Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Catalytic Advances in the Synthesis of Organic Symmetric Disulfides

Author(s): Ong Chiu Ling, Nader Ghaffari Khaligh* and Juan Joon Ching

Volume 24, Issue 5, 2020

Page: [550 - 581] Pages: 32

DOI: 10.2174/1385272824666200221111120

Price: $65

Abstract

Organic symmetric disulfides have been broadly studied in various fields such as synthetic intermediates for various organic transformations, agro-chemicals, biochemistry, pharmacological chemistry, industrial polymers, peptidomimetics, self-assembled monolayers (SAMs), etc. Owing to versatile applications, the search and development of efficient, environmentally friendly, mild and inexpensive methods for the preparation of organic disulfides play an important role in the organic functional group transformations. Various aspects of the S–S bond formation are available in some books on organic functional group transformations, as well as two review articles that have been published in the years 2008 and 2014 highlighting the developments of disulfide bond formation using a variety of reagents. However, investigations on new catalytic methods are being regularly reported and new types of disulfides are synthesized. The present review has attempted to systematically summarize recent catalytic advances in the process of S–S bond formation with a major focus since 2014 on highlighting mechanistic considerations, scope, advantages, and limitations. This review does not include patent literature.

Keywords: Organic symmetric disulfides, oxidative coupling, catalytic methodology, mechanism, peptidomimetics, self-assembled monolayers (SAMs).

« Previous
Graphical Abstract

[1]
Jiang, X. Sulfur Chemistry; Springer Nature: Switzerland AG, 2019.
[http://dx.doi.org/10.1007/978-3-030-25598-5]
[2]
Oae, S. Organic Chemistry of Sulfur; Springer: Berlin, 2012.
[3]
Saito, G.; Swanson, J.A.; Lee, K.D. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv. Drug Deliv. Rev., 2003, 55(2), 199-215.
[http://dx.doi.org/10.1016/S0169-409X(02)00179-5] [PMID: 12564977]
[4]
Sullivan, D. In: The Role of the Merox™ process in the era of ultra low sulfur transportation fuels; 5th EMEA Catalyst Technology Conference, March 3-4, 2004. https://www.uop.com/?document=uop-the-role-of-the-merox-process-in-ultra-low-sulfur-
[5]
Wei, K.J.; Quan, Z.J.; Zhang, Z.; Da, Y.X.; Wang, X.C. Copper(i) chloride promoted Csp(2)-N cross-coupling of 1,2-di(pyrimidin-2-yl) disulfides with amines: an efficient approach to obtain C2-amino functionalized pyrimidines. Org. Biomol. Chem., 2016, 14(8), 2395-2398.
[http://dx.doi.org/10.1039/C5OB02535D] [PMID: 26821885]
[6]
Wang, Z.H.; Ji, X.M.; Hu, M.L.; Tang, R.Y. Nitromethane as a cyanating reagent for the synthesis of thiocyanates. Tetrahedron Lett., 2015, 56, 5067-5070.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.054]
[7]
Movassagh, B.; Yousefi, A. α-Organylchalcogenation of aldehydes and ketones with diorganyl dichalcogenides promoted by K3PO4. Monatsh. Chem., 2014, 145, 1173-1177.
[http://dx.doi.org/10.1007/s00706-014-1188-7]
[8]
Liu, Y.W.; Badsara, S.S.; Liu, Y.C.; Lee, C.F. K 2S2O8/I2 promoted syntheses of α-thio-β-dicarbonyl compounds via oxidative C–S coupling reactions under transition metal-free and solvent-free conditions. RSC Advances, 2015, 5, 44299-44305.
[http://dx.doi.org/10.1039/C5RA07204B]
[9]
Rahaman, R.; Devi, N.; Barman, P. Metal free sulfenylation of active methylene compounds and indole: TBATB mediated synthesis. Tetrahedron Lett., 2015, 56, 4224-4227.
[http://dx.doi.org/10.1016/j.tetlet.2015.05.062]
[10]
Mitra, S.; Mukherjee, S.; Sen, S.K.; Hajra, A. Environmentally benign synthesis and antimicrobial study of novel chalcogenophosphates. Bioorg. Med. Chem. Lett., 2014, 24(9), 2198-2201.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.008] [PMID: 24685541]
[11]
Wang, J.; Huang, X.; Ni, Z.; Wang, S.; Pan, Y.; Wu, J. Peroxide promoted metal-free thiolation of phosphites by thiophenols/disulfides. Tetrahedron, 2015, 71, 7853-7859.
[http://dx.doi.org/10.1016/j.tet.2015.08.025]
[12]
He, Y.H.; Li, N.B.; Chen, J.Y.; Qiu, R.H.; Wang, X.; Xu, X.H. Fe-Mediated S–S bond cleavage and its application in the synthesis of α-arylthio carbonyl compounds. Synth. Commun., 2015, 45, 1817-1822.
[http://dx.doi.org/10.1080/00397911.2015.1050037]
[13]
Pan, X.; Curran, D.P. Neutral sulfur nucleophiles: synthesis of thioethers and thioesters by substitution reactions of N-heterocyclic carbene boryl sulfides and thioamides. Org. Lett., 2014, 16(10), 2728-2731.
[http://dx.doi.org/10.1021/ol5010164] [PMID: 24802672]
[14]
Wei, K-J.; Quan, Z-J.; Zhang, Z.; Da, Y-X.; Wang, X-C. Direct C–H heteroarylation of azoles with 1,2-di(pyrimidin-2-yl)disulfides through C–S cleavage of disulfides. RSC Advances, 2016, 6, 78059-78063.
[http://dx.doi.org/10.1039/C6RA18997K]
[15]
Zheng, X.; Fu, W.; Xiong, J.; Xi, J.; Ni, X.; Tang, T. Zeolite beta nanoparticles assembled Cu catalysts with superior catalytic performances in the synthesis of thioesters by cross-coupling of aldehydes and disulfides. Catal. Today, 2016, 264, 152-157.
[http://dx.doi.org/10.1016/j.cattod.2015.07.010]
[16]
Topcuoglu, C.; Bakirhan, A.; Yilmaz, F.M.; Neselioglu, S.; Erel, O.; Sahiner, S.Y. Thiol/disulfide homeostasis in untreated schizophrenia patients. Psychiatry Res., 2017, 251, 212-216.
[http://dx.doi.org/10.1016/j.psychres.2017.02.016] [PMID: 28214778]
[17]
Agan, V.; Celik, H.; Eren, M.A.; Agan, F.Z.; Erel, O.; Neselioglu, S.; Koyuncu, I.; Gonel, A. An investigation of oxidative stress and thiol/disulphide homeostasis in Graves’ disease. Medicina, 2019, 55(6), 275.
[18]
Sener, S.; Akbas, A.; Kilinc, F.; Baran, P.; Erel, O.; Aktas, A. Thiol/disulfide homeostasis as a marker of oxidative stress in rosacea: a controlled spectrophotometric study. Cutan. Ocul. Toxicol., 2019, 38(1), 55-58.
[http://dx.doi.org/10.1080/15569527.2018.1517124] [PMID: 30173569]
[19]
Kabalka, G.W.; Reddy, M.S.; Yao, M.L. Synthesis of diaryl disulfides via the reductive coupling of arylsulfonyl chlorides. Tetrahedron Lett., 2009, 50, 7340-7342.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.061]
[20]
Firouzabadi, H.; Iranpoor, N.; Samadi, A. One-pot synthesis of aryl alkyl thioethers and diaryl disulfides using carbon disulfide as a sulfur surrogate in the presence of diethylamine catalyzed by copper(I) iodide in polyethylene glycol (PEG200). Tetrahedron Lett., 2014, 55, 1212-1217.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.001]
[21]
Soleiman-Beigi, M.; Mohammadi, F. A novel copper-catalyzed, one-pot synthesis of symmetric organic disulfides from alkyl and aryl halides: potassium 5-methyl-1,3,4-oxadiazole-2-thiolate as a novel sulfur transfer reagent. Tetrahedron Lett., 2012, 53, 7028-7030.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.016]
[22]
Hanusek, J.; Russell, M.A.; Laws, A.P.; Jansa, P.; Atherton, J.H.; Fettes, K.; Page, M.I. Mechanism of the sulfurisation of phosphines and phosphites using 3-amino-1,2,4-dithiazole-5-thione (xanthane hydride). Org. Biomol. Chem., 2007, 5(3), 478-484.
[http://dx.doi.org/10.1039/B616298C] [PMID: 17252130]
[23]
Li, Z.; Ke, F.; Deng, H.; Xu, H.; Xiang, H.; Zhou, X. Synthesis of disulfides and diselenides by copper-catalyzed coupling reactions in water. Org. Biomol. Chem., 2013, 11(18), 2943-2946.
[http://dx.doi.org/10.1039/c3ob40464a] [PMID: 23538860]
[24]
Beigi, M.S.; Hemmati, M. An efficient, one-pot and CuCl-catalyzed route to the synthesis of symmetric organic disulfides via domino reactions of thioacetamide and aryl (alkyl) halides. Appl. Organomet. Chem., 2013, 27, 734-736.
[http://dx.doi.org/10.1002/aoc.3074]
[25]
Sureshkumar, D.; Gunasundari, T.; Ganesh, V.; Chandrasekaran, S. Regio- and stereospecific synthesis of β-sulfonamidodisulfides and β-sulfonamidosulfides from aziridines using tetrathiomolybdate as a sulfur transfer reagent. J. Org. Chem., 2007, 72(6), 2106-2117.
[http://dx.doi.org/10.1021/jo0624389] [PMID: 17316050]
[26]
Hayashi, M.; Okunaga, K.; Nishida, S.; Kawamura, K.; Eda, K. Oxidative transformation of thiols to disulfides promoted by activated carbon-air system. Tetrahedron Lett., 2010, 51, 6734-6736.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.070]
[27]
Thurow, S.; Pereira, V.A.; Martinez, D.M.; Alves, D.; Perin, G.; Jacob, R.G.; Lenardão, E.J. Base-free oxidation of thiols to disulfides using selenium ionic liquid. Tetrahedron Lett., 2011, 52, 640-643.
[http://dx.doi.org/10.1016/j.tetlet.2010.11.158]
[28]
Toma, A.M.; Rat, C.I.; Pavel, O.D.; Hardacre, C.; Rüffer, T.; Lang, H.; Mehring, M.; Silvestru, A.; Pârvulescu, V.I. Heterocyclic bismuth (III) compounds with transannular N→ Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide. Catal. Sci. Technol., 2017, 7(22), 5343-5353.
[http://dx.doi.org/10.1039/C7CY00521K]
[29]
Rajabi, F.; Kakeshpour, T.; Saidi, M.R. Supported iron oxide nanoparticles: recoverable and efficient catalyst for oxidative S-S coupling of thiols to disulfides. Catal. Commun., 2013, 40, 13-17.
[http://dx.doi.org/10.1016/j.catcom.2013.05.017]
[30]
Khalediana, D.; Rostami, A.; Zarei, S.A. Laccase-catalyzed in situ generation and regeneration of N-phenyltriazolinedione for the aerobic oxidative homo-coupling of thiols to disulfides. Catal. Commun., 2018, 114, 75-78.
[http://dx.doi.org/10.1016/j.catcom.2018.06.007]
[31]
Yang, L.; Li, S.; Dou, Y.; Zhen, S.; Li, H.; Zhang, P.; Yuan, B.; Yang, G. TEMPO‐catalyzed aerobic oxidative coupling of thiols for metal‐free formation of S−N/S−S bonds. Asian J. Org. Chem., 2017, 6, 265-268.
[http://dx.doi.org/10.1002/ajoc.201600588]
[32]
Dou, Y.; Huang, X.; Wang, H.; Yang, L.; Li, H.; Yuan, B.; Yang, G. Reusable cobalt-phthalocyanine in water: efficient catalytic aerobic oxidative coupling of thiols to construct S–N/S–S bonds. Green Chem., 2017, 19, 2491-2495.
[http://dx.doi.org/10.1039/C7GC00401J]
[33]
Corma, A.; Ródenas, T.; Sabater, M.J. Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts. Chem. Sci. (Camb.), 2012, 3, 398-404.
[http://dx.doi.org/10.1039/C1SC00466B]
[34]
Toma, A.M.; Rat, C.I.; Pavel, O.D.; Hardacre, C.; Rüffer, T.; Lang, H.; Mehring, M.; Silvestru, A.; Pârvulescu, V.I. Catal. Sci. Technol., 2017, 7, 5343-5353.
[http://dx.doi.org/10.1039/C7CY00521K]
[35]
Venkateswarlu, C.; Gautam, V.; Chandrasekaran, S. Synthesis of mixed glycosyl disulfides/selenenylsulfides using benzyltriethylammonium tetrathiomolybdate as a sulfur transfer reagent. Carbohydr. Res., 2015, 402, 200-207.
[http://dx.doi.org/10.1016/j.carres.2014.09.005] [PMID: 25498020]
[36]
Mokhtari, B.; Kiasat, A.R.; Monjezi, J. Imidazole promoted highly efficient largescale thiol-free synthesis of symmetrical disulfides in aqueous media. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 1573-1579.
[http://dx.doi.org/10.1080/10426507.2014.1003643]
[37]
Beigi, M.S.; Arzehgar, Z. An efficient one-pot method for the direct synthesis of organic disulfides from aryl/alkyl halides in the presence of CuCl using morpholin-4-ium morpholine-4-carbo-dithioate. J. Sulfur Chem., 2015, 36, 395-402.
[http://dx.doi.org/10.1080/17415993.2015.1031135]
[38]
Habibi, A.; Baghersad, M.H.; Bilabary, M.; Valizadeh, Y. Dithioates of Meldrum’s acid, dimedone, and barbituric acid, novel sulfur transfer reagents for the one-pot copper-catalyzed conversion of aryl iodides into diaryl disulfides. Tetrahedron Lett., 2016, 57, 559-562.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.085]
[39]
Abbasi, M.; Nowrouzi, N.; Borazjani, S.G. Conversion of organic halides to disulfanes using KCN and CS2. Tetrahedron Lett., 2017, 58, 4251-4254.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.072]
[40]
Soleiman-Beigi, M.; Taherinia, Z. Simple and efficient oxidative transformation of thiols to disulfides using Cu(NO3)2∙3H2O in H2O/AcOEt. Monatsh. Chem., 2014, 145, 1151-1154.
[http://dx.doi.org/10.1007/s00706-014-1178-9]
[41]
Rattanangkool, E.; Krailat, W.; Vilaivan, T.; Phuwapraisirisan, P.; Sukwattanasinitt, M.; Wacharasindhy, S. Hypervalent iodine (III)-promoted metal-free S–H activation: an approach for the construction of S–S, S–N, and S–C bonds. Eur. J. Org. Chem., 2014, 2014(22), 4795-4804.
[http://dx.doi.org/10.1002/ejoc.201402180]
[42]
Ghosh, H.; Yella, R.; Nath, J.; Patel, B.K. Desulfurization mediated by hypervalent iodine(III): a novel strategy for the construction of heterocycles. Eur. J. Org. Chem., 2008, 2008(36), 6189-6196.
[http://dx.doi.org/10.1002/ejoc.200800901]
[43]
Wang, H.; Huang, G.J.; Sun, Y.; Liu, Y.Y. Simple conversion of thiols to disulfides in EtOH under ambient aerobic conditions without using any catalyst or additive. J. Chem. Res., 2014, 38, 96-97.
[http://dx.doi.org/10.3184/174751914X13892888669706]
[44]
Natarajan, P.; Sharma, H.; Kaur, M.; Sharma, P. Haloacid/dimethyl sulfoxide-catalyzed synthesis of symmetrical disulfides by oxidation of thiols. Tetrahedron Lett., 2015, 56, 5578-5582.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.041]
[45]
Shu, W.M.; Yang, Y.; Zhang, D.X.; Wu, L.M.; Zhu, Y.P.; Yin, G.D.; Wu, A.X. Highly efficient synthesis of 3a,6a-dihydrofuro[2,3-b]furans via a novel bicyclization. Org. Lett., 2013, 15(3), 456-459.
[http://dx.doi.org/10.1021/ol400016c] [PMID: 23311307]
[46]
Talla, A.; Driessen, B.; Straathof, N.J.W.; Milroy, L-G.; Brunsveld, L.; Hessel, V.; Noël, T. Metal-free photocatalytic aerobic oxidation of thiols to disulfides in batch and continuous-flow. Adv. Synth. Catal., 2015, 357, 2180-2186.
[http://dx.doi.org/10.1002/adsc.201401010]
[47]
Sheriff Shah, S.; Karthik, S.; Singh, N.D.P. Vis/NIR Light driven mild and clean synthesis of disulfides in the presence of Cu2(OH)PO4 under aerobic condition. RSC Advances, 2015, 5, 45416-45419.
[http://dx.doi.org/10.1039/C5RA05138J]
[48]
Su, Y.H.; Talla, A.; Hessel, V.; Noël, T. Controlled photocatalytic aerobic oxidation of thiols to disulfides in an energy-efficient photomicroreactor. Chem. Eng. Technol., 2015, 38, 1733-1742.
[http://dx.doi.org/10.1002/ceat.201500376]
[49]
Nikoorazm, M.; Choghamarani, A.G.; Mahdavi, H.; Esmaeili, S.M. Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts. Microporous Mesoporous Mater., 2015, 211, 174-181.
[http://dx.doi.org/10.1016/j.micromeso.2015.03.011]
[50]
Saima, L.A.G.; Kumar, R.; Sinha, A.K. Bovine serum albumin triggered waste-free aerobic oxidative coupling of thiols into disulphides on water: an extended synthesis of bioactive dithiobis(phenylene)bis(benzylideneimine) via sequential oxidative coupling-condensation reactions in one pot from aminothiophenol and benzaldehyde. J. Mol. Catal., B Enzym., 2015, 116, 113-123.
[http://dx.doi.org/10.1016/j.molcatb.2015.03.008]
[51]
Yi, S.L.; Li, M.C.; Hu, X.Q.; Mo, W.M.; Shen, Z.L. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tert-butyl nitrite. Chin. Chem. Lett., 2016, 27, 1505-1508.
[http://dx.doi.org/10.1016/j.cclet.2016.03.016]
[52]
Singh, G.; Nakade, P.G.; Mishra, P.; Jha, P.; Sen, S.; Mondal, U. Kinetic investigation on liquid-liquid-solid phase transfer catalyzed synthesis of dibenzyl disulfide with H2S-laden monoethanolamine. J. Mol. Catal. Chem., 2016, 411, 78-86.
[http://dx.doi.org/10.1016/j.molcata.2015.10.013]
[53]
Tankam, T.; Poochampa, K.; Vilaivan, T.; Sukwattanasinitt, M.; Wacharasindhu, S. Organocatalytic visible light induced S–S bond formation for oxidative coupling of thiols to disulfides. Tetrahedron, 2016, 72, 788-793.
[http://dx.doi.org/10.1016/j.tet.2015.12.036]
[54]
Yang, L.; Li, S.; Dou, Y.; Zhen, S.; Li, H.; Zhang, P.; Yuan, B.B.; Guanyu Yang, G. TEMPO-catalyzed aerobic oxidative coupling of thiols for metal-free formation of S–N/S–S bonds. Asian J. Org. Chem., 2017, 6, 265-268.
[http://dx.doi.org/10.1002/ajoc.201600588]
[55]
Laudadio, G.; Straathof, N.J.W.; Lanting, M.D.; Knoops, B.; Hessel, V.; Noël, T. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem., 2017, 19, 4061-4066.
[http://dx.doi.org/10.1039/C7GC01973D]
[56]
Dou, Y.; Huang, X.; Wang, H.; Yang, L.; Li, H.; Yuan, B.; Yang, G. Reusable cobalt-phthalocyanine in water: efficient catalytic aerobic oxidative coupling of thiols to construct S-N/S-S bonds. Green Chem., 2017, 19, 2491-2495.
[http://dx.doi.org/10.1039/C7GC00401J]
[57]
Hu, J.; Hu, Y.; Mao, J.; Yao, J.; Chen, Z.; Li, H. A cobalt Schiff base with ionic substituents on the ligand as an efficient catalyst for the oxidation of 4-methyl guaiacol to vanillin. Green Chem., 2012, 14, 2894-2898.
[http://dx.doi.org/10.1039/c2gc36049g]
[58]
Abbasi, M.; Sabet, A. Europhtal (8020) efficiently catalyzes the aerobic oxidation of in situ generated thiols to symmetric disulfides (disulfanes). J. Organomet. Chem., 2017, 833, 10-17.
[http://dx.doi.org/10.1016/j.jorganchem.2017.02.001]
[59]
Bettanin, L.; Saba, S.; Galetto, F.Z.; Mike, G.A.; Rafique, J.; Braga, A.L. Solvent- and metal-free selective oxidation of thiols to disulfides using I2/DMSO catalytic system. Tetrahedron Lett., 2017, 58, 4713-4716.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.009]
[60]
Kucinski, K.; Hreczycho, G. Diisopropylamine as a single catalyst in the synthesis of aryl disulfides. Green Process Synth., 2018, 7, 12-15.
[http://dx.doi.org/10.1515/gps-2016-0205]
[61]
Huang, H.; Ash, J.; Kang, J.Y. Base-controlled Fe(Pc)-catalyzed aerobic oxidation of thiols for the synthesis of S-S and S-P(O) bonds. Org. Biomol. Chem., 2018, 16(23), 4236-4242.
[http://dx.doi.org/10.1039/C8OB00908B] [PMID: 29808199]
[62]
Montero, L.M.; Gotor, V.; Fernandez, V.G.; Lavandera, L. Stereoselective amination of racemic sec-alcohols through sequential application of laccases and transaminases. Green Chem., 2017, 19, 474-480.
[http://dx.doi.org/10.1039/C6GC01981A]
[63]
Simon, R.C.; Busto, E.; Richter, N.; Resch, V.; Houk, K.N.; Kroutil, W. Biocatalytic trifluoromethylation of unprotected phenols. Nat. Commun., 2016, 7, 13323.
[http://dx.doi.org/10.1038/ncomms13323] [PMID: 27834376]
[64]
Mogharabi, M.; Faramarzi, M.A. Laccase and laccase‐mediated systems in the synthesis of organic compounds. Adv. Synth. Catal., 2014, 356, 897-927.
[http://dx.doi.org/10.1002/adsc.201300960]
[65]
AbdelMohsen, H.T.; Sudheendran, K.; Conrad, J.; Beifuss, U. Synthesis of disulfides by laccase-catalyzed oxidative coupling of heterocyclic thiols. Green Chem., 2013, 15, 1490-1495.
[http://dx.doi.org/10.1039/c3gc40106e]
[66]
Khaledian, D.; Rostami, A.; Zarei, S.A. Laccase-catalyzed in-situ generation and regeneration of N-phenyltriazolinedione for the aerobic oxidative homo-coupling of thiols to disulfides. Catal. Commun., 2018, 114, 75-78.
[http://dx.doi.org/10.1016/j.catcom.2018.06.007]
[67]
Shariati, M.; Rostami, A.; Imanzadeh, G.; Kheirjou, S. Enzymatic regeneration of DDQ in aerobic oxidation of sulfides and oxidative coupling of thiols: new bioinspired cooperative catalytic system. Mol. Catal, 2018, 461, 48-53.
[http://dx.doi.org/10.1016/j.mcat.2018.09.012]
[68]
Chemtob, A.; Feillée, N.; Ley, C.; Ponche, A.; Rigolet, S.; Sorarua, C.; Ploux, L.; Le Nouen, D. Oxidative photopolymerization of thiol-terminated polysulfide resins. Application in antibacterial coatings. Prog. Org. Coat., 2018, 121, 80-88.
[http://dx.doi.org/10.1016/j.porgcoat.2018.04.017]
[69]
Song, L.J.; Li, W.H.; Duan, W.X.; An, J.C.; Tang, S.Y.; Li, L.J.; Yang, G.Y. Natural gallic acid catalyzed aerobic oxidative coupling in assistance of Mn(CO3)2 for synthesis of disulfanes in water. Green Chem., 2019, 21, 1432-1438.
[http://dx.doi.org/10.1039/C9GC00091G]
[70]
Leitemberger, A.; Bohs, L.M.C.; Rosa, C.H.; Silva, C.D.; Galetto, F.Z.; Godoi, M. Synthesis of symmetrical diorganyl disulfides employing WEB as an eco-friendly oxidative system. ChemistrySelect, 2019, 4, 7686-7690.
[http://dx.doi.org/10.1002/slct.201901385]
[71]
Xu, H.; Zhang, Y.F.; Lang, X. TEMPO visible light photocatalysis: the selective aerobic oxidation of thiols to disulfides. Chin. Chem. Lett., 2019.
[http://dx.doi.org/10.1016/j.cclet.2019.10.024]
[72]
Ramadan, R.M.; Elantabli, F.M.; El-Medani, S.M. Conversion of thiol to homodisulfide-Schiff base derivative: synthesis, molecular structure, crystal structure and DFT studies. J. Mol. Struct., 2019, 1196, 547-554.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.108]
[73]
Kumar, P.; Singh, G.; Jain, S.L. Visible light driven photocatalytic oxidation of thiols to disulfides using iron phthalocyanine immobilized on grapheme oxide as a catalyst under alkaline free conditions. RSC Advances, 2014, 4, 50331-50337.
[http://dx.doi.org/10.1039/C4RA10128F]
[74]
Sabet, A.; Fakhraee, A.; Ramezanpour, M.; Alipour, N. S-S Coupling of thiols to disulfides using ionic liquid in the presence of free nano-Fe2O3 catalyst. Int. J. Innov. Res. Sci. Eng. Technol., 2014, 8, 1184-1187.
[75]
Kulkarni, A.M.; Desai, U.V.; Pandit, K.S.; Kulkani, M.A.; Wadgaonkar, P.P. Nickel ferrite nanoparticles-hydrogen peroxide: a green catalyst-oxidant combination in chemoselective oxidation of thiols to disulfides and sulfides to sulfoxides. RSC Advances, 2014, 4, 36702-36707.
[http://dx.doi.org/10.1039/C4RA04095C]
[76]
Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: an overview of recent developments in the process. Appl. Catal., A, 2008, 350, 133-149.
[77]
Khalili, D. Graphene oxide-assisted one-pot and odorless synthesis of symmetrical disulfides using primary and secondary alkyl halides (Tosylates) and thiourea as sulfur source reagent. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190, 1727-1734.
[http://dx.doi.org/10.1080/10426507.2014.999069]
[78]
Ghorbani-Choghamarani, A.; Darvishnejad, Z.; Tahmasbi, B. Schiff base complexes of Ni, Co, Cr, Cd and Zn supported on magnetic nanoparticles: as efficient and recyclable catalysts for the oxidation of sulfides and oxidative coupling of thiols. Inorg. Chim. Acta, 2015, 435, 223-231.
[http://dx.doi.org/10.1016/j.ica.2015.07.004]
[79]
Maurya, C.K.; Mazumder, A.; Kumar, A.; Gupta, P.K. Synthesis of disulfanes from organic thiocyanates mediated by sodium in silica gel. Synlett, 2016, 27(3), 409-411.
[80]
Hamed, E.M.; Doai, H.; McLaughlin, C.K.; Houmam, A. Regioselective bond cleavage in the dissociative electron transfer to benzyl thiocyanates: the role of radical/ion pair formation. J. Am. Chem. Soc., 2006, 128(20), 6595-6604.
[http://dx.doi.org/10.1021/ja056730u] [PMID: 16704259]
[81]
Kulkarni, A.M.; Desai, U.V.; Pandit, K.S.; Kulkarni, M.A.; Wadgaonkar, P.P. Nickel ferrite nanoparticles-hydrogen peroxide: a green catalyst-oxidant combination in chemoselective oxidation of thiols to disulfides and sulfides to sulfoxides. RSC Advances, 2014, 4, 36702-36707.
[http://dx.doi.org/10.1039/C4RA04095C]
[82]
Bhoi, Y.P.; Rout, D.P.; Mishra, B.G. Photocatalytic chemoselective aerobic oxidation of thiols to disulfides catalyzed by combustion synthesized bismuth tungstate nanoparticles in aqueous media. J. Cluster Sci., 2016, 27, 267-284.
[http://dx.doi.org/10.1007/s10876-015-0928-0]
[83]
Noori, N.; Nikoorazm, M.; Ghorbani-Choghamarani, A. Oxo-vanadium immobilized on L-cysteine-modified MCM-41 as catalyst for the oxidation of sulfides and oxidative coupling of thiols. Microporous Mesoporous Mater., 2016, 234, 166-175.
[http://dx.doi.org/10.1016/j.micromeso.2016.06.036]
[84]
Toma, A.M.; Raţ, C.I.; Pavel, O.D.; Hardacre, C.; Rüffer, T.; Lang, H.; Mehring, M.; Silvestru, A.; Pârvulescu, V.I. Heterocyclic bismuth(III) compounds with transannular N→Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide. Catal. Sci. Technol., 2017, 7(22), 5343-5353.
[http://dx.doi.org/10.1039/C7CY00521K]
[85]
Sonavane, S.U.; Chidambaram, M.; Almog, J.; Sasson, Y. Rapid and efficient synthesis of symmetrical alkyl disulfides under phase transfer conditions. Tetrahedron Lett., 2007, 48, 6048-6050.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.074]
[86]
Sonavane, S.U.; Chidambaram, M.; Khalil, S.; Almog, J.; Sasson, Y. Synthesis of cyclic disulfides using didecyldimethylammonium bromide as phase transfer catalyst. Tetrahedron Lett., 2008, 49(3), 520-522.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.075]
[87]
Li, D.; Li, J.; Zhang, Z.; Yan, L.; Liu, N.; Li, C.; Hou, W. Efficient synthesis of functional long-chain alkyl disulfides under liquid-liquid phase-transfer catalysis: the analysis of chemical equilibrium and phase-transfer mechanism. Catal. Commun., 2017, 89, 9-13.
[http://dx.doi.org/10.1016/j.catcom.2016.10.009]
[88]
Moeini, N.; Tamoradi, T.; Ghadermazi, M.; Choghamarani, A.G. Anchoring Ni (II) on Fe3O4@tryptophan: a recyclable, green and extremely efficient magnetic nanocatalyst for one-pot synthesis of 5-substituted 1H-tetrazoles and chemoselective oxidation of sulfides and thiols. Appl. Organomet. Chem., 2018, 32(9) e4445
[89]
Tamoradi, T.; Moeini, N.; Ghadermazi, M.; Choghmarani, A.G. Fe3O4-AMPD-Pd: a novel and efficient magnetic nanocatalyst synthesis of sulphides and oxidation reactions. Polyhedron, 2018, 153, 104-109.
[http://dx.doi.org/10.1016/j.poly.2018.07.002]
[90]
Molaei, S.; Tamoradi, T.; Ghadermazi, M.; Choghamarani, A.G. Cu(II) and Cd(II) anchored functionalized mesoporous SBA-15 as novel, highly efficient and recoverable heterogeneous catalysts for green oxidative coupling of thiols and C–S cross-coupling reaction of aryl halides. Polyhedron, 2018, 156, 35-47.
[http://dx.doi.org/10.1016/j.poly.2018.09.014]
[91]
Beigi, M.S.; Arzehgar, Z.Z. A novel method for the direct synthesis of symmetrical and unsymmetrical sulfides and disulfides from aryl halides and ethyl potassium xanthogenate. Synlett, 2018, 29, 986-992.
[http://dx.doi.org/10.1055/s-0037-1609081]
[92]
Molaei, S.; Tamoradi, T.; Ghadermazi, M.; Choghamarani, A.G. Highly efficient oxidative coupling of thiols and oxidation of sulfides in the presence of MCM-41@Tryptophan-Cd and MCM-41@Tryptophan-Hg as novel and recoverable nanocatalysts. Catal. Lett., 2018, 148, 1834-1847.
[http://dx.doi.org/10.1007/s10562-018-2379-3]
[93]
Xu, L.Z.; Deng, X.Y.; Li, Z.H. Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light. Appl. Catal. B, 2018, 234, 50-55.
[http://dx.doi.org/10.1016/j.apcatb.2018.04.030]
[94]
Gaur, R.; Yadaz, M.; Gupta, R.; Arora, G.; Rana, P.; Sharma, R.K. Aerobic oxidation of thiols to disulfides by silver-based magnetic catalyst. ChemistrySelect, 2018, 3, 2502-2508.
[http://dx.doi.org/10.1002/slct.201703020]
[95]
Tao, G.J.; Zhang, L.X.; Chen, L.S.; Cui, X.Z.; Hua, Z.L.; Wang, M.; Wang, J.C.; Chen, Y.; Shi, J.L. N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon, 2015, 86, 108-117.
[http://dx.doi.org/10.1016/j.carbon.2014.12.102]
[96]
Gu, J.; Wang, X.; Tian, L.; Feng, L.; Qu, J.; Liu, P.; Zhang, X. Construction of grape-like silica-based hierarchical porous interlocked microcapsules by colloidal crystals templates. Langmuir, 2015, 31(45), 12530-12536.
[http://dx.doi.org/10.1021/acs.langmuir.5b03465] [PMID: 26509289]
[97]
Liu, H.; Cao, Y.; Wang, F.; Huang, Y. Nitrogen-doped hierarchical lamellar porous carbon synthesized from the fish scale as support material for platinum nanoparticle electrocatalyst toward the oxygen reduction reaction. ACS Appl. Mater. Interfaces, 2014, 6(2), 819-825.
[http://dx.doi.org/10.1021/am403432h] [PMID: 24359570]
[98]
Molaei, S.; Tamoradi, T.; Ghadermazi, M.; Ghorbani-Choghamarani, A. Synthesis and characterization of MCM-41@AMPD@Zn as a novel and recoverable mesostructured catalyst for oxidation of sulfur containing compounds and synthesis of 5-substituted tetrazoles. Microporous Mesoporous Mater., 2018, 272, 241-250.
[http://dx.doi.org/10.1016/j.micromeso.2018.06.048]
[99]
Liu, X.; Luo, X.S.; Deng, H.L.; Fan, W.; Wang, S.; Yang, C.; Sun, X.Y.; Chen, S.L.; Huang, M.H. Functional porous organic polymers comprising a triaminotriphenylazobenzene subunit as a platform for copper-catalyzed aerobic C–H oxidation. Chem. Mater., 2019, 31, 5421-5430.
[http://dx.doi.org/10.1021/acs.chemmater.9b00590]
[100]
Zhi, Y.; Li, K.; Xia, H.; Xue, M.; Mu, Y.; Liu, X. Robust porous organic polymers as efficient heterogeneous organo-photocatalysts for aerobic oxidation reactions. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 8697-8704.
[http://dx.doi.org/10.1039/C7TA02205K]
[101]
Song, X.; Zhu, W.; Yan, Y.; Gao, H.; Gao, W.; Zhang, W.; Jia, M. Triphenylamine-based porous organic polymers: synthesis and application for supporting phosphomolybdate to fabricate efficient olefin oxidation catalysts. Microporous Mesoporous Mater., 2017, 242, 9-17.
[http://dx.doi.org/10.1016/j.micromeso.2017.01.003]
[102]
Zhang, H.; Zhou, M.; Xiong, L.; He, Z.; Wang, T.; Xu, Y.; Huang, K. Oxo-vanadium (IV) complex supported by microporous organic nanotube frameworks: a high selective heterogeneous catalyst for the oxidation of thiols to disulfides. Microporous Mesoporous Mater., 2018, 255, 103-109.
[http://dx.doi.org/10.1016/j.micromeso.2017.07.041]
[103]
Moeini, N.; Ghadermazi, M.; Ghorbani-Choghamarani, A. A synthesis of sulfoxides and disulfides under classical and ultrasonic conditions in presence of recoverable inorganic-organic hybrid magnetism nanocatalysts Fe3O4@Tryptophan-M (M: Cu, Co and Fe). Polyhedron, 2019, 170, 278-286.
[http://dx.doi.org/10.1016/j.poly.2019.04.037]
[104]
Nikoorazm, M.; Ghobadi, M. Cu-SBTU@MCM-41: As an efficient and reusable nanocatalyst for selective oxidation of sulfides an oxidative coupling of thiols. Silicon, 2019, 11, 983-993.
[http://dx.doi.org/10.1007/s12633-018-9871-7]
[105]
Veisi, H.; Tamoradi, T.; Karmakar, B. An efficient clean methodology for the C–S coupling to aryl thioethers and S–S homocoupling to aromatic disulfides catalyzed over a Ce(IV)-leucine complex immobilized on mesoporous MCM-41. New J. Chem., 2019, 43, 10343-10351.
[http://dx.doi.org/10.1039/C9NJ02270H]
[106]
Molaei, S.; Ghadermazi, M. Synthesis and characterization of indium and thallium immobilized on isonicotinamide-functionalized mesoporous MCM- 41: Two novel and highly active heterogeneous catalysts for selective oxidation of sulfides and thiols to their correspoinding sulfoxides and disulfides. Appl. Organomet. Chem., 2019. 33e4972
[http://dx.doi.org/10.1002/aoc.4972]
[107]
Molaei, S.; Ghadermazi, M. Selective and efficient oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides catalyzed with praseodymium (III) and dysprosium (III) isonicotinamide (INA) complexes grafted onto modified mesoporous MCM-41. Solid State Sci., 2019, 100 106091
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.106091]
[108]
Nemati, M. Tamoradi; T.; Hojat, V. Immobilization of Gd(III) complex on Fe3O4: a novel and recyclable catalyst for synthesis of tetrazole and S–S coupling. Polyhedron, 2019, 167, 75-84.
[http://dx.doi.org/10.1016/j.poly.2019.04.016]
[109]
Tamoradi, T.; Ghadermazi, M.; Choghamaani, A.G. SBA-15@ABA-M (M = Cu, Ni and Pd): three efficient, novel and green catalysts for oxidative coupling of thiols under mild reaction conditions. J. Saudi Chem. Soc., 2019, 23, 846-855.
[http://dx.doi.org/10.1016/j.jscs.2019.02.003]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy