Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning

Author(s): Yoichi Morofuji* and Shinsuke Nakagawa

Volume 26, Issue 13, 2020

Page: [1466 - 1485] Pages: 20

DOI: 10.2174/1381612826666200224112534

open access plus

Abstract

An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.

Keywords: Blood-brain barrier, central nervous system disease, drug development, drug repositioning, neurotherapeutics, penetration efficacy.

[1]
Abbott A. Novartis to shut brain research facility. Nature 2011; 480(7376): 161-2.
[http://dx.doi.org/10.1038/480161a] [PMID: 22158218]
[2]
Miller G. Is pharma running out of brainy ideas? Science 2010; 329(5991): 502-4.
[http://dx.doi.org/10.1126/science.329.5991.502] [PMID: 20671165]
[3]
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017; 120: 11-9.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921]
[4]
Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon 2010; 56(9): 484-546.
[http://dx.doi.org/10.1016/j.disamonth.2010.06.001] [PMID: 20831921]
[5]
Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013; 80(19): 1778-83.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[6]
Ihara M, Saito S. [Drug Repositioning for Alzheimer’s Disease]. Brain Nerve 2019; 71(9): 961-70.
[PMID: 31506398]
[7]
Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368(9533): 387-403.
[http://dx.doi.org/10.1016/S0140-6736(06)69113-7] [PMID: 16876668]
[8]
Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987; 325(6106): 733-6.
[http://dx.doi.org/10.1038/325733a0] [PMID: 2881207]
[9]
Cenini G, Voos W. Mitochondria as potential targets in alzheimer disease therapy: an update. Front Pharmacol 2019; 10: 902.
[http://dx.doi.org/10.3389/fphar.2019.00902] [PMID: 31507410]
[10]
Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet 2017; 390(10113): 2673-734.
[http://dx.doi.org/10.1016/S0140-6736(17)31363-6] [PMID: 28735855]
[11]
Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2014; (7): CD000213
[PMID: 25072528]
[12]
Savitz SI, Baron JC, Yenari MA, Sanossian N, Fisher M. Reconsidering Neuroprotection in the Reperfusion Era. Stroke 2017; 48(12): 3413-9.
[http://dx.doi.org/10.1161/STROKEAHA.117.017283] [PMID: 29146878]
[13]
del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med 2010; 267(2): 156-71.
[http://dx.doi.org/10.1111/j.1365-2796.2009.02199.x] [PMID: 20175864]
[14]
Zacchigna S, Lambrechts D, Carmeliet P. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci 2008; 9(3): 169-81.
[http://dx.doi.org/10.1038/nrn2336] [PMID: 18253131]
[15]
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004; 5(5): 347-60.
[http://dx.doi.org/10.1038/nrn1387] [PMID: 15100718]
[16]
Cummings J. Lessons learned from alzheimer disease: clinical trials with negative outcomes. Clin Transl Sci 2018; 11(2): 147-52.
[http://dx.doi.org/10.1111/cts.12491] [PMID: 28767185]
[17]
Savitz SI, Fisher M. Future of neuroprotection for acute stroke: in the aftermath of the SAINT trials. Ann Neurol 2007; 61(5): 396-402.
[http://dx.doi.org/10.1002/ana.21127] [PMID: 17420989]
[18]
Markesbery WR, Brooks WH, Gupta GD, Young AB. Treatment for patients with cerebral metastases. Arch Neurol 1978; 35(11): 754-6.
[http://dx.doi.org/10.1001/archneur.1978.00500350058012] [PMID: 718475]
[19]
Freilich RJ, Seidman AD, DeAngelis LM. Central nervous system progression of metastatic breast cancer in patients treated with paclitaxel. Cancer 1995; 76(2): 232-6.
[http://dx.doi.org/10.1002/1097-0142(19950715)76:2<232::AID-CNCR2820760212>3.0.CO;2-0] [PMID: 8625097]
[20]
Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol 2017; 18(7): 863-73.
[http://dx.doi.org/10.1016/S1470-2045(17)30429-1] [PMID: 28592387]
[21]
Spagnolo F, Picasso V, Lambertini M, Ottaviano V, Dozin B, Queirolo P. Survival of patients with metastatic melanoma and brain metastases in the era of MAP-kinase inhibitors and immunologic checkpoint blockade antibodies: A systematic review. Cancer Treat Rev 2016; 45: 38-45.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.003] [PMID: 26975020]
[22]
Lowery FJ, Yu D. Brain metastasis: Unique challenges and open opportunities. Biochim Biophys Acta Rev Cancer 2017; 1867(1): 49-57.
[http://dx.doi.org/10.1016/j.bbcan.2016.12.001] [PMID: 27939792]
[23]
Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2(1): 3-14.
[http://dx.doi.org/10.1602/neurorx.2.1.3] [PMID: 15717053]
[24]
Pardridge WM. Blood-brain barrier delivery. Drug Discov Today 2007; 12(1-2): 54-61.
[http://dx.doi.org/10.1016/j.drudis.2006.10.013] [PMID: 17198973]
[25]
Wegener G, Rujescu D. The current development of CNS drug research. Int J Neuropsychopharmacol 2013; 16(7): 1687-93.
[http://dx.doi.org/10.1017/S1461145713000345] [PMID: 23651558]
[26]
Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 2007; 6(8): 650-61.
[http://dx.doi.org/10.1038/nrd2368] [PMID: 17667956]
[27]
Booth R, Kim H. Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 2012; 12(10): 1784-92.
[http://dx.doi.org/10.1039/c2lc40094d] [PMID: 22422217]
[28]
Antoni D, Burckel H, Josset E, Noel G. Three-dimensional cell culture: a breakthrough in vivo. Int J Mol Sci 2015; 16(3): 5517-27.
[http://dx.doi.org/10.3390/ijms16035517] [PMID: 25768338]
[29]
Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36(5): 862-90.
[http://dx.doi.org/10.1177/0271678X16630991] [PMID: 26868179]
[30]
Ekins S, Williams AJ, Krasowski MD, Freundlich JS. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov Today 2011; 16(7-8): 298-310.
[http://dx.doi.org/10.1016/j.drudis.2011.02.016] [PMID: 21376136]
[31]
Zhao QQ, Li X, Luo LP, Qian Y, Liu YL, Wu HT. Repurposing of approved cardiovascular drugs against ischemic cerebrovascular disease by disease-disease associated network-assisted prediction. Chem Pharm Bull 2019; 67(1): 32-40.
[http://dx.doi.org/10.1248/cpb.c18-00634] [PMID: 30404981]
[32]
Nosengo N. Can you teach old drugs new tricks? Nature 2016; 534(7607): 314-6.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[33]
Pritchard JE, O’Mara TA, Glubb DM. Enhancing the promise of drug repositioning through genetics. Front Pharmacol 2017; 8: 896.
[http://dx.doi.org/10.3389/fphar.2017.00896] [PMID: 29270124]
[34]
Mei H, Xia T, Feng G, Zhu J, Lin SM, Qiu Y. Opportunities in systems biology to discover mechanisms and repurpose drugs for CNS diseases. Drug Discov Today 2012; 17(21-22): 1208-16.
[http://dx.doi.org/10.1016/j.drudis.2012.06.015] [PMID: 22750722]
[35]
Fagan SC. Drug repurposing for drug development in stroke. Pharmacotherapy 2010; 30(7 Pt 2): 51S-4S.
[http://dx.doi.org/10.1592/phco.30.pt2.51S] [PMID: 20575622]
[36]
Xu M, Lee EM, Wen Z, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 2016; 22(10): 1101-7.
[http://dx.doi.org/10.1038/nm.4184] [PMID: 27571349]
[37]
Brown D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 2015; 14(12): 821-32.
[http://dx.doi.org/10.1038/nrd4675] [PMID: 26493767]
[38]
Finsterer J, Frank M. Repurposed drugs in metabolic disorders. Curr Top Med Chem 2013; 13(18): 2386-94.
[http://dx.doi.org/10.2174/15680266113136660166] [PMID: 24059459]
[39]
Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov 2016; 15(4): 275-92.
[http://dx.doi.org/10.1038/nrd.2015.21] [PMID: 26794270]
[40]
Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72(5): 648-72.
[http://dx.doi.org/10.1002/ana.23648] [PMID: 23280789]
[41]
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015; 7(1): a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[42]
Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57(2): 178-201.
[http://dx.doi.org/10.1016/j.neuron.2008.01.003] [PMID: 18215617]
[43]
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS drug delivery with a focus on transporter-mediated transcytosis. Int J Mol Sci 2019; 20(12): 3108.
[http://dx.doi.org/10.3390/ijms20123108] [PMID: 31242683]
[44]
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006; 7(1): 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[45]
Al-Ahmady ZS. Selective drug delivery approaches to lesioned brain through blood brain barrier disruption. Expert Opin Drug Deliv 2018; 15(4): 335-49.
[http://dx.doi.org/10.1080/17425247.2018.1444601] [PMID: 29466890]
[46]
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Medicin Chem 2014; 6: 11-24.
[http://dx.doi.org/10.4137/PMC.S13384] [PMID: 24963272]
[47]
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 2018; 14(3): 133-50.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[48]
Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 2018; 18(7): 452-64.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[49]
Banks WA, Kovac A, Morofuji Y. Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J Cereb Blood Flow Metab 2018; 38(6): 1104-18.
[http://dx.doi.org/10.1177/0271678X17740793] [PMID: 29106322]
[50]
Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 2010; 58(9): 1094-103.
[http://dx.doi.org/10.1002/glia.20990] [PMID: 20468051]
[51]
Gastfriend BD, Palecek SP, Shusta EV. Modeling the blood-brain barrier: Beyond the endothelial cells. Curr Opin Biomed Eng 2018; 5: 6-12.
[http://dx.doi.org/10.1016/j.cobme.2017.11.002] [PMID: 29915815]
[52]
Sá-Pereira I, Brites D, Brito MA. Neurovascular unit: a focus on pericytes. Mol Neurobiol 2012; 45(2): 327-47.
[http://dx.doi.org/10.1007/s12035-012-8244-2] [PMID: 22371274]
[53]
Obermeier B, Verma A, Ransohoff RM. The blood-brain barrier. Handb Clin Neurol 2016; 133: 39-59.
[http://dx.doi.org/10.1016/B978-0-444-63432-0.00003-7] [PMID: 27112670]
[54]
Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 2012; 33(12): 579-89.
[http://dx.doi.org/10.1016/j.it.2012.07.004] [PMID: 22926201]
[55]
Heidari H, Taylor H. Review Article: Capturing the physiological complexity of the brain’s neuro-vascular unit in vitro. Biomicrofluidics 2018; 12(5): 051502
[http://dx.doi.org/10.1063/1.5045126] [PMID: 30364144]
[56]
Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990; 429: 47-62.
[http://dx.doi.org/10.1113/jphysiol.1990.sp018243] [PMID: 2277354]
[57]
Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 2000; 20(1): 57-76.
[http://dx.doi.org/10.1023/A:1006995910836] [PMID: 10690502]
[58]
Lyck R, Ruderisch N, Moll AG, et al. Culture-induced changes in blood-brain barrier transcriptome: implications for amino-acid transporters in vivo. J Cereb Blood Flow Metab 2009; 29(9): 1491-502.
[http://dx.doi.org/10.1038/jcbfm.2009.72] [PMID: 19491922]
[59]
Roux F, Couraud PO. Rat brain endothelial cell lines for the study of blood-brain barrier permeability and transport functions. Cell Mol Neurobiol 2005; 25(1): 41-58.
[http://dx.doi.org/10.1007/s10571-004-1376-9] [PMID: 15962508]
[60]
Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann Neurol 1983; 14(4): 396-402.
[http://dx.doi.org/10.1002/ana.410140403] [PMID: 6638956]
[61]
Rubin LL, Hall DE, Porter S, et al. A cell culture model of the blood-brain barrier. J Cell Biol 1991; 115(6): 1725-35.
[http://dx.doi.org/10.1083/jcb.115.6.1725] [PMID: 1661734]
[62]
Jaffe EA, Hoyer LW, Nachman RL. Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J Clin Invest 1973; 52(11): 2757-64.
[http://dx.doi.org/10.1172/JCI107471] [PMID: 4583980]
[63]
Dorovini-Zis K, Huynh HK. Ultrastructural localization of factor VIII-related antigen in cultured human brain microvessel endothelial cells. J Histochem Cytochem 1992; 40(5): 689-96.
[http://dx.doi.org/10.1177/40.5.1573250] [PMID: 1573250]
[64]
Müller AM, Hermanns MI, Skrzynski C, Nesslinger M, Müller KM, Kirkpatrick CJ. Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Exp Mol Pathol 2002; 72(3): 221-9.
[http://dx.doi.org/10.1006/exmp.2002.2424] [PMID: 12009786]
[65]
Nitta T, Hata M, Gotoh S, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161(3): 653-60.
[http://dx.doi.org/10.1083/jcb.200302070] [PMID: 12743111]
[66]
Furuse M, Hirase T, Itoh M, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123(6 Pt 2): 1777-88.
[http://dx.doi.org/10.1083/jcb.123.6.1777] [PMID: 8276896]
[67]
Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 1999; 147(1): 185-94.
[http://dx.doi.org/10.1083/jcb.147.1.185] [PMID: 10508865]
[68]
Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. Brain Res 1982; 241(1): 49-55.
[http://dx.doi.org/10.1016/0006-8993(82)91227-6] [PMID: 6980688]
[69]
Ohno K, Pettigrew KD, Rapoport SI. Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 1978; 235(3): H299-307.
[PMID: 696840]
[70]
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom 2015; 20(2): 107-26.
[http://dx.doi.org/10.1177/2211068214561025] [PMID: 25586998]
[71]
Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013; 36(3): 437-49.
[http://dx.doi.org/10.1007/s10545-013-9608-0] [PMID: 23609350]
[72]
Khan AI, Liu J, Dutta P. Iron transport kinetics through blood-brain barrier endothelial cells. Biochim Biophys Acta, Gen Subj 2018; 1862(5): 1168-79.
[http://dx.doi.org/10.1016/j.bbagen.2018.02.010] [PMID: 29466707]
[73]
Nakagawa S, Deli MA, Nakao S, et al. Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 2007; 27(6): 687-94.
[http://dx.doi.org/10.1007/s10571-007-9195-4] [PMID: 17823866]
[74]
Nakagawa S, Deli MA, Kawaguchi H, et al. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 2009; 54(3-4): 253-63.
[http://dx.doi.org/10.1016/j.neuint.2008.12.002] [PMID: 19111869]
[75]
Helms HC, Hersom M, Kuhlmann LB, Badolo L, Nielsen CU, Brodin B. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1. AAPS J 2014; 16(5): 1046-55.
[http://dx.doi.org/10.1208/s12248-014-9628-1] [PMID: 24934296]
[76]
Patabendige A, Skinner RA, Morgan L, Abbott NJ. A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 2013; 1521: 16-30.
[http://dx.doi.org/10.1016/j.brainres.2013.04.006] [PMID: 23603406]
[77]
Watson PM, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci 2013; 14: 59.
[http://dx.doi.org/10.1186/1471-2202-14-59] [PMID: 23773766]
[78]
Ottaviani G, Martel S, Carrupt PA. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem 2006; 49(13): 3948-54.
[http://dx.doi.org/10.1021/jm060230+] [PMID: 16789751]
[79]
Mensch J, Melis A, Mackie C, Verreck G, Brewster ME, Augustijns P. Evaluation of various PAMPA models to identify the most discriminating method for the prediction of BBB permeability. Eur J Pharm Biopharm 2010; 74(3): 495-502.
[http://dx.doi.org/10.1016/j.ejpb.2010.01.003] [PMID: 20067834]
[80]
TA R. M K. Challenges and opportunities in central nervous system drug discovery. Trends in Chemistry 2019; 1: 612-24.
[http://dx.doi.org/10.1016/j.trechm.2019.04.009]
[81]
Di L, Kerns EH, Fan K, McConnell OJ, Carter GT. High throughput artificial membrane permeability assay for blood-brain barrier. Eur J Med Chem 2003; 38(3): 223-32.
[http://dx.doi.org/10.1016/S0223-5234(03)00012-6] [PMID: 12667689]
[82]
Könczöl A, Müller J, Földes E, et al. Applicability of a blood-brain barrier specific artificial membrane permeability assay at the early stage of natural product-based CNS drug discovery. J Nat Prod 2013; 76(4): 655-63.
[http://dx.doi.org/10.1021/np300882f] [PMID: 23565574]
[83]
Passeleu-Le Bourdonnec C, Carrupt PA, Scherrmann JM, Martel S. Methodologies to assess drug permeation through the blood-brain barrier for pharmaceutical research. Pharm Res 2013; 30(11): 2729-56.
[http://dx.doi.org/10.1007/s11095-013-1119-z] [PMID: 23801086]
[84]
Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005; 25(1): 59-127.
[http://dx.doi.org/10.1007/s10571-004-1377-8] [PMID: 15962509]
[85]
Joó F. The cerebral microvessels in culture, an update. J Neurochem 1992; 58(1): 1-17.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09272.x] [PMID: 1727421]
[86]
Biegel D, Pachter JS. Growth of brain microvessel endothelial cells on collagen gels: applications to the study of blood-brain barrier physiology and CNS inflammation. In Vitro Cell Dev Biol Anim 1994; 30A(9): 581-8.
[http://dx.doi.org/10.1007/BF02631256] [PMID: 7820308]
[87]
Vandenhaute E, Drolez A, Sevin E, Gosselet F, Mysiorek C, Dehouck MP. Adapting coculture in vitro models of the blood-brain barrier for use in cancer research: maintaining an appropriate endothelial monolayer for the assessment of transendothelial migration. Lab Invest 2016; 96(5): 588-98.
[http://dx.doi.org/10.1038/labinvest.2016.35] [PMID: 26901835]
[88]
Wuest DM, Wing AM, Lee KH. Membrane configuration optimization for a murine in vitro blood-brain barrier model. J Neurosci Methods 2013; 212(2): 211-21.
[http://dx.doi.org/10.1016/j.jneumeth.2012.10.016] [PMID: 23131353]
[89]
Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 2013; 10(1): 33.
[http://dx.doi.org/10.1186/2045-8118-10-33] [PMID: 24262108]
[90]
Dehouck MP, Jolliet-Riant P, Brée F, Fruchart JC, Cecchelli R, Tillement JP. Drug transfer across the blood-brain barrier: correlation between in vitro and in vivo models. J Neurochem 1992; 58(5): 1790-7.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb10055.x] [PMID: 1560234]
[91]
Gaillard PJ, de Boer AG. Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci 2000; 12(2): 95-102.
[http://dx.doi.org/10.1016/S0928-0987(00)00152-4] [PMID: 11102736]
[92]
Grimpe B, Probst JC, Hager G. Suppression of nidogen-1 translation by antisense targeting affects the adhesive properties of cultured astrocytes. Glia 1999; 28(2): 138-49.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199911)28:2138:AID-GLIA53.0.CO;2-8] [PMID: 10533057]
[93]
Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol 2001; 153(5): 933-46.
[http://dx.doi.org/10.1083/jcb.153.5.933] [PMID: 11381080]
[94]
Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 2009; 114(24): 5091-101.
[http://dx.doi.org/10.1182/blood-2009-05-222364] [PMID: 19822899]
[95]
Vincent AJ, Lau PW, Roskams AJ. SPARC is expressed by macroglia and microglia in the developing and mature nervous system. Dev Dyn 2008; 237(5): 1449-62.
[http://dx.doi.org/10.1002/dvdy.21495] [PMID: 18366138]
[96]
Webersinke G, Bauer H, Amberger A, Zach O, Bauer HC. Comparison of gene expression of extracellular matrix molecules in brain microvascular endothelial cells and astrocytes. Biochem Biophys Res Commun 1992; 189(2): 877-84.
[http://dx.doi.org/10.1016/0006-291X(92)92285-6] [PMID: 1282001]
[97]
Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist 2009; 15(2): 180-93.
[http://dx.doi.org/10.1177/1073858408329509] [PMID: 19307424]
[98]
Hermann DM, ElAli A. The abluminal endothelial membrane in neurovascular remodeling in health and disease. Sci Signal 2012; 5(236): re4.
[http://dx.doi.org/10.1126/scisignal.2002886] [PMID: 22871611]
[99]
Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 2016; 13: 25.
[http://dx.doi.org/10.1186/s12974-016-0495-9] [PMID: 26832174]
[100]
Milner R, Hung S, Wang X, Berg GI, Spatz M, del Zoppo GJ. Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 2008; 39(1): 191-7.
[http://dx.doi.org/10.1161/STROKEAHA.107.486134] [PMID: 18032737]
[101]
Hartmann C, Zozulya A, Wegener J, Galla HJ. The impact of glia-derived extracellular matrices on the barrier function of cerebral endothelial cells: an in vitro study. Exp Cell Res 2007; 313(7): 1318-25.
[http://dx.doi.org/10.1016/j.yexcr.2007.01.024] [PMID: 17346702]
[102]
Zobel K, Hansen U, Galla HJ. Blood-brain barrier properties in vitro depend on composition and assembly of endogenous extracellular matrices. Cell Tissue Res 2016; 365(2): 233-45.
[http://dx.doi.org/10.1007/s00441-016-2397-7] [PMID: 27053246]
[103]
Tilling T, Korte D, Hoheisel D, Galla HJ. Basement membrane proteins influence brain capillary endothelial barrier function in vitro. J Neurochem 1998; 71(3): 1151-7.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71031151.x] [PMID: 9721740]
[104]
Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS 2018; 15(1): 7.
[http://dx.doi.org/10.1186/s12987-018-0092-7] [PMID: 29463314]
[105]
Brown TD, Nowak M, Bayles AV, et al. A microfluidic model of human brain (μHuB) for assessment of blood brain barrier. Bioeng Transl Med 2019; 4(2)e10126
[http://dx.doi.org/10.1002/btm2.10126] [PMID: 31249876]
[106]
Cucullo L, Hossain M, Tierney W, Janigro D. A new dynamic in vitro modular capillaries-venules modular system: cerebrovascular physiology in a box. BMC Neurosci 2013; 14: 18.
[http://dx.doi.org/10.1186/1471-2202-14-18] [PMID: 23388041]
[107]
Prabhakarpandian B, Shen MC, Nichols JB, et al. SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 2013; 13(6): 1093-101.
[http://dx.doi.org/10.1039/c2lc41208j] [PMID: 23344641]
[108]
Kamiichi A, Furihata T, Kishida S, et al. Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies. Brain Res 2012; 1488: 113-22.
[http://dx.doi.org/10.1016/j.brainres.2012.09.042] [PMID: 23041702]
[109]
Terasaki T, Hosoya K. Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol Pharm Bull 2001; 24(2): 111-8.
[http://dx.doi.org/10.1248/bpb.24.111] [PMID: 11217075]
[110]
Watanabe T, Dohgu S, Takata F, et al. Paracellular barrier and tight junction protein expression in the immortalized brain endothelial cell lines bEND.3, bEND.5 and mouse brain endothelial cell 4. Biol Pharm Bull 2013; 36(3): 492-5.
[http://dx.doi.org/10.1248/bpb.b12-00915] [PMID: 23449334]
[111]
Weksler BB, Subileau EA, Perrière N, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 2005; 19(13): 1872-4.
[http://dx.doi.org/10.1096/fj.04-3458fje] [PMID: 16141364]
[112]
Silwedel C, Förster C. Differential susceptibility of cerebral and cerebellar murine brain microvascular endothelial cells to loss of barrier properties in response to inflammatory stimuli. J Neuroimmunol 2006; 179(1-2): 37-45.
[http://dx.doi.org/10.1016/j.jneuroim.2006.06.019] [PMID: 16884785]
[113]
Easton AS, Abbott NJ. Bradykinin increases permeability by calcium and 5-lipoxygenase in the ECV304/C6 cell culture model of the blood-brain barrier. Brain Res 2002; 953(1-2): 157-69.
[http://dx.doi.org/10.1016/S0006-8993(02)03281-X] [PMID: 12384249]
[114]
Neuhaus W, Plattner VE, Wirth M, et al. Validation of in vitro cell culture models of the blood-brain barrier: tightness characterization of two promising cell lines. J Pharm Sci 2008; 97(12): 5158-75.
[http://dx.doi.org/10.1002/jps.21371] [PMID: 18399537]
[115]
Hellinger E, Veszelka S, Tóth AE, et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 2012; 82(2): 340-51.
[http://dx.doi.org/10.1016/j.ejpb.2012.07.020] [PMID: 22906709]
[116]
Lohmann C, Hüwel S, Galla HJ. Predicting blood-brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 2002; 10(4): 263-76.
[http://dx.doi.org/10.1080/10611860290031903] [PMID: 12164375]
[117]
Wang Q, Rager JD, Weinstein K, et al. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier. Int J Pharm 2005; 288(2): 349-59.
[http://dx.doi.org/10.1016/j.ijpharm.2004.10.007] [PMID: 15620875]
[118]
Joó F, Karnushina I. A procedure for the isolation of capillaries from rat brain. Cytobios 1973; 8(29): 41-8.
[PMID: 4774116]
[119]
Perrière N, Demeuse P, Garcia E, et al. Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 2005; 93(2): 279-89.
[http://dx.doi.org/10.1111/j.1471-4159.2004.03020.x] [PMID: 15816851]
[120]
Ge S, Song L, Pachter JS. Where is the blood-brain barrier ... really? J Neurosci Res 2005; 79(4): 421-7.
[http://dx.doi.org/10.1002/jnr.20313] [PMID: 15635601]
[121]
Ishizaki T, Chiba H, Kojima T, et al. Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Res 2003; 290(2): 275-88.
[http://dx.doi.org/10.1016/S0014-4827(03)00354-9] [PMID: 14567987]
[122]
Soma T, Chiba H, Kato-Mori Y, et al. Thr(207) of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. Exp Cell Res 2004; 300(1): 202-12.
[http://dx.doi.org/10.1016/j.yexcr.2004.07.012] [PMID: 15383327]
[123]
Bonney S, Siegenthaler JA. Differential effects of retinoic acid concentrations in regulating blood-brain barrier properties. eNeuro 2017; 4(3): 4.
[http://dx.doi.org/10.1523/ENEURO.0378-16.2017] [PMID: 28560318]
[124]
Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci Rep 2014; 4: 4160.
[http://dx.doi.org/10.1038/srep04160] [PMID: 24561821]
[125]
McConnell HL, Kersch CN, Woltjer RL, Neuwelt EA. The translational significance of the neurovascular unit. J Biol Chem 2017; 292(3): 762-70.
[http://dx.doi.org/10.1074/jbc.R116.760215] [PMID: 27920202]
[126]
Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol 2005; 25(1): 25-39.
[http://dx.doi.org/10.1007/s10571-004-1375-x] [PMID: 15962507]
[127]
Sobue K, Yamamoto N, Yoneda K, et al. Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res 1999; 35(2): 155-64.
[http://dx.doi.org/10.1016/S0168-0102(99)00079-6] [PMID: 10616919]
[128]
Allt G, Lawrenson JG. Pericytes: cell biology and pathology. Cells Tissues Organs 2001; 169(1): 1-11.
[http://dx.doi.org/10.1159/000047855] [PMID: 11340256]
[129]
Nakagawa S, Castro V, Toborek M. Infection of human pericytes by HIV-1 disrupts the integrity of the blood-brain barrier. J Cell Mol Med 2012; 16(12): 2950-7.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01622.x] [PMID: 22947176]
[130]
Thanabalasundaram G, Pieper C, Lischper M, Galla HJ. Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res 2010; 1347: 1-10.
[http://dx.doi.org/10.1016/j.brainres.2010.05.096] [PMID: 20553880]
[131]
Zozulya A, Weidenfeller C, Galla HJ. Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood-brain barrier in vitro. Brain Res 2008; 1189: 1-11.
[http://dx.doi.org/10.1016/j.brainres.2007.10.099] [PMID: 18061148]
[132]
Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and pericytes. PLoS One 2015; 10(8): e0134765
[http://dx.doi.org/10.1371/journal.pone.0134765] [PMID: 26241648]
[133]
Nzou G, Wicks RT, Wicks EE, et al. Human cortex spheroid with a functional blood brain barrier for high-throughput neurotoxicity screening and disease modeling. Sci Rep 2018; 8(1): 7413.
[http://dx.doi.org/10.1038/s41598-018-25603-5] [PMID: 29743549]
[134]
Cho CF, Wolfe JM, Fadzen CM, et al. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun 2017; 8: 15623.
[http://dx.doi.org/10.1038/ncomms15623] [PMID: 28585535]
[135]
Logan S, Arzua T, Canfield SG, et al. Studying human neurological disorders using induced pluripotent stem cells: from 2D monolayer to 3D organoid and blood brain barrier models. Compr Physiol 2019; 9(2): 565-611.
[http://dx.doi.org/10.1002/cphy.c180025] [PMID: 30873582]
[136]
Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV. Modeling the blood-brain barrier using stem cell sources. Fluids Barriers CNS 2013; 10(1): 2.
[http://dx.doi.org/10.1186/2045-8118-10-2] [PMID: 23305164]
[137]
Lim JC, Wolpaw AJ, Caldwell MA, Hladky SB, Barrand MA. Neural precursor cell influences on blood-brain barrier characteristics in rat brain endothelial cells. Brain Res 2007; 1159: 67-76.
[http://dx.doi.org/10.1016/j.brainres.2007.05.032] [PMID: 17583679]
[138]
Weidenfeller C, Svendsen CN, Shusta EV. Differentiating embryonic neural progenitor cells induce blood-brain barrier properties. J Neurochem 2007; 101(2): 555-65.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04394.x] [PMID: 17254017]
[139]
Itoh K, Maki T, Lok J, Arai K. Mechanisms of cell-cell interaction in oligodendrogenesis and remyelination after stroke. Brain Res 2015; 1623: 135-49.
[http://dx.doi.org/10.1016/j.brainres.2015.04.039] [PMID: 25960351]
[140]
Maki T, Maeda M, Uemura M, et al. Potential interactions between pericytes and oligodendrocyte precursor cells in perivascular regions of cerebral white matter. Neurosci Lett 2015; 597: 164-9.
[http://dx.doi.org/10.1016/j.neulet.2015.04.047] [PMID: 25936593]
[141]
Seo JH, Maki T, Maeda M, et al. Oligodendrocyte precursor cells support blood-brain barrier integrity via TGF-β signaling. PLoS One 2014; 9(7): e103174
[http://dx.doi.org/10.1371/journal.pone.0103174] [PMID: 25078775]
[142]
Kuchler-Bopp S, Delaunoy JP, Artault JC, Zaepfel M, Dietrich JB. Astrocytes induce several blood-brain barrier properties in non-neural endothelial cells. Neuroreport 1999; 10(6): 1347-53.
[http://dx.doi.org/10.1097/00001756-199904260-00035] [PMID: 10363951]
[143]
Faassen F, Vogel G, Spanings H, Vromans H. Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm 2003; 263(1-2): 113-22.
[http://dx.doi.org/10.1016/S0378-5173(03)00372-7] [PMID: 12954186]
[144]
Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia 1997; 19(1): 13-26.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199701)19:1<13::AID-GLIA2>3.0.CO;2-B] [PMID: 8989564]
[145]
Isobe I, Watanabe T, Yotsuyanagi T, et al. Astrocytic contributions to blood-brain barrier (BBB) formation by endothelial cells: a possible use of aortic endothelial cell for in vitro BBB model. Neurochem Int 1996; 28(5-6): 523-33.
[http://dx.doi.org/10.1016/0197-0186(95)00142-5] [PMID: 8792333]
[146]
Greenwood J, Pryce G, Devine L, et al. SV40 large T immortalised cell lines of the rat blood-brain and blood-retinal barriers retain their phenotypic and immunological characteristics. J Neuroimmunol 1996; 71(1-2): 51-63.
[http://dx.doi.org/10.1016/S0165-5728(96)00130-0] [PMID: 8982103]
[147]
Dohgu S, Takata F, Yamauchi A, et al. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 2005; 1038(2): 208-15.
[http://dx.doi.org/10.1016/j.brainres.2005.01.027] [PMID: 15757636]
[148]
Förster C, Silwedel C, Golenhofen N, et al. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 2005; 565(Pt 2): 475-86.
[http://dx.doi.org/10.1113/jphysiol.2005.084038] [PMID: 15790664]
[149]
Czupalla CJ, Liebner S, Devraj K. In vitro models of the blood-brain barrier. Methods Mol Biol 2014; 1135: 415-37.
[http://dx.doi.org/10.1007/978-1-4939-0320-7_34] [PMID: 24510883]
[150]
Nakagawa S, Aruga J. Sphingosine 1-phosphate signaling is involved in impaired blood-brain barrier function in ischemia-reperfusion injury. Mol Neurobiol 2020; 57(3): 1594-606.
[http://dx.doi.org/10.1007/s12035-019-01844-x] [PMID: 31802363]
[151]
Hoheisel D, Nitz T, Franke H, et al. Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 1998; 244(1): 312-6.
[http://dx.doi.org/10.1006/bbrc.1997.8051] [PMID: 9514852]
[152]
Lundquist S, Renftel M, Brillault J, Fenart L, Cecchelli R, Dehouck MP. Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res 2002; 19(7): 976-81.
[http://dx.doi.org/10.1023/A:1016462205267] [PMID: 12180550]
[153]
MacLean AG, Orandle MS, MacKey J, Williams KC, Alvarez X, Lackner AA. Characterization of an in vitro rhesus macaque blood-brain barrier. J Neuroimmunol 2002; 131(1-2): 98-103.
[http://dx.doi.org/10.1016/S0165-5728(02)00256-4] [PMID: 12458041]
[154]
Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 2015; 6: 6716.
[http://dx.doi.org/10.1038/ncomms7716] [PMID: 25828099]
[155]
Bernas MJ, Cardoso FL, Daley SK, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc 2010; 5(7): 1265-72.
[http://dx.doi.org/10.1038/nprot.2010.76] [PMID: 20595955]
[156]
Eigenmann DE, Dürig C, Jähne EA, et al. In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs. Eur J Pharm Biopharm 2016; 103: 118-26.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.029] [PMID: 27018328]
[157]
Coisne C, Dehouck L, Faveeuw C, et al. Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest 2005; 85(6): 734-46.
[http://dx.doi.org/10.1038/labinvest.3700281] [PMID: 15908914]
[158]
Cecchelli R, Dehouck B, Descamps L, et al. In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 1999; 36(2-3): 165-78.
[http://dx.doi.org/10.1016/S0169-409X(98)00083-0] [PMID: 10837714]
[159]
Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target 2007; 15(4): 253-68.
[http://dx.doi.org/10.1080/10611860701288539] [PMID: 17487694]
[160]
Yamamoto Y, Liang M, Munesue S, et al. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behaviour in mice. Commun Biol 2019; 2: 76.
[http://dx.doi.org/10.1038/s42003-019-0325-6] [PMID: 30820471]
[161]
Amano M, Salcedo-Gómez PM, Zhao R, et al. A modified p1 moiety enhances in vitro antiviral activity against various multidrug-resistant HIV-1 variants and in vitro central nervous system penetration properties of a novel nonpeptidic protease inhibitor, GRL-10413. Antimicrob Agents Chemother 2016; 60(12): 7046-59.
[PMID: 27620483]
[162]
Aird WC. Vascular bed-specific thrombosis. J Thromb Haemost 2007; 5(Suppl. 1): 283-91.
[http://dx.doi.org/10.1111/j.1538-7836.2007.02515.x] [PMID: 17635738]
[163]
Regan ER, Aird WC. Dynamical systems approach to endothelial heterogeneity. Circ Res 2012; 111(1): 110-30.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.261701] [PMID: 22723222]
[164]
Smith QR. A review of blood-brain barrier transport techniques. Methods Mol Med 2003; 89: 193-208.
[http://dx.doi.org/10.1385/1-59259-419-0:193] [PMID: 12958421]
[165]
Garberg P, Ball M, Borg N, et al. In vitro models for the blood-brain barrier. Toxicol In Vitro 2005; 19(3): 299-334.
[http://dx.doi.org/10.1016/j.tiv.2004.06.011] [PMID: 15713540]
[166]
Ohtsuki S, Uchida Y, Kubo Y, Terasaki T. Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 2011; 100(9): 3547-59.
[http://dx.doi.org/10.1002/jps.22612] [PMID: 21560129]
[167]
Syvänen S, Lindhe O, Palner M, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 2009; 37(3): 635-43.
[http://dx.doi.org/10.1124/dmd.108.024745] [PMID: 19047468]
[168]
Battah B, Chemi G, Butini S, et al. A repurposing approach for uncovering the anti-tubercular activity of FDA-approved drugs with potential multi-targeting profiles. Molecules 2019; 24(23): 24.
[http://dx.doi.org/10.3390/molecules24234373] [PMID: 31795400]
[169]
Kim JH, Scialli AR. Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol Sci 2011; 122(1): 1-6.
[http://dx.doi.org/10.1093/toxsci/kfr088] [PMID: 21507989]
[170]
Tanaka H. [Artificial Intelligence-based Drug Discovery and Drug Repositioning]. Brain Nerve 2019; 71(9): 981-9.
[PMID: 31506400]
[171]
Murteira S, Ghezaiel Z, Karray S, Lamure M. Drug reformulations and repositioning in pharmaceutical industry and its impact on market access: reassessment of nomenclature. J Mark Access Health Policy 2013; 1: 1.
[http://dx.doi.org/10.3402/jmahp.v1i0.21131] [PMID: 27226826]
[172]
Schwab RS, England AC Jr, Poskanzer DC, Young RR. Amantadine in the treatment of Parkinson’s disease. JAMA 1969; 208(7): 1168-70.
[http://dx.doi.org/10.1001/jama.1969.03160070046011] [PMID: 5818715]
[173]
Schwab RS, Poskanzer DC, England AC Jr, Young RR. Amantadine in Parkinson’s disease. Review of more than two years’ experience. JAMA 1972; 222(7): 792-5.
[http://dx.doi.org/10.1001/jama.1972.03210070026008] [PMID: 4677928]
[174]
Caban A, Pisarczyk K, Kopacz K, et al. Filling the gap in CNS drug development: evaluation of the role of drug repurposing. J Mark Access Health Policy 2017; 5(1): 1299833
[http://dx.doi.org/10.1080/20016689.2017.1299833] [PMID: 28473889]
[175]
Pangalos MN, Schechter LE, Hurko O. Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 2007; 6(7): 521-32.
[http://dx.doi.org/10.1038/nrd2094] [PMID: 17599084]
[176]
Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today 2019; 24(2): 505-16.
[http://dx.doi.org/10.1016/j.drudis.2018.09.008] [PMID: 30240876]
[177]
De Strooper B, Karran E. The cellular phase of alzheimer’s disease. Cell 2016; 164(4): 603-15.
[http://dx.doi.org/10.1016/j.cell.2015.12.056] [PMID: 26871627]
[178]
Cotman CW, Su JH. Mechanisms of neuronal death in Alzheimer’s disease. Brain Pathol 1996; 6(4): 493-506.
[http://dx.doi.org/10.1111/j.1750-3639.1996.tb00878.x] [PMID: 8944319]
[179]
Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6): 358-72.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[180]
Unger MS, Marschallinger J, Kaindl J, et al. Early changes in hippocampal neurogenesis in transgenic mouse models for alzheimer’s disease. Mol Neurobiol 2016; 53(8): 5796-806.
[http://dx.doi.org/10.1007/s12035-016-0018-9] [PMID: 27544234]
[181]
van de Haar HJ, Burgmans S, Jansen JF, et al. Blood-brain barrier leakage in patients with early alzheimer disease. Radiology 2016; 281(2): 527-35.
[http://dx.doi.org/10.1148/radiol.2016152244] [PMID: 27243267]
[182]
Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: A matter of blood-brain barrier dysfunction? J Exp Med 2017; 214(11): 3151-69.
[http://dx.doi.org/10.1084/jem.20171406] [PMID: 29061693]
[183]
Zhao LB, Jia ZY, Lu GD, Zhu YS, Jing L, Shi HB. Establishment of a canine model of acute pulmonary embolism with definite right ventricular dysfunction through introduced autologous blood clots. Thromb Res 2015; 135(4): 727-32.
[http://dx.doi.org/10.1016/j.thromres.2015.01.016] [PMID: 25618266]
[184]
Vargas DM, De Bastiani MA, Zimmer ER, Klamt F. Alzheimer’s disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. Alzheimers Res Ther 2018; 10(1): 59.
[http://dx.doi.org/10.1186/s13195-018-0394-7] [PMID: 29935546]
[185]
Kumar A, Singh A, Ekavali . A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[186]
de Castro AA, da Cunha EFF, Pereira AF, et al. Insights into the drug repositioning applied to the alzheimer’s disease treatment and future perspectives. Curr Alzheimer Res 2018; 15(12): 1161-78.
[http://dx.doi.org/10.2174/1567205015666180813150703] [PMID: 30101709]
[187]
Saito S, Ihara M. New therapeutic approaches for Alzheimer’s disease and cerebral amyloid angiopathy. Front Aging Neurosci 2014; 6: 290.
[http://dx.doi.org/10.3389/fnagi.2014.00290] [PMID: 25368578]
[188]
Saito S, Kojima S, Oishi N, et al. A multicenter, randomized, placebo-controlled trial for cilostazol in patients with mild cognitive impairment: The COMCID study protocol. Alzheimers Dement 2016; 2(4): 250-7.
[http://dx.doi.org/10.1016/j.trci.2016.10.001] [PMID: 29067312]
[189]
Saito S, Yamamoto Y, Ihara M. Development of a multicomponent intervention to prevent alzheimer’s disease. Front Neurol 2019; 10: 490.
[http://dx.doi.org/10.3389/fneur.2019.00490] [PMID: 31139139]
[190]
Basso J, Miranda A, Sousa J, Pais A, Vitorino C. Repurposing drugs for glioblastoma: From bench to bedside. Cancer Lett 2018; 428: 173-83.
[http://dx.doi.org/10.1016/j.canlet.2018.04.039] [PMID: 29729291]
[191]
Dilly SJ, Clark AJ, Marsh A, et al. A chemical genomics approach to drug reprofiling in oncology: Antipsychotic drug risperidone as a potential adenocarcinoma treatment. Cancer Lett 2017; 393: 16-21.
[http://dx.doi.org/10.1016/j.canlet.2017.01.042] [PMID: 28188816]
[192]
Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci 2013; 34(9): 508-17.
[http://dx.doi.org/10.1016/j.tips.2013.06.005] [PMID: 23928289]
[193]
Chou FH, Tsai KY, Su CY, Lee CC. The incidence and relative risk factors for developing cancer among patients with schizophrenia: a nine-year follow-up study. Schizophr Res 2011; 129(2-3): 97-103.
[http://dx.doi.org/10.1016/j.schres.2011.02.018] [PMID: 21458957]
[194]
Dalton SO, Johansen C, Poulsen AH, et al. Cancer risk among users of neuroleptic medication: a population-based cohort study. Br J Cancer 2006; 95(7): 934-9.
[http://dx.doi.org/10.1038/sj.bjc.6603259] [PMID: 16926836]
[195]
Mortensen PB. Neuroleptic treatment and other factors modifying cancer risk in schizophrenic patients. Acta Psychiatr Scand 1987; 75(6): 585-90.
[http://dx.doi.org/10.1111/j.1600-0447.1987.tb02839.x] [PMID: 2887088]
[196]
Zong D, Zielinska-Chomej K, Juntti T, et al. Harnessing the lysosome-dependent antitumor activity of phenothiazines in human small cell lung cancer. Cell Death Dis 2014; 5e1111
[http://dx.doi.org/10.1038/cddis.2014.56] [PMID: 24625970]
[197]
Shin SY, Lee KS, Choi YK, et al. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 2013; 34(9): 2080-9.
[http://dx.doi.org/10.1093/carcin/bgt169] [PMID: 23689352]
[198]
Klutzny S, Lesche R, Keck M, et al. Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death. Cell Death Dis 2017; 8(3)e2709
[http://dx.doi.org/10.1038/cddis.2017.130] [PMID: 28358364]
[199]
Xu F, Xia Y, Feng Z, et al. Repositioning antipsychotic fluphenazine hydrochloride for treating triple negative breast cancer with brain metastases and lung metastases. Am J Cancer Res 2019; 9(3): 459-78.
[PMID: 30949404]
[200]
Wu L, Liu YY, Li ZX, et al. Anti-tumor effects of penfluridol through dysregulation of cholesterol homeostasis. Asian Pac J Cancer Prev 2014; 15(1): 489-94.
[http://dx.doi.org/10.7314/APJCP.2014.15.1.489] [PMID: 24528079]
[201]
Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I. Reviewing Animal Trials Systematically g.. Where is the evidence that animal research benefits humans?. BMJ 2004; 328(7438): 514-7.
[http://dx.doi.org/10.1136/bmj.328.7438.514] [PMID: 14988196]
[202]
O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006; 59(3): 467-77.
[http://dx.doi.org/10.1002/ana.20741] [PMID: 16453316]
[203]
Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke 2004; 35(9): 2220-5.
[http://dx.doi.org/10.1161/01.STR.0000138023.60272.9e] [PMID: 15284446]
[204]
Fagan SC, Hess DC, Machado LS, Hohnadel EJ, Pollock DM, Ergul A. Tactics for vascular protection after acute ischemic stroke. Pharmacotherapy 2005; 25(3): 387-95.
[http://dx.doi.org/10.1592/phco.25.3.387.61592] [PMID: 15843286]
[205]
Fagan SC, Kozak A, Hill WD, et al. Hypertension after experimental cerebral ischemia: candesartan provides neurovascular protection. J Hypertens 2006; 24(3): 535-9.
[http://dx.doi.org/10.1097/01.hjh.0000209990.41304.43] [PMID: 16467657]
[206]
Elewa HF, Kozak A, Johnson MH, Ergul A, Fagan SC. Blood pressure lowering after experimental cerebral ischemia provides neurovascular protection. J Hypertens 2007; 25(4): 855-9.
[http://dx.doi.org/10.1097/HJH.0b013e3280149708] [PMID: 17351379]
[207]
Chen HY, Chen TY, Lee MY, et al. Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 2006; 41(2): 175-82.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00351.x] [PMID: 16879324]
[208]
Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 2008; 39(12): 3372-7.
[http://dx.doi.org/10.1161/STROKEAHA.108.514026] [PMID: 18927459]
[209]
Machado LS, Sazonova IY, Kozak A, et al. Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential. Stroke 2009; 40(9): 3028-33.
[http://dx.doi.org/10.1161/STROKEAHA.109.556852] [PMID: 19628804]
[210]
Elewa HF, Kozak A, El-Remessy AB, et al. Early atorvastatin reduces hemorrhage after acute cerebral ischemia in diabetic rats. J Pharmacol Exp Ther 2009; 330(2): 532-40.
[http://dx.doi.org/10.1124/jpet.108.146951] [PMID: 19478137]
[211]
Morofuji Y, Nakagawa S, So G, et al. Pitavastatin strengthens the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol 2010; 30(5): 727-35.
[http://dx.doi.org/10.1007/s10571-010-9497-9] [PMID: 20127168]
[212]
Gibson CL, Srivastava K, Sprigg N, Bath PM, Bayraktutan U. Inhibition of Rho-kinase protects cerebral barrier from ischaemia-evoked injury through modulations of endothelial cell oxidative stress and tight junctions. J Neurochem 2014; 129(5): 816-26.
[http://dx.doi.org/10.1111/jnc.12681] [PMID: 24528233]
[213]
Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016; 387(10029): 1723-31.
[http://dx.doi.org/10.1016/S0140-6736(16)00163-X] [PMID: 26898852]
[214]
Goyal M, Demchuk AM, Menon BK, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015; 372(11): 1019-30.
[http://dx.doi.org/10.1056/NEJMoa1414905] [PMID: 25671798]
[215]
Powers WJ, Derdeyn CP, Biller J, et al. 2015 American heart association/american stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2015; 46(10): 3020-35.
[http://dx.doi.org/10.1161/STR.0000000000000074] [PMID: 26123479]
[216]
Saver JL, Goyal M, Bonafe A, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015; 372(24): 2285-95.
[http://dx.doi.org/10.1056/NEJMoa1415061] [PMID: 25882376]
[217]
Campbell BC, Mitchell PJ, Kleinig TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372(11): 1009-18.
[http://dx.doi.org/10.1056/NEJMoa1414792] [PMID: 25671797]
[218]
Jovin TG, Chamorro A, Cobo E, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015; 372(24): 2296-306.
[http://dx.doi.org/10.1056/NEJMoa1503780] [PMID: 25882510]
[219]
Berkhemer OA, Fransen PS, Beumer D, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372(1): 11-20.
[http://dx.doi.org/10.1056/NEJMoa1411587] [PMID: 25517348]
[220]
Fraser JF, Maniskas M, Trout A, et al. Intra-arterial verapamil post-thrombectomy is feasible, safe, and neuroprotective in stroke. J Cereb Blood Flow Metab 2017; 37(11): 3531-43.
[http://dx.doi.org/10.1177/0271678X17705259] [PMID: 28429604]
[221]
Griauzde J, Ravindra VM, Chaudhary N, Gemmete JJ, Pandey AS. Neuroprotection for ischemic stroke in the endovascular era: A brief report on the future of intra-arterial therapy. J Clin Neurosci 2019; 69: 289-91.
[http://dx.doi.org/10.1016/j.jocn.2019.08.001] [PMID: 31431407]
[222]
Maniskas ME, Roberts JM, Trueman R, et al. Intra-arterial nitroglycerin as directed acute treatment in experimental ischemic stroke. J Neurointerv Surg 2018; 10(1): 29-33.
[http://dx.doi.org/10.1136/neurintsurg-2016-012793] [PMID: 28031354]
[223]
Wang R, Wu X, Liang J, et al. Intra-artery infusion of recombinant human erythropoietin reduces blood-brain barrier disruption in rats following cerebral ischemia and reperfusion. Int J Neurosci 2015; 125(9): 693-702.
[http://dx.doi.org/10.3109/00207454.2014.966354] [PMID: 25226558]
[224]
Suzuki T, Aoyama T, Suzuki N, et al. Involvement of a proton-coupled organic cation antiporter in the blood-brain barrier transport of amantadine. Biopharm Drug Dispos 2016; 37(6): 323-35.
[http://dx.doi.org/10.1002/bdd.2014] [PMID: 27146715]
[225]
Murata M, Horiuchi E, Kanazawa I. Zonisamide has beneficial effects on Parkinson’s disease patients. Neurosci Res 2001; 41(4): 397-9.
[http://dx.doi.org/10.1016/S0168-0102(01)00298-X] [PMID: 11755227]
[226]
Uenaka T, Satake W, Cha PC, et al. In silico drug screening by using genome-wide association study data repurposed dabrafenib, an anti-melanoma drug, for Parkinson’s disease. Hum Mol Genet 2018; 27(22): 3974-85.
[http://dx.doi.org/10.1093/hmg/ddy279] [PMID: 30137437]
[227]
Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 2013; 93(4): 335-41.
[http://dx.doi.org/10.1038/clpt.2013.1] [PMID: 23443757]

© 2024 Bentham Science Publishers | Privacy Policy