Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Electrochemical Synthesis of Copolymers Bearing π-Conjugated Systems and Methods for the Identification of their Structure

Author(s): Tomasz Jarosz, Agnieszka Stolarczyk* and Karolina Glosz

Volume 24, Issue 4, 2020

Page: [339 - 353] Pages: 15

DOI: 10.2174/1385272824666200221112907

Price: $65

Abstract

The main goal of this review is to summarise the most recent progress in the electrochemical synthesis of copolymers from conjugated co-monomers. The main approaches to electrochemical copolymerisation are highlighted and various trends in the development of new copolymer materials and the intended directions of their applications are explored. The article includes a discussion of various Authors’ approaches to investigate the structure of the obtained products, indicating the key points of interest and the importance of comprehensive identification of the products of electrochemical polymerisation.

Keywords: Electrochemical polymerisation, conjugated polymers, co-monomers, aniline, thiophene, pyrrole, EDOT, copolymerisation.

Next »
Graphical Abstract

[1]
Boudreault, P.L.T.; Najari, A.; Leclerc, M. Processable low-bandgap polymers for photovoltaic applications. Chem. Mater., 2011, 23(3), 456-469.
[http://dx.doi.org/10.1021/cm1021855]
[2]
Zhan, X.; Zhu, D. Conjugated polymers for high-efficiency organic photovoltaics. Polym. Chem., 2010, 1(4), 409-419.
[http://dx.doi.org/10.1039/b9py00325h]
[3]
Zhang, S.; Ye, L.; Zhao, W.; Liu, D.; Yao, H.; Hou, J. Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure. Macromolecules, 2014, 47(14), 4653-4659.
[http://dx.doi.org/10.1021/ma500829r]
[4]
Leclerc, N.; Chávez, P.; Ibraikulov, O.A.; Heiser, T.; Lévêque, P. Impact of backbone fluorination on π-conjugated polymers in organic photovoltaic devices: a review. Polymers, 2016, 8(1), 11.
[http://dx.doi.org/10.3390/polym8010011] [PMID: 30979109]
[5]
Zhou, H.; Yang, L.; You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45(2), 607-632.
[http://dx.doi.org/10.1021/ma201648t]
[6]
Moliton, A.; Hiorns, R.C. Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym. Int., 2004, 53(10), 1397-1412.
[http://dx.doi.org/10.1002/pi.1587]
[7]
McNeill, C.R.; Greenham, N.C. Conjugated-polymer blends for optoelectronics. Adv. Mater., 2009, 21(38‐39), 3840-3850.
[http://dx.doi.org/10.1002/adma.200900783]
[8]
Maciak, E.; Procek, M.; Kepska, K.; Stolarczyk, A. Study of optical and electrical properties of thin films of the conducting comb-like graft copolymer of polymethylsiloxane with poly(3-hexyltiophene) and poly(ethylene) glycol side chains for low temperature NO2 sensing. Thin Solid Films, 2016, 618, 277-285.
[http://dx.doi.org/10.1016/j.tsf.2016.08.031]
[9]
Leclerc, N.; Heiser, T.; Brochon, C.; Hadziioannou, G. Semiconducting polymers and their optoelectronic applications. In: Macromolecular Engineering: Precise Synthesis, Materials Properties, Applications; Ludwik, L., Ed.; Weinheim: Wiley-VCH, 2011; Vol. 1, pp. 2369-2408.
[10]
Ates, M.; Sarac, A.S. Conducting polymer coated carbon surfaces and biosensor applications. Prog. Org. Coat., 2009, 66(4), 337-358.
[http://dx.doi.org/10.1016/j.porgcoat.2009.08.014]
[11]
Rahman, M.A.; Kumar, P.; Park, D.S.; Shim, Y.B. Electrochemical sensors based on organic conjugated polymers. Sensors (Basel), 2008, 8(1), 118-141.
[http://dx.doi.org/10.3390/s8010118] [PMID: 27879698]
[12]
Procek, M.; Kepska, K.; Stolarczyk, A. A study on the impact of poly(3-hexylthiophene) chain length and other applied side-chains on the NO2 sensing properties of conducting graft copolymers. Sensors (Basel), 2018, 18(3), 1-13.
[http://dx.doi.org/10.3390/s18030928] [PMID: 29558448]
[13]
Iyogun, A.A.; Kumar, M.R.; Freund, M.S. Chemically diverse sensor arrays based on electrochemically copolymerized pyrrole and styrene derivatives. Sens. Actuators B Chem., 2015, 215, 510-517.
[http://dx.doi.org/10.1016/j.snb.2015.03.070]
[14]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[15]
Qian, C.G.; Chen, Y.L.; Feng, P.J.; Xiao, X.Z.; Dong, M.; Yu, J.C.; Hu, Q.Y.; Shen, Q.D.; Gu, Z. Conjugated polymer nanomaterials for theranostics. Acta Pharmacol. Sin., 2017, 38(6), 764-781.
[http://dx.doi.org/10.1038/aps.2017.42] [PMID: 28552910]
[16]
Carli, S.; Fioravanti, G.; Armirotti, A.; Ciarpella, F.; Prato, M.; Ottonello, G.; Salerno, M.; Scarpellini, A.; Perrone, D.; Marchesi, E. A new drug delivery system based on tauroursodeoxycholic acid and PEDOT. Chem. Eur. J., 2019, 25(9), 2322-2329.
[17]
Das, T.K.; Prusty, S. Review on conducting polymers and their applications. Polym. Plast. Technol. Eng., 2012, 51(14), 1487-1500.
[http://dx.doi.org/10.1080/03602559.2012.710697]
[18]
de León, P.C.; Campbell, S.A.; Smith, J.R.; Walsh, F.C. Conducting polymer coatings in electrochemical technology part 2 - application areas. Trans. IMF, 2008, 86(1), 34-40.
[http://dx.doi.org/10.1179/174591908X264392]
[19]
Wu, C.; Chiu, D.T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3086-3109.
[http://dx.doi.org/10.1002/anie.201205133] [PMID: 23307291]
[20]
Schwartz, P.O.; Pejic, M.; Wachtler, M.; Bäuerle, P. Synthesis and characterization of electroactive PEDOT-TEMPO polymers as potential cathode materials in rechargeable batteries. Synth. Met., 2018, 243, 51-57.
[http://dx.doi.org/10.1016/j.synthmet.2018.04.005]
[21]
Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev., 2012, 112(8), 4687-4735.
[http://dx.doi.org/10.1021/cr200263w] [PMID: 22670807]
[22]
Inal, S.; Rivnay, J.; Suiu, A.O.; Malliaras, G.G.; McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res., 2018, 51(6), 1368-1376.
[http://dx.doi.org/10.1021/acs.accounts.7b00624] [PMID: 29874033]
[23]
Krukiewicz, K.; Zawisza, P.; Herman, A.P.; Turczyn, R.; Boncel, S.; Zak, J.K. An electrically controlled drug delivery system based on conducting poly(3,4-ethylenedioxypyrrole) matrix. Bioelectrochemistry, 2016, 108, 13-20.
[http://dx.doi.org/10.1016/j.bioelechem.2015.11.002] [PMID: 26606716]
[24]
Baeg, K.J.; Caironi, M.; Noh, Y.Y. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Adv. Mater., 2013, 25(31), 4210-4244.
[http://dx.doi.org/10.1002/adma.201205361] [PMID: 23761043]
[25]
Łapkowski, M.; Plewa, S.; Stolarczyk, A.; Doskocz, J.; Sołoducho, J.; Cabaj, J.; Bartoszek, M.; Sułkowski, W.W. Electrochemical synthesis of polymers with alternate phenothiazine and bithiophene units. Electrochim. Acta, 2008, 53(5), 2545-2552.
[http://dx.doi.org/10.1016/j.electacta.2007.10.031]
[26]
McCullough, L.A.; Matyjaszewski, K. Conjugated conducting polymers as components in block copolymer systems. Mol. Cryst. Liq. Cryst., 2010, 521(1), 1-55.
[http://dx.doi.org/10.1080/15421401003719951]
[27]
Dai, C.A.; Yen, W.C.; Lee, Y.H.; Ho, C.C.; Su, W.F. Facile synthesis of well-defined block copolymers containing regioregular poly(3-hexyl thiophene) via anionic macroinitiation method and their self-assembly behavior. J. Am. Chem. Soc., 2007, 129(36), 11036-11038.
[http://dx.doi.org/10.1021/ja0733991] [PMID: 17696540]
[28]
Jarosz, T.; Kepska, K.; Ledwon, P.; Procek, M.; Domagala, W.; Stolarczyk, A. Poly(3-hexylthiophene) grafting and molecular dilution: study of a class of conjugated graft copolymers. Polymers (Basel), 2019, 11(2), 205.
[http://dx.doi.org/10.3390/polym11020205] [PMID: 30960190]
[29]
Govaerts, S.; Verstappen, P.; Penxten, H.; Defour, M.; Van Mele, B.; Lutsen, L.; Vanderzande, D.; Maes, W. Synthesis of highly fluorescent all-conjugated alternating donor-acceptor (block) copolymers via GRIM polymerization. Macromolecules, 2016, 49(17), 6411-6419.
[http://dx.doi.org/10.1021/acs.macromol.6b01389]
[30]
Gebka, K.; Jarosz, T.; Stolarczyk, A. The different outcomes of electrochemical copolymerisation: 3-hexylthiophene with indole, carbazole or fluorene. Polymers (Basel), 2019, 11(2), 355.
[http://dx.doi.org/10.3390/polym11020355] [PMID: 30960339]
[31]
Golyakov, A.M.; Ardasheva, L.P.; Borisov, A.N. Electrochemical synthesis of conductive polymers based on N-(3-methoxysalicylidene)-o-anisidine and its zinc complexes. Russ. J. Gen. Chem., 2017, 87(1), 145-150.
[http://dx.doi.org/10.1134/S1070363217010236]
[32]
Gribkova, O.L.; Iakobson, O.D.; Nekrasov, A.A.; Cabanova, V.A.; Tverskoy, V.A.; Vannikov, A.V. The influence of polyacid nature on poly(3,4-ethylenedioxythiophene) electrosynthesis and its spectroelectrochemical properties. J. Solid State Electrochem., 2016, 20(11), 2991-3001.
[http://dx.doi.org/10.1007/s10008-016-3252-1]
[33]
Folane, S.A.; Paithankar, K.S.; Deshmukh, V.B.; Shelke, U.N.; Iyyer, S.B.; Gade, V.K. Amperometric detection of urea by polyaniline and poly(o-anisidine) film under galvanostatic method: a comparative study. Asian J. Chem., 2019, 31(2), 283-286.
[34]
Sangian, D.; Zheng, W.; Spinks, G.M. Optimization of the sequential polymerization synthesis method for polypyrrole films. Synth. Met., 2014, 189, 53-56.
[http://dx.doi.org/10.1016/j.synthmet.2013.12.021]
[35]
Yu, W.; Chen, J.; Fu, Y.; Xu, J.; Nie, G. Electrochromic property of a copolymer based on 5-cyanoindole and 3,4-ethylenedioxythiophene and its application in electrochromic devices. J. Electroanal. Chem. (Lausanne Switz.), 2013, 700, 17-23.
[http://dx.doi.org/10.1016/j.jelechem.2013.04.007]
[36]
Dhanalakshmi, K.; Saraswathi, R. Electrochemical preparation and characterization of conducting copolymers: poly(pyrrole-co-indole). J. Mater. Sci., 2001, 36(17), 4107-4115.
[http://dx.doi.org/10.1023/A:1017988015634]
[37]
Döşlü, S.T.; Doğru Mert, B.; Yazıcı, B. The electrochemical synthesis and corrosion behaviour of TiO2/Poly(indole-co-aniline) multilayer coating: experimental and theoretical approach. Arab. J. Chem., 2018, 11(1), 1-13.
[http://dx.doi.org/10.1016/j.arabjc.2017.03.007]
[38]
Holze, R. Copolymers - a refined way to tailor intrinsically conducting polymers. Electrochim. Acta, 2011, 56(28), 10479-10492.
[http://dx.doi.org/10.1016/j.electacta.2011.04.013]
[39]
Jokić, B.M.; Džunuzović, E.S.; Grgur, B.N.; Jugović, B.Z.; Trišovic, T.L.; Stevanović, J.S.; Gvozdenović, M.M. The influence of m-aminobenzoic acid on electrochemical synthesis and behavior of poly(aniline-co-(m-aminobenzoic acid). J. Polym. Res., 2017, 24(9), 146.
[http://dx.doi.org/10.1007/s10965-017-1313-5]
[40]
Hrichi, H.; Monser, L.; Adhoum, N. A novel electrochemical sensor based on electropolymerized molecularly imprinted poly(aniline-co-anthranilic acid) for sensitive detection of amlodipine. J. Electroanal. Chem. (Lausanne Switz.), 2017, 805, 133-145.
