterial activity of 2-amino-4H-pyrans and 2-amino-5-oxo-5,6,7,8-tetrahydro-4H-chromenes. Eur. J. Med. Chem., 2009, 44(9), 3805-3809.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.017] [PMID: 19419801]
[151]
Kasibhatla, S.; Gourdeau, H.; Meerovitch, K.; Drewe, J.; Reddy, S.; Qiu, L.; Zhang, H.; Bergeron, F.; Bouffard, D.; Yang, Q.; Herich, J.; Lamothe, S.; Cai, S.X.; Tseng, B. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther., 2004, 3(11), 1365-1374.
[PMID: 15542775]
[152]
Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu, L.; Lamothe, S.; Gourdeau, H.; Denis, R.; Tseng, B.; Kasibhatla, S.; Cai, S.X. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8-positions. J. Med. Chem., 2007, 50(12), 2858-2864.
[http://dx.doi.org/10.1021/jm070216c] [PMID: 17497765]
[153]
Amr, A-G.E.; Mohamed, A.M.; Mohamed, S.F.; Abdel-Hafez, N.A.; Hammam, Ael-F. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem., 2006, 14(16), 5481-5488.
[http://dx.doi.org/10.1016/j.bmc.2006.04.045] [PMID: 16713269]
[154]
Smith, C.W.; Bailey, J.M.; Billingham, M.E.J.; Chandrasekhar, S.; Dell, C.P.; Harvey, A.K.; Hicks, C.A.; Kingston, A.E.; Wishart, G.N. The anti- rheumatic potential of a series of 2,4-di-substituted-4H-naphtho[1,2-b]pyran-3-carbonitriles. Bioorg. Med. Chem., 1995, 5, 2783-2788.
[http://dx.doi.org/10.1016/0960-894X(95)00487-E]
[155]
Brahmachari, G.; Banerjee, B. Facile and one-pot access to diverse and densely functionalized 2-amino-3-cyano-4H-pyrans and pyran-annulated heterocyclic scaffolds via an eco-friendly multicomponent reaction at room temperature using urea as a novel organo-catalyst. ACS Sustain. Chem.& Eng., 2014, 2, 411-422.
[http://dx.doi.org/10.1021/sc400312n]
[156]
Brahmachari, G.; Banerjee, B. Facile and chemically sustainable one-pot synthesis of a wide array of fused o- and n-heterocycles catalyzed by trisodium citrate dihydrate under ambient conditions. Asian J. Org. Chem., 2016, 5, 271-286.
[http://dx.doi.org/10.1002/ajoc.201500465]
[157]
Brahmachari, G.; Laskar, S.; Banerjee, B. Eco-friendly, one-pot multicomponent synthesis of pyran annulated heterocyclic scaffolds at room temperature using ammonium or sodium formate as non-toxic catalyst. J. Heterocycl. Chem., 2014, 51, E303-E308.
[http://dx.doi.org/10.1002/jhet.1974]
[158]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Microwave-assisted three-component “catalyst and solvent-free” green protocol: a highly efficient and clean one-pot synthesis of tetrahydrobenzo[b]pyrans. Org. Chem. Int., 2014. Article ID 851924
[http://dx.doi.org/10.1155/2014/851924]
[159]
Mishra, R.; Choudhury, L.H. Catalyst-free microwave-assisted arylglyoxalbased multicomponent reactions for the synthesis of fused pyrans. RSC Advances, 2016, 6, 24464-24469.
[http://dx.doi.org/10.1039/C5RA25536H]
[160]
Tu, S-J.; Zhou, J-F.; Cai, P-J.; Wang, H.; Feng, J-C. A convenient synthesis of 4-aryl-7,7-dimethyl-5-oxo-3,4,5,6,7,8-hexahydrocoumarin under microwave irradiation without catalyst. Synth. Commun., 2001, 31, 3729-3733.
[http://dx.doi.org/10.1081/SCC-100108221]
[161]
Dada, R.; Singh, G.; Pareek, A.; Kausar, S.; Yaragorla, S. Microwave assisted benzylation of naphthols and 4-hydroxycoumarin under catalyst & solvent free conditions. Tetrahedron Lett., 2016, 57, 3739-3742.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.010]
[162]
Xia, L.; Cai, H.; Lee, Y.R. Microwave-assisted catalyst-free synthesis of diversely functionalized 2-amino-2H-chromene-3-carboxylates. Tetrahedron, 2015, 71, 6894-6900.
[http://dx.doi.org/10.1016/j.tet.2015.07.013]
[163]
Edayadulla, N.; Lee, Y.R. Microwave-assisted solvent and catalyst free synthesis of 2H-pyrans. Bull. Korean Chem. Soc., 2013, 34, 2963-2967.
[http://dx.doi.org/10.5012/bkcs.2013.34.10.2963]
[164]
Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 2015, 6(6), 941-948.
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[165]
Yuvaraj, P.; Manivannan, K.; Reddy, B.S.R. Microwave-assisted efficient and highly chemoselective synthesis of oxazolo[5,4-b]quinoline-fused spirooxindoles via catalyst- and solvent-free three-component tandem Knoevenagel/Michael addition reaction. Tetrahedron Lett., 2015, 56, 78-81.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.001]
[166]
Kordnezhadian, R.; Shekouhy, M.; Khalafi-Nezhad, A. Microwave-accelerated diastereoselective catalyst-free one-pot four-component synthesis of 2-(N-carbamoylacetamide)-substituted 2,3-dihydrothiophenes in glycerol. Mol. Divers., 2019.
[http://dx.doi.org/10.1007/s11030-019-09985-w] [PMID: 31392483]
[167]
Chinnaraja, D.; Rajalakshmi, R. A facile, solvent and catalyst free, microwave assisted one pot synthesis of hydrazinyl thiazole derivatives. J. Saudi Chem. Soc., 2015, 19, 200-206.
[http://dx.doi.org/10.1016/j.jscs.2014.05.001]
[168]
Karamthulla, S.; Pal, S.; Khan, M.N.; Choudhury, L.H. “On water” synthesis of novel trisubstituted 1,3-thiazoles via microwave-assisted catalyst-free domino reactions. RSC Advances, 2014, 4, 37889-37899.
[http://dx.doi.org/10.1039/C4RA06239F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy