Abstract
The potentialities of condensation of α-ketophosphonates with primary amines for direct synthesis of α-iminophosphonates have been revealed. Diesters of α-ketophosphonic acids react with the primary amines by two competitive pathways: with a formation of α-iminophosphonates or a C-P bond cleavage resulting in a hydrogen phosphonate and an acylated amine. In many cases, the latter undesirable pathway is dominant, especially for more nucleophilic alkyl amines. Using metallic salts of α-ketophosphonates avoids the C-P bond cleavage, allowing direct preparation of α-phosphorylated imines by the reaction with primary amines. This strategy provides an atom economy single-stage synthesis of iminophosphonates – precursors of bio relevant phosphorus analogs of α-amino acids. Methyl sodium iminophosphonates, bearing aryl or heteryl substituents at the imino carbon atom exist in solutions at room temperature as an equilibrium mixture of Z- and E-isomers. A configuration of the C=N bond can be controlled by the solvent: changing the aprotic dipolar solvent DMSO-d6 by water or alcohols leads to the change from a predominant Z-isomer to almost an exclusive E-form. In contrast, diesters of the respective iminophosphonates exist in non-protic solvents predominantly in Econfiguration. The solvent effect on E-Z stereochemistry is demonstrated by DFT calculations.
Keywords: α-Iminophosphonates, α-ketophosphonates, aminophosphonates, aminophosphonic acids, E-Z isomerism, DFT calculations.
Graphical Abstract
(b)Onys’ko, P.P.; Rassukana, Yu.V.; Sinitsa, O.A. Imidoyl chlorides: New promising building blocks in synthesis of α-aminophosphoryl compounds. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183, 399-405.
[http://dx.doi.org/10.1080/10426500701735338]
(c)Onys’ko, P.P.; Rassukana, Yu.V.; Khomutnyk, Y.Y.; Yelenich, I.P.; Klukovsky, D.V.; Synytsya, A.D. A new strategy for synthesis of compounds bearing biorelevant α-aminophosphonate functionalities. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 725-728.
[http://dx.doi.org/10.1080/10426507.2014.974098]
(d)Vicario, J.; Aparacio, D.; Palacios, F. α-Ketiminophosphonates: synthesis and applications. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186, 638-643.
[http://dx.doi.org/10.1080/10426507.2010.521211]
(b)Kafarski, P.; Lejczak, B. Biological activity of aminophosphonic acids. Phosphorus Sulfur Silicon Relat. Elem., 1991, 63, 193-215.
[http://dx.doi.org/10.1080/10426509108029443]
(c)Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem., 2011, 54(17), 5955-5980..
[http://dx.doi.org/10.1021/jm200587f ] [PMID: 21780776]
(d)Zefirov, N.S.; Matveeva, E.D. Catalytic Kabachnik-Fields reaction: new horizons for old reaction. ARKIVOC, 2008, i, 1-17..
(e)Van der Jeught, S.; Stevens, C.V. Direct phosphonylation of aromatic azaheterocycles. Chem. Rev., 2009, 109(6), 2672-2702.
[http://dx.doi.org/10.1021/cr800315] [PMID: 19449857]
(f)Berlicki, L.; Kafarski, P. Computer-aided analysis and design of phosphonic and phosphinic enzyme inhibitors as potential drugs and agrochemicals. Curr. Org. Chem., 2005, 9, 1829-1850.
[http://dx.doi.org/10.2174/138527205774913088]
(g)Kafarski, P.; Lejczak, B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Anticancer Agents, 2001,1(3), 301-312..
[http://dx.doi.org/10.2174/1568011013354543] [PMID: 12678760]
(h)Yang, K.W.; Cheng, X.; Zhao, C.; Liu, C.C.; Jia, C.; Feng, L.; Xiao, J.M.; Zhou, L.S.; Gao, H.Z.; Yang, X.; Zhai, L. Synthesis and activity study of phosphonamidate dipeptides as potential inhibitors of VanX. Bioorg. Med. Chem. Lett., 2011, 21(23), 7224- 7227..
[http://dx.doi.org/10.1016/j.bmcl.2011.09.020 ] [PMID: 22001030]
[http://dx.doi.org/10.1016/j.bmc.2015.03.074] [PMID: 25907367]
(b)Horatscheck, A.; Wagner, S.; Ortwein, J.; Kim, B.G.; Lisurek, M.; Beligny, S.; Schütz, A. Rademann. J. Angew. Chem. Int. Ed., 2012, 37, 9441-9447.
[http://dx.doi.org/10.1002/anie.201201475]
(c)Trush, V.V.; Tanchuk, V.Y.; Cherenok, S.O.; Kalchenko, V.I.; Vovk, A.I. Evaluation of inhibition of protein tyrosine phosphatase 1B by calixarene-based α-ketophosphonic acids. Chem. Biol. Lett, 2015, 2, 1-5.
(b)Jelaiel, N.; Said, N.; Touil, S.; Efrit, M.L. Les α et β-cetophosphonates, des precurseurs de pyrrolidines et de quinoleines phosphonatees. Phosphorus Sulfur Silicon Relat. Elem., 2010, 185, 2382-2392.
[http://dx.doi.org/10.1080/10426501003671429]
[http://dx.doi.org/10.1021/jo01309a019]
[http://dx.doi.org/10.1134/S107036321509008X]
[http://dx.doi.org/10.1007/s11176-005-0110-8]
(b)Onys’ko, P.P.; Rassukana, Yu.V.; Sinitsa, O.A. Prototropic isomerizations in the 2-azaallylic triad of imidoylphosphonates. Curr. Org. Chem., 2010, 14, 1223-1233.
[http://dx.doi.org/10.2174/138527210791330440]
[http://dx.doi.org/10.1021/jo062609+] [PMID: 17328577]
[http://dx.doi.org/10.1039/p19890000765]
[http://dx.doi.org/10.1080/10426507.2010.520287]
(b)Onys’ko, P.P.; Kim, T.V.; Kiseleva, E.I.; Rassukana, Yu.V.; Synytsya, A.D. Sigmatropic isomerizations in azaallyl systems. XX. N-Alkanbenzimidoylphosphonates. Russ. J. Gen. Chem., 2004, 74, 1447-1455.
[http://dx.doi.org/10.1021/ja00889a015]
[http://dx.doi.org/10.1007/s11176-005-0395-7]
(b)Rassukana, Yu.V.; Kolotylo, M.V.; Sinitsa, O.A.; Pirozhenko, V.V.; Onys’ko, P.P. α-Iminotrifluoroethylphosphonates: the first representatives of N-H imidoyl phosphonates. Synthesis, 2007, 2627-2630.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[http://dx.doi.org/10.1103/PhysRevB.33.8822] [PMID: 9938299]
[http://dx.doi.org/10.1063/1.467146]
[http://dx.doi.org/10.1039/b000184h]
[http://dx.doi.org/10.1107/S0021889810049411]
[http://dx.doi.org/10.1016/S0031-9422(01)00425-3] [PMID: 11754939]
[http://dx.doi.org/10.1016/j.biochi.2018.06.005] [PMID: 29890205]