[http://dx.doi.org/10.1016/j.jelechem.2017.10.019]
[41]
Yan, C.; Li, J.; Meng, T.; Liu, X.; Zhang, R.; Chen, Y.; Wang, G. Selective recognition of ciprofloxacin hydrochloride based on molecular imprinted sensor via electrochemical copolymerization of pyrrole and o-phenylenediamine. Int. J. Electrochem. Sci., 2016, 11(8), 6466-6476.
[http://dx.doi.org/10.20964/2016.08.56]
[42]
Yan, C.; Zhang, R.; Chen, Y.; Wang, G. Electrochemical determination of enrofloxacin based on molecularly imprinted polymer via one-step electro-copolymerization of pyrrole and o-phenylenediamine. J. Electroanal. Chem. (Lausanne Switz.), 2017, 806, 130-135.
[http://dx.doi.org/10.1016/j.jelechem.2017.10.047]
[43]
Yan, C.; Liu, X.; Zhang, R.; Chen, Y.; Wang, G. A selective strategy for determination of ascorbic acid based on molecular imprinted copolymer of o-phenylenediamine and pyrrole. J. Electroanal. Chem. (Lausanne Switz.), 2016, 780, 276-281.
[http://dx.doi.org/10.1016/j.jelechem.2016.09.046]
[44]
Dkhili, S.; López-Bernabeu, S.; Huerta, F.; Montilla, F.; Besbes-Hentati, S.; Morallón, E. A self-doped polyaniline derivative obtained by electrochemical copolymerization of aminoterephthalic acid and aniline. Synth. Met., 2018, 245, 61-66.
[http://dx.doi.org/10.1016/j.synthmet.2018.08.005]
[45]
Abidi, M.; López-Bernabeu, S.; Huerta, F.; Montilla, F.; Besbes-Hentati, S.; Morallón, E. Spectroelectrochemical study on the copolymerization of o-aminophenol and aminoterephthalic acid. Eur. Polym. J., 2016, 2017(91), 386-395.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.04.024]
[46]
Liu, L.; Cui, H.; An, H.; Zhai, J.; Pan, Y. Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics (Kiel), 2017, 23(6), 1517-1523.
[http://dx.doi.org/10.1007/s11581-017-1972-6]
[47]
Dkhili, S.; López-Bernabeu, S.; Kedir, C.N.; Huerta, F.; Montilla, F.; Besbes-Hentati, S.; Morallon, E. An electrochemical study on the copolymer formed from piperazine and aniline monomers. Materials (Basel), 2018, 11(6), 1-12.
[http://dx.doi.org/10.3390/ma11061012] [PMID: 29904009]
[48]
Arjomandi, J.; Makhdomi, H.; Parvin, M.H. Novel conducting poly (p-nitro aniline-co-N-methyl aniline): electrosynthesis, mechanism and in situ spectroelectrochemical characterization. Synth. Met., 2016, 220, 123-133.
[http://dx.doi.org/10.1016/j.synthmet.2016.05.030]
[49]
Chen, C.; Hong, X.; Chen, A.; Xu, T.; Lu, L.; Lin, S.; Gao, Y. Electrochemical properties of poly(aniline-co-N-methylthionine) for zinc-conducting polymer rechargeable batteries. Electrochim. Acta J., 2016, 190, 240-247.
[http://dx.doi.org/10.1016/j.electacta.2015.12.125]
[50]
Chen, C.; Hong, X.; Xu, T.; Lu, L.; Gao, Y. Electrosynthesis and electrochemical and electrochromic properties of poly(aniline-co-N-methylthionine). J. Electrochem. Soc., 2015, 162(8), G54-G62.
[http://dx.doi.org/10.1149/2.0861508jes]
[51]
Raotole, P.; Raotole, M.; Patil, V.T.; Huse, V.R.; Chaudhari, A.L. Synthesis of poly(aniline-co-o-toluidine) coatings on copper. AIP Conf. Proc., 2016, 1728(1) 020123
[http://dx.doi.org/10.1063/1.4946174]
[52]
Hamid, Zebhi. Heydari, M. H.; Farhadi, K; Moghadam, P.N. Electrocopolymerization, characterization and anticorrosive properties of nanostructure poly (aniline-co-4-hydroxy phenyl acetic acid). Prot. Met. Phys. Chem. Surf., 2019, 55(5), 903-912.
[http://dx.doi.org/10.1134/S2070205119050113]
[53]
Wang, P.H.; Wang, T.L.; Lin, W.C.; Lin, H.Y.; Lee, M.H.; Yang, C.H. Enhanced supercapacitor performance using electropolymerization of self-doped polyaniline on carbon film. Nanomaterials (Basel), 2018, 8(4), 214.
[http://dx.doi.org/10.3390/nano8040214] [PMID: 29614748]
[54]
Cheng, H.; Liu, S.; Hu, C.; Wang, H. Electro - copolymerization of symmetric flower-like Luminol-Aniline-Hollow TiO2-NH2 nano-shell polymer in ionic liquid for Acetochlor detection. Int. J. Electrochem. Sci., 2018, 13(5), 4182-4197.
[http://dx.doi.org/10.20964/2018.05.75]
[55]
Ali, S.M.; Emran, K.M.; Al Lehaibi, H.A. Enhancement of the electrocatalytic activity of conducting polymer/Pd composites for hydrazine oxidation by copolymerization. Int. J. Electrochem. Sci., 2017, 12(9), 8733-8744.
[http://dx.doi.org/10.20964/2017.09.73]
[56]
Gicevicius, M.; Kucinski, J.; Ramanaviciene, A.; Ramanavicius, A. Tuning the optical pH sensing properties of polyaniline-based layer by electrochemical copolymerization of aniline with o-phenylenediamine. Dyes Pigments, 2019, 170 107457
[http://dx.doi.org/10.1016/j.dyepig.2019.04.002]
[57]
Mousa, H.M.; Aggas, J.R.; Guiseppi-Elie, A. Electropolymerization of aniline and (N-phenyl-o-phenylenediamine) for glucose biosensor application. Mater. Lett., 2019, 238, 267-270.
[http://dx.doi.org/10.1016/j.matlet.2018.12.012]
[58]
Poochai, C.; Sriprachuabwong, C.; Srisamrarn, N.; Sudchanham, J.; Mensing, J.P.; Lomas, T.; Wisitsoraat, A.; Tuantranont, A. Facial electrosynthesis of hydrophilic poly(aniline-co-p-phenylenediamine) nanostructures for high performance supercapacitor electrodes. J. Energy Storage, 2018, 2019(22), 116-130.
[http://dx.doi.org/10.1016/j.est.2019.02.007]
[59]
Alakhras, F. Spectroelectrochemistry of intrinsically conducting selenophene-3- chlorothiophene copolymers. J. Braz. Chem. Soc., 2016, 27(5), 941-949.
[60]
Weng, X.; Wu, S.; Liu, Y.; Wan, Z.; Jia, C.; Xie, J.; Deng, L. Novel electrochromic and infrared emissivity modulation films based on poly(carbazoyltriphenylamine) and poly(carbazoyltriphenylamine-thiophene). Org. Electron., 2017, 51, 190-199.
[http://dx.doi.org/10.1016/j.orgel.2017.09.001]
[61]
Czichy, M.; Wagner, P.; Łapkowski, M.; Officer, D.L. Effect of π-conjugation on electrochemical properties of poly(terthiophene)s 3′-substituted with fullerene C60. J. Electroanal. Chem., 2016, 772, 103-109.
[http://dx.doi.org/10.1016/j.jelechem.2016.04.009]
[62]
Abaci, U.; Ustalar, A.; Yilmaz, M.; Guney, H.Y. Synthesis of new 2,5-di(thiophen-2-yl)furan-3-carbonitrile derivatives and investigation of the electrochromic properties of homopolymers and co-polymers with EDOT. RSC Advances, 2016, 6(33), 27836-27845.
[http://dx.doi.org/10.1039/C6RA00181E]
[63]
Massoumi, B.; Jaymand, M. Conducting poly(vinyl chloride)-graft-polythiophene: synthesis, characterization, and materials properties. J. Mater. Sci. Mater. Electron., 2016, 27(3), 2267-2275.
[http://dx.doi.org/10.1007/s10854-015-4021-0]
[64]
Georgescu, B.E.; Branger, C.; Iordache, T.V.; Iovu, H.; Vitrik, O.B.; Dyshlyuk, A.V.; Sarbu, A.; Brisset, H. Application of unusual on/off electrochemical properties of a molecularly imprinted polymer based on an EDOT-thiophene precursor for the detection of ephedrine. Electrochem. Commun., 2018, 94, 45-48.
[http://dx.doi.org/10.1016/j.elecom.2018.08.004]
[65]
Molina, B.G.; Bendrea, A.D.; Cianga, L.; Armelin, E.; Del Valle, L.J.; Cianga, I.; Alemán, C. The biocompatible polythiophene-g-polycaprolactone copolymer as an efficient dopamine sensor platform. Polym. Chem., 2017, 8(39), 6112-6122.
[http://dx.doi.org/10.1039/C7PY01326D]
[66]
Liu, X.; Hu, Y.; Shen, L.; Zhang, G.; Cao, T.; Xu, J.; Zhao, F.; Hou, J.; Liu, H.; Jiang, F. Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: electrochemical, optical, and electrochromic properties. Electrochim. Acta, 2018, 288, 52-60.
[http://dx.doi.org/10.1016/j.electacta.2018.08.072]
[67]
Ye, G.; Zhu, D.; Zhou, Q.; Li, D.; Zuo, Y.; Duan, X.; Zhou, W.; Xu, J. Facile one-step electrodeposition method to prepare robust flexible PEDOT-based films for ultra-stable supercapacitors. ChemElectroChem, 2018, 5(8), 1124.
[http://dx.doi.org/10.1002/celc.201800277]
[68]
Hu, Y.; Wang, Z.; Lin, K.; Xu, J.; Duan, X.; Zhao, F.; Hou, J.; Jiang, F. Electrosynthesis and electrochromic properties of free-standing copolymer based on oligo(oxyethylene) cross-linked 2,2′-bithiophene and 3,4-ethylenedioxythiophene. J. Polym. Sci. A Polym. Chem., 2016, 54(11), 1583-1592.
[http://dx.doi.org/10.1002/pola.28012]
[69]
Goda, T.; Miyahara, Y. Electrodeposition of Zwitterionic PEDOT films for conducting and antifouling surfaces. Langmuir, 2018, 35(5), 1126-1133.
[http://dx.doi.org/10.1021/acs.langmuir.8b01492] [PMID: 30001621]
[70]
Li, C.; Liu, C.; Shi, L.; Nie, G. Electrochemical copolymerization of 3,4-ethylenedioxythiophene and 6-cyanoindole and its electrochromic property. J. Mater. Sci., 2015, 50(4), 1836-1847.
[http://dx.doi.org/10.1007/s10853-014-8746-6]
[71]
Carli, S.; Trapella, C.; Armirotti, A.; Fantinati, A.; Ottonello, G.; Scarpellini, A.; Prato, M.; Fadiga, L.; Ricci, D. Biochemically controlled release of dexamethasone covalently bound to PEDOT. Chemistry, 2018, 24(41), 10300-10305.
[http://dx.doi.org/10.1002/chem.201801499] [PMID: 29799647]
[72]
Carbas, B.B. Novel electrochromic copolymers based on 3-3′-dibromo-2-2′-bithiophene and 3,4 ethylene dioxythiophene. Polymer (Guildf.), 2017, 113, 180-186.
[http://dx.doi.org/10.1016/j.polymer.2017.02.053]
[73]
Li, W.; Chen, L.; Pan, Y.; Yan, S.; Dai, Y.; Liu, J.; Yu, Y.; Qu, X.; Song, Q.; Ouyang, M. Electrochromic properties of polymers/copolymers via electrochemical polymerization based on star-shaped thiophene derivatives with different central cores. J. Electrochem. Soc., 2017, 164(4), E84-E89.
[http://dx.doi.org/10.1149/2.0161706jes]
[74]
Li, J.; Zhang, G.; Chen, N.; Nie, X.; Ji, B.; Qu, L. Built structure of ordered vertically aligned codoped carbon nanowire arrays for supercapacitors. ACS Appl. Mater., 2017, 9(29), 24840-24845.
[http://dx.doi.org/10.1021/acsami.7b05365] [PMID: 28665578]
[75]
Dai, Y.; Li, W.; Qu, X.; Liu, J.; Yan, S.; Ouyang, M.; Lv, X.; Zhang, C. Electrochemistry, electrochromic and color memory properties of polymer/copolymer based on novel dithienylpyrrole structure. Electrochim. Acta, 2017, 229, 271-280.
[http://dx.doi.org/10.1016/j.electacta.2017.01.156]
[76]
Tutuncu, E.; Icli Ozkut, M.; Balci, B.; Berk, H.; Cihaner, A. Electrochemical and optical characterization of a multielectrochromic copolymer based on 3,4-ethylenedioxythiophene and functionalized dithienylpyrrole derivative. Eur. Polym. J., 2019, 110, 233-239.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.11.037]
[77]
Gumusay, O.; Soganci, T.; Soyleyici, H.C.; Ak, M.; Cetisli, H. Electrochemistry of secondary amine substituted 2,5-di(2-thienyl)pyrrole derivative and its copolymer. J. Electrochem. Soc., 2017, 164(7), H421-H429.
[http://dx.doi.org/10.1149/2.0291707jes]
[78]
Soganci, T.; Soyleyici, S.; Soyleyici, H.C.; Ak, M. High contrast electrochromic polymer and copolymer materials based on amide-substituted poly(dithienyl pyrrole). J. Electrochem. Soc., 2017, 164(2), H11-H20.
[http://dx.doi.org/10.1149/2.0111702jes]
[79]
Ranathunge, T.A.; Karunathilaka, D.; Ngo, D.T.; Attanayake, N.H.; Brodgon, P.; Delcamp, J.H.; Rajapakse, R.M.G.; Watkins, D.L. Radically accessing D-A type ambipolar copolymeric materials with intrinsic electrical conductivity and visible-near infrared absorption via electro-copolymeri-zation. Macromol. Chem. Phys., 2019, 220(21) 1900289
[http://dx.doi.org/10.1002/macp.201900289]
[80]
Tekbaşoğlu, T.Y.; Soganci, T.; Ak, M.; Koca, A.; Şener, M.K. Enhancing biosensor properties of conducting polymers via copolymerization: Synthesis of EDOT-substituted bis(2-pyridylimino)isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film. Biosens. Bioelectron., 2017, 87, 81-88.
[http://dx.doi.org/10.1016/j.bios.2016.08.020] [PMID: 27522481]
[81]
Göktug, Ö.; Soganci, T.; Ak, M.; Kasim Şener, M. Efficient synthesis of EDOT modified ABBB-type unsymmetrical zinc phthalocyanine: optoelectrochromic and glucose sensing properties of its copolymerized film. New J. Chem., 2017, 41(23), 14080-14087.
[http://dx.doi.org/10.1039/C7NJ03250A]
[82]
Tao, Y.; Zhang, K.; Zhang, C.; Cheng, H.; Jiao, C.; Zhao, Y. Electrochemical synthesis of copolymers based on 2-(anthracen-9-yl)thiophene: a facile and efficient route to a series of multicolor electrochromic polymers. Mater. Sci. Semicond. Process., 2016, 56, 66-75.
[http://dx.doi.org/10.1016/j.mssp.2016.07.019]
[83]
Singhal, S.; Yadav, P.; Naqvi, S.; Gupta, S.; Patra, A. Donor-acceptor-donor copolymers with 3,4-ethylenedioxythiophene moiety: electropolymerization and effect on optoelectronic and electrochromic properties. ACS Omega, 2019, 4(2), 3484-3492.
[http://dx.doi.org/10.1021/acsomega.8b02811] [PMID: 31459563]
[84]
Lacerda, G.R.D.B.S.; Calado, C.R.; Calado, H.D.R. Electrochromic and electrochemical properties of copolymer films based on EDOT and phenylthiophene derivatives. J. Solid State Electrochem., 2019, 23(3), 823-835.
[http://dx.doi.org/10.1007/s10008-018-04185-2]
[85]
Ávila-Costa, M.; Donnici, C.L.; Rezende Calado, H.D.; Cury, L.A. New directly electrosynthesized metal-free copolymeric NIR emitters based on EDOT-[β-thiophene-carboxamide]-fluorene like donor-acceptor systems. Synth. Met., 2019, 250, 161-171.
[http://dx.doi.org/10.1016/j.synthmet.2019.03.008]
[86]
Hacioglu, S.O. Copolymerization of azobenzene-bearing monomer and 3,4-Ethylenedioxythiophene (EDOT): improved electrochemical performance for electrochromic device applications. Chin. J. Polym. Sci., 2019, 38(2), 109-117.
[http://dx.doi.org/10.1007/s10118-019-2306-0]
[87]
Li, H.; Wang, Y.; Zha, H.; Dai, P.; Xie, C. Reagentless electrochemiluminescence sensor for triazophos based on molecular imprinting electropolymerized poly(luminol-p-aminothiophenol) composite-modified gold electrode. Arab. J. Sci. Eng., 2019, 44(1), 145-152.
[http://dx.doi.org/10.1007/s13369-018-3289-9]
[88]
Arjomandi, J.; Malmir, M.; Holze, R. A comparative spectroelectrochemistry of homo- and copolymerization of pyrrole and N-methylpyrrole with indole on a gold electrode. Iran. Polym. J., 2016, 25(1), 1-13.
[http://dx.doi.org/10.1007/s13726-015-0397-1]
[89]
Zhang, J.; Zeng, B.; Zhao, F. Fabrication of bi-monomer copolymer of pyrrole-indole for highly efficient solid phase microextraction of benzene derivatives. Talanta, 2018, 176, 450-455.
[http://dx.doi.org/10.1016/j.talanta.2017.08.035] [PMID: 28917775]
[90]
Molina, B.G.; Cianga, L.; Bendrea, A.D.; Cianga, I.; Del Valle, L.J.; Estrany, F.; Alemán, C.; Armelin, E. Amphiphilic polypyrrole-poly(schiff base) copolymers with poly(ethylene glycol) side chains: synthesis, properties and applications. Polym. Chem., 2018, 9(31), 4218-4232.
[http://dx.doi.org/10.1039/C8PY00762D]
[91]
Djaouane, L.; Nessark, B.; Sibous, L. Electrochemical synthesis and surface characterization of (pyrrole+ 2-methylfuran) copolymer. J. Mol. Struct., 2017, 1129, 200-204.
[http://dx.doi.org/10.1016/j.molstruc.2016.09.076]
[92]
Schneider, S.; Füser, M.; Bolte, M.; Terfort, A. Self-assembled monolayers of aromatic pyrrole derivatives: electropolymerization and electrocopolymerization with pyrrole. Electrochim. Acta, 2017, 246, 853-863.
[http://dx.doi.org/10.1016/j.electacta.2017.06.046]
[93]
Zhu, H.; Li, M.; Wang, D.; Zhou, S.; Peng, C. Interfacial synthesis of free-standing asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. J. Electrochem. Soc., 2017, 164(9), A1820-A1825.
[http://dx.doi.org/10.1149/2.1401707jes]
[94]
Li, W.; Guo, Y.; Wang, Y.; Xing, X.; Chen, X.; Ning, J.; Yu, H.; Shi, Y.; Murtaza, I.; Meng, H.A. “Chain-lock” strategy to construct a conjugated copolymer network for supercapacitor applications. J. Mater. Chem. A., 2019, 7(1), 116-123.
[http://dx.doi.org/10.1039/C8TA08766K]
[95]
Cansu-Ergun, E.G. Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers. Chin. J. Polym. Sci., 2019, 37(1), 28-35.
[96]
Chagas, G.R.; Kiryanenko, D.; Godeau, G.; Guittard, F.; Darmanin, T. pH-Driven wetting switchability of electrodeposited superhydrophobic copolymers of pyrene bearing acid functions and fluorinated chains. ChemPhysChem, 2017, 18(23), 3429-3436.
[http://dx.doi.org/10.1002/cphc.201700846] [PMID: 28856779]
[97]
Ayranci, R.; Ak, M.; Karakus, M.; Cetisli, H. The effect of the monomer feed ratio and applied potential on copolymerization: investigation of the copolymer formation of ferrocene-functionalized metallopolymer and EDOT. Des. Monomers Polym., 2016, 19(6), 545-552.
[http://dx.doi.org/10.1080/15685551.2016.1187438]
[98]
Taleb, S.; Darmanin, T.; Guittard, F. Superoleophobic/superhydrophobic PEDOP conducting copolymers with dual-responsivity by voltage and ion exchange. Mater. Today Commun., 2016, 6, 1-8.
[http://dx.doi.org/10.1016/j.mtcomm.2015.11.002]
[99]
Wang, C.; Wang, M.; Zhang, Y.; Zhao, J.; Fu, C. A new electrochromic copolymer which switched between neutral black and oxidized transmissive. RSC Advances, 2016, 6(83), 80002-80010.
[http://dx.doi.org/10.1039/C6RA12596D]
[100]
Rajapakse, R.M.G.; Attanayake, N.H.; Karunathilaka, D.; Steen, A.E.; Hammer, N.I.; Strongin, D.R.; Watkins, D.L. Advances in electro-copolymerization of NIR emitting and electronically conducting block copolymers. J. Mater. Chem. C., 2019, 7(11), 3168-3172.
[http://dx.doi.org/10.1039/C8TC06331A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy