Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Authors Review on Drug Nanocrystals: A Progress to Targeted Delivery

Author(s): Manish Kumar*, Nithya Shanthi, P.S. Rajnikanth and Arun Kumar Mahato

Volume 10, Issue 3, 2020

Page: [248 - 270] Pages: 23

DOI: 10.2174/2468187310666200221103827

Price: $65

Abstract

In the last few decades, researchers and pharmaceutical industries have been developing new approaches to overcome the solubility and bioavailability limits observed with poorly soluble drugs. With the advancement of nanotechnology, nanocrystals have emerged as a great potential to overcome these limitations. Nanocrystals owing to its ability to modify the physicochemical and biological properties of the drug have gained widespread attention among the research scientists. This review provides comprehensive detail on the associated advantages, challenges, factors affecting physicochemical properties, and optimization parameters about the stability of nanocrystals. In this review, the evolution of nanocrystals is discussed as first-generation simple nanocrystals, secondgeneration nanocrystals within a carrier, and third-generation surface-modified nanocrystals. It also provides a detailed account of various preparation methods and evaluation of surface-modified nanocrystals. In the proposed "King Design," nanocrystals of the third generation are placed on the top due to their advantage over other nanocarriers like high drug payload, site-specific delivery, improved activity, commercial manufacturing, and easy scale-up. Third generations nanocrystals can provide a novel therapeutic solution for the site-specific, targeted, and efficient delivery for treatment of various acute as well as chronic diseases with high stability and scale-up potential.

Keywords: Modified nanocrystals, targeted delivery, surface grafting, 3rd generation nanocrystals, king design, scale-up potential.

Graphical Abstract

[1]
Jermain SV, Brough C, Williams RO III. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery - An update. Int J Pharm 2018; 535(1-2): 379-92.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.051] [PMID: 29128423]
[2]
Peltonen L, Hirvonen J. Drug nanocrystals - Versatile option for formulation of poorly soluble materials. Int J Pharm 2018; 537(1-2): 73-83.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.005] [PMID: 29262301]
[3]
Malamatari M, Taylor KMG, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today 2018; 23(3): 534-47.
[http://dx.doi.org/10.1016/j.drudis.2018.01.016] [PMID: 29326082]
[4]
Kenry, Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci 2017; 70: 1-17.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.03.002]
[5]
Ranjbar-Navazi Z, Eskandani M, Johari-Ahar M, et al. Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy. J Drug Target 2018; 26(3): 267-77.
[http://dx.doi.org/10.1080/1061186X.2017.1365876] [PMID: 28795849]
[6]
Salavati-Niasari M, Davar F, Mazaheri M. Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from. J Alloys Compd 2009; 470(1): 502-6. [bis(salicylidene)zinc(II)
[http://dx.doi.org/10.1016/j.jallcom.2008.03.048]
[7]
Mohandes F, Salavati-Niasari M. Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason Sonochem 2013; 20(1): 354-65.
[http://dx.doi.org/10.1016/j.ultsonch.2012.05.002] [PMID: 22658636]
[8]
Linko V, Ora A, Kostiainen MA. DNA Nanostructures as smart drug-delivery vehicles and molecular devices. Trends Biotechnol 2015; 33(10): 586-94.
[http://dx.doi.org/10.1016/j.tibtech.2015.08.001] [PMID: 26409777]
[9]
Ju R-J, Cheng L, Peng X-M, Wang T, Li C-Q, Song X-L, et al. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. Artif Cells Nanomed Biotechnol 2018; 6(sup1): 616-28.
[http://dx.doi.org/10.1080/21691401.2018.1433187]
[10]
Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine (Lond) 2008; 4(3): 183-200.
[http://dx.doi.org/10.1016/j.nano.2008.04.003] [PMID: 18550450]
[11]
Yokoyama M. Clinical applications of polymeric micelle carrier systems in chemotherapy and image diagnosis of solid tumors. J Exp Clin Med 2011; 3(4): 151-8.
[http://dx.doi.org/10.1016/j.jecm.2011.06.002]
[12]
Kesharwani P, Gothwal A, Iyer AK, Jain K, Chourasia MK, Gupta U. Dendrimer nanohybrid carrier systems: an expanding horizon for targeted drug and gene delivery. Drug Discov Today 2018; 23(2): 300-14.
[http://dx.doi.org/10.1016/j.drudis.2017.06.009] [PMID: 28697371]
[13]
Subramanian P, Rajnikanth PS, Kumar M, Chidambram K. In-Vitro and In-Vivo evaluation of supersaturable self-nanoemulsifying drug delivery system (SNEDDS) of dutasteride. Curr Drug Deliv 2019.
[PMID: 31721703]
[14]
Kianpour G, Salavati-Niasari M, Emadi H. Sonochemical synthesis and characterization of NiMoO4 nanorods. Ultrason Sonochem 2013; 20(1): 418-24.
[http://dx.doi.org/10.1016/j.ultsonch.2012.08.012] [PMID: 22998810]
[15]
Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine (Lond) 2018; 14(7): 2023-50.
[http://dx.doi.org/10.1016/j.nano.2018.05.021] [PMID: 29944981]
[16]
Gad SF, Park J, Park JE, Fetih GN, Tous SS, Lee W, et al. Enhancing docetaxel delivery to multidrug resistant cancer cells with albumin-coated nanocrystals. Mol Pharm [Internet] 2018.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b0078 3]
[17]
Hou Y, Shao J, Fu Q, Li J, Sun J, He Z. Spray-dried nanocrystals for a highly hydrophobic drug: Increased drug loading, enhanced redispersity, and improved oral bioavailability. Int J Pharm 2017; 516(1-2): 372-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.043] [PMID: 27880871]
[18]
Tyagi P, Subramony JA. Nanotherapeutics in oral and parenteral drug delivery: Key learnings and future outlooks as we think small. J Control Release 2018; 272: 159-68.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.009] [PMID: 29355619]
[19]
Chen M-L, John M, Lee SL, Tyner KM. Development considerations for nanocrystal drug products. AAPS J 2017; 19(3): 642-51.
[http://dx.doi.org/10.1208/s12248-017-0064-x] [PMID: 28281194]
[20]
Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu D, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 2018; 131: 3-21.
[http://dx.doi.org/10.1016/j.addr.2018.05.002] [PMID: 29738786]
[21]
Rydberg HA, Yanez Arteta M, Berg S, Lindfors L, Sigfridsson K. Probing adsorption of DSPE-PEG2000 and DSPE-PEG5000 to the surface of felodipine and griseofulvin nanocrystals. Int J Pharm 2016; 510(1): 232-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.046] [PMID: 27329674]
[22]
Wang T, Qi J, Ding N, et al. Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery. Int J Pharm 2018; 546(1-2): 10-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.020] [PMID: 29751141]
[23]
Fotie G, Amoroso L, Muratore G, Piergiovanni L. Carbon dioxide diffusion at different relative humidity through coating of cellulose nanocrystals for food packaging applications. Food Packag Shelf Life 2018; 18: 62-70.
[http://dx.doi.org/10.1016/j.fpsl.2018.08.007]
[24]
Barkhordari MR, Fathi M. Production and characterization of chitin nanocrystals from prawn shell and their application for stabilization of Pickering emulsions. Food Hydrocoll 2018; 82: 338-45.
[http://dx.doi.org/10.1016/j.foodhyd.2018.04.030]
[25]
Luo M, Yang Y, Sun Y, Qin Y, Li C, Li Y, et al. Ultrathin two-dimensional metallic nanocrystals for renewable energy electrocatalysis. Mater Today 2019; 23: 45-56.
[http://dx.doi.org/10.1016/j.mattod.2018.06.005]
[26]
Jung Y-H, Pack SP, Chung S. Solvothermal synthesis and characterization of highly monodisperse organically functionalized vanadium oxide nanocrystals for thermochromic applications. Mater Res Bull 2018; 101: 67-72.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.014]
[27]
Ma T, Li C, Liu T, Yuan Q. Size-controllable synthesis of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells’ application. J Saudi Chem Soc 2018; 22(7): 846-54.
[http://dx.doi.org/10.1016/j.jscs.2018.01.007]
[28]
Yu C, Yan D, Lou S, Xia C, Cao M, Xuan T, et al. Highly stabile ZnGa2O4:Eu nanocrystals as a fluorescence probe for bio-imaging. J Lumin 2018; 199: 492-8.
[http://dx.doi.org/10.1016/j.jlumin.2018.03.092]
[29]
Wu W, Song R, Xu Z, Jing Y, Dai H, Fang G. Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sens Actuators B Chem 2018; 275: 490-8.
[http://dx.doi.org/10.1016/j.snb.2018.07.085]
[30]
Zhang Y, Han F, Dai Q, Tang J. Magnetic properties and photovoltaic applications of ZnO:Mn nanocrystals. J Colloid Interface Sci 2018; 517: 194-203.
[http://dx.doi.org/10.1016/j.jcis.2018.02.002] [PMID: 29425956]
[31]
Pelikh O, Stahr P-L, Huang J, et al. Nanocrystals for improved dermal drug delivery. Eur J Pharm Biopharm 2018; 128: 170-8.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.020] [PMID: 29680482]
[32]
Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010; 399(1-2): 129-39.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[33]
Agrawal S, Dwivedi M, Ahmad H, et al. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomedicine (Lond) 2018; 14(2): 327-37.
[http://dx.doi.org/10.1016/j.nano.2017.10.010] [PMID: 29129754]
[34]
Lu Y, Wang ZH, Li T, McNally H, Park K, Sturek M. Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. J Control Release 2014; 176: 76-85.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.018] [PMID: 24378441]
[35]
Park J, Sun B, Yeo Y. Albumin-coated nanocrystals for carrier-free delivery of paclitaxel. J Control Release 2017; 263: 90-101.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.040] [PMID: 28049022]
[36]
Noh J-K, Naeem M, Cao J, et al. Herceptin-functionalized pure paclitaxel nanocrystals for enhanced delivery to HER2-postive breast cancer cells. Int J Pharm 2016; 513(1-2): 543-53.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.067] [PMID: 27686050]
[37]
Han X, Su R, Huang X, Wang Y, Kuang X, Zhou S, et al. Triphenylphosphonium-modified mitochondria-targeted paclitaxel nanocrystals for overcoming multidrug resistance. Asian J Pharm Sci 2019; 14(5): 569-80.
[http://dx.doi.org/10.1016/j.ajps.2018.06.006]
[38]
Huang ZG, Lv FM, Wang J, et al. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability. Int J Pharm 2019; 556: 217-25.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.023] [PMID: 30557679]
[39]
Kumar M, Shanthi N, Mahato AK. Pharmaceutical drug nanocrystals: role in dermal delivery. Nanosci Nanotech Asia 2019; 9: 300-10.
[40]
Choi J-S, Park J-S. Effects of paclitaxel nanocrystals surface charge on cell internalization. Eur J Pharm Sci 2016; 93: 90-6.
[http://dx.doi.org/10.1016/j.ejps.2016.08.014] [PMID: 27516149]
[41]
Sohn JS, Yoon D-S, Sohn JY, Park J-S, Choi J-S. Development and evaluation of targeting ligands surface modified paclitaxel nanocrystals. Mater Sci Eng C 2017; 72: 228-37.
[http://dx.doi.org/10.1016/j.msec.2016.11.065] [PMID: 28024581]
[42]
Pensel P, Paredes A, Albani CM, et al. Albendazole nanocrystals in experimental alveolar echinococcosis: Enhanced chemoprophylactic and clinical efficacy in infected mice. Vet Parasitol 2018; 251: 78-84.
[http://dx.doi.org/10.1016/j.vetpar.2017.12.022] [PMID: 29426481]
[43]
Drogat N, Granet R, Le Morvan C, Bégaud-Grimaud G, Krausz P, Sol V. Chlorin-PEI-labeled cellulose nanocrystals: synthesis, characterization and potential application in PDT. Bioorg Med Chem Lett 2012; 22(11): 3648-52.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.044] [PMID: 22554976]
[44]
Choi J-S, Park J-S. Surface modification of docetaxel nanocrystals with HER2 antibody to enhance cell growth inhibition in breast cancer cells. Colloids Surf B Biointerfaces 2017; 159: 139-50.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.064] [PMID: 28783505]
[45]
Chen C, Wang L, Cao F, et al. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery. Int J Pharm 2016; 497(1-2): 239-47.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.014] [PMID: 26680316]
[46]
Li Y, Wang D, Lu S, et al. Pramipexole nanocrystals for transdermal permeation: Characterization and its enhancement micro-mechanism. Eur J Pharm Sci 2018; 124: 80-8.
[http://dx.doi.org/10.1016/j.ejps.2018.08.003] [PMID: 30076954]
[47]
Guo F, Shang J, Zhao H, et al. Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEG-DSPE for imaging and chemotherapy. Colloids Surf B Biointerfaces 2017; 160: 649-60.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.013] [PMID: 29031225]
[48]
Liu T, Han M, Tian F, Cun D, Rantanen J, Yang M. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: In vitro and in vivo evaluation. Carbohydr Polym 2018; 181: 1143-52.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.018] [PMID: 29253943]
[49]
Colombo M, Staufenbiel S, Rühl E, Bodmeier R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int J Pharm 2017; 521(1-2): 156-66.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.030] [PMID: 28223247]
[50]
Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 2005; 24(1): 67-75.
[http://dx.doi.org/10.1016/j.ejps.2004.09.011] [PMID: 15626579]
[51]
Koradia KD, Parikh RH, Koradia HD. Albendazole nanocrystals: Optimization, spectroscopic, thermal and anthelmintic studies. J Drug Deliv Sci Technol 2018; 43: 369-78.
[http://dx.doi.org/10.1016/j.jddst.2017.11.003]
[52]
Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci 2016; 11(3): 404-16.
[http://dx.doi.org/10.1016/j.ajps.2015.09.004]
[53]
Ghosh I, Schenck D, Bose S, Ruegger C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci 2012; 47(4): 718-28.
[http://dx.doi.org/10.1016/j.ejps.2012.08.011] [PMID: 22940548]
[54]
In vitro performances and cellular uptake of clarithromycin nanocrystals produced by media milling technique. Powder Technol 2018; 338: 471-80.
[http://dx.doi.org/10.1016/j.powtec.2018.07.036]
[55]
Ige PP, Baria RK, Gattani SG. Fabrication of fenofibrate nanocrystals by probe sonication method for enhancement of dissolution rate and oral bioavailability. Colloids Surf B Biointerfaces 2013; 108: 366-73.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.043] [PMID: 23602990]
[56]
Mishra B, Sahoo J, Dixit PK. Formulation and process optimization of naproxen nanosuspensions stabilized by hydroxy propyl methyl cellulose. Carbohydr Polym 2015; 127: 300-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.077] [PMID: 25965487]
[57]
Geng T, Banerjee P, Lu Z, Zoghbi A, Li T, Wang B. Comparative study on stabilizing ability of food protein, non-ionic surfactant and anionic surfactant on BCS type II drug carvedilol loaded nanosuspension: Physicochemical and pharmacokinetic investigation. Eur J Pharm Sci 2017; 109: 200-8.
[http://dx.doi.org/10.1016/j.ejps.2017.08.005] [PMID: 28811130]
[58]
Fu Q, Sun J, Zhang D, et al. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies. Colloids Surf B Biointerfaces 2013; 109: 161-6.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.066] [PMID: 23668980]
[59]
Fu Q, Ma M, Li M, Wang G, Guo M, Li J, et al. Improvement of oral bioavailability for nisoldipine using nanocrystals. Powder Technol 2017; 305: 757-63.
[http://dx.doi.org/10.1016/j.powtec.2016.10.068]
[60]
Quan P, Shi K, Piao H, et al. A novel surface modified nitrendipine nanocrystals with enhancement of bioavailability and stability. Int J Pharm 2012; 430(1-2): 366-71.
[http://dx.doi.org/10.1016/j.ijpharm.2012.04.025] [PMID: 22531846]
[61]
Liu T, Müller RH, Möschwitzer JP. Consideration of the solid state for resveratrol nanocrystal production. Powder Technol 2018; 332: 63-9.
[http://dx.doi.org/10.1016/j.powtec.2018.03.028]
[62]
Ren X, Qi J, Wu W, Yin Z, Li T, Lu Y. Development of carrier-free nanocrystals of poorly water-soluble drugs by exploring metastable zone of nucleation. Acta Pharm Sin B 2019; 9(1): 118-27.
[http://dx.doi.org/10.1016/j.apsb.2018.05.004] [PMID: 30766783]
[63]
Gao W, Chen Y, Thompson DH, Park K, Li T. Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. J Control Release 2016; 237: 168-76.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.015] [PMID: 27417039]
[64]
Moorthi C, Kathiresan K. Fabrication of highly stable sonication assisted curcumin nanocrystals by nanoprecipitation method. Drug Invent Today 2013; 5(1): 66-9.
[http://dx.doi.org/10.1016/j.dit.2013.02.003]
[65]
Zhan H, Jagtiani T, Liang JF. A new targeted delivery approach by functionalizing drug nanocrystals through polydopamine coating. Eur J Pharm Biopharm 2017; 114: 221-9.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.020] [PMID: 28161549]
[66]
Wang H, Zhu W, Huang Y, Li Z, Jiang Y, Xie Q. Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomater 2017; 61: 88-100.
[http://dx.doi.org/10.1016/j.actbio.2017.04.017] [PMID: 28433787]
[67]
Abo-Elseoud WS, Hassan ML, Sabaa MW, Basha M, Hassan EA, Fadel SM. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. Int J Biol Macromol 2018; 111: 604-13.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.044] [PMID: 29325745]
[68]
Li T, Lei Y, Guo M, Yan H. Crosslinked poly(vinyl alcohol) hydrogel microspheres containing dispersed fenofibrate nanocrystals as an oral sustained delivery system. Eur Polym J 2018; 101: 77-82.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.02.003]
[69]
Liu G, Li S, Huang Y, Wang H, Jiang Y. Incorporation of 10-hydroxycamptothecin nanocrystals into zein microspheres. Chem Eng Sci 2016; 155: 405-14.
[http://dx.doi.org/10.1016/j.ces.2016.08.029]
[70]
Yu Q, Wu X, Zhu Q, Wu W, Chen Z, Li Y, et al. Enhanced transdermal delivery of meloxicam by nanocrystals: Preparation, in vitro and in vivo evaluation. Asian J Pharm Sci 2018; 13(6): 518-26.
[http://dx.doi.org/10.1016/j.ajps.2017.10.004]
[71]
Lu Y, Qi J, Dong X, Zhao W, Wu W. The in vivo fate of nanocrystals. Drug Discov Today 2017; 22(4): 744-50.
[http://dx.doi.org/10.1016/j.drudis.2017.01.003] [PMID: 28088442]
[72]
Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562: 187-202.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.045] [PMID: 30851386]
[73]
Liu Y, Ma Y, Xu J, et al. Apolipoproteins adsorption and brain-targeting evaluation of baicalin nanocrystals modified by combination of Tween80 and TPGS. Colloids Surf B Biointerfaces 2017; 160: 619-27.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.009] [PMID: 29031222]
[74]
Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release 2013; 172(1): 12-21.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.039] [PMID: 23920039]
[75]
Wang D, Wang Y, Zhao G, Zhuang J, Wu W. Improving systemic circulation of paclitaxel nanocrystals by surface hybridization of DSPE-PEG2000. Colloids Surf B Biointerfaces 2019; 182:110337.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.066] [PMID: 31306829]
[76]
Tomić I, Juretić M, Jug M, Pepić I, Cetina Čižmek B, Filipović-Grčić J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int J Pharm 2019; 563: 249-58.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.016] [PMID: 30965120]
[77]
Kumar M, Shanthi N, Mahato AK, Soni S, Rajnikanth PS. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon 2019; 5(5):e01688.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01688] [PMID: 31193099]
[78]
Khatib I, Khanal D, Ruan J, et al. Ciprofloxacin nanocrystals liposomal powders for controlled drug release via inhalation. Int J Pharm 2019; 566: 641-51.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.068] [PMID: 31202900]
[79]
Ni R, Zhao J, Liu Q, Liang Z, Muenster U, Mao S. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. Eur J Pharm Sci 2017; 99: 137-46.
[http://dx.doi.org/10.1016/j.ejps.2016.12.013] [PMID: 27988327]
[80]
Yang H-M, Oh BC, Kim JH, Ahn T, Nam H-S, Park CW, et al. Multifunctional poly(aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Colloids Surf Physicochem Eng Asp 2011; 391(1): 208-15.
[http://dx.doi.org/10.1016/j.colsurfa.2011.04.032]
[81]
Wu H, Li F, Wang S, et al. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 2018; 151: 66-77.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.018] [PMID: 29078200]
[82]
Feng L, Dong Z, Liang C, et al. Iridium nanocrystals encapsulated liposomes as near-infrared light controllable nanozymes for enhanced cancer radiotherapy. Biomaterials 2018; 181: 81-91.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.049] [PMID: 30077139]
[83]
Meola TR, Dening TJ, Prestidge CA. Nanocrystal-silica-lipid hybrid particles for the improved oral delivery of ziprasidone in vitro. Eur J Pharm Biopharm 2018; 129: 145-53.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.028] [PMID: 29857135]
[84]
Wang H, Zhang G, Ma X, et al. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Eur J Pharm Biopharm 2017; 115: 177-85.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.021] [PMID: 28263795]
[85]
Fatemeh SA. Active targeting drug delivery nanocarriers: Ligands. Nano-Struct Nano-Objects 2019; 19:100370.
[http://dx.doi.org/10.1016/j.nanoso.2019.100370]
[86]
Choi HW, Lee HJ, Kim KJ, Kim H-M, Lee SC. Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups. J Colloid Interface Sci 2006; 304(1): 277-81.
[http://dx.doi.org/10.1016/j.jcis.2006.05.069] [PMID: 17010357]
[87]
de Castro DO, Bras J, Gandini A, Belgacem N. Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 2016; 137: 1-8.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.101] [PMID: 26686099]
[89]
Epifani M, Comini E, Díaz R, Force C, Siciliano P, Faglia G. TiO2 colloidal nanocrystals surface modification by V2O5 species: Investigation by 47,49Ti MAS-NMR and H2, CO and NO2 sensing properties. Appl Surf Sci 2015; 351: 1169-73.
[http://dx.doi.org/10.1016/j.apsusc.2015.06.080]
[90]
Shang Q, Liu C, Hu Y, Jia P, Hu L, Zhou Y. Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil. Carbohydr Polym 2018; 191: 168-75.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.012] [PMID: 29661305]
[91]
Ndong Ntoutoume GMA, Grassot V, Brégier F, et al. PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agents-Synthesis, physicochemical characterization and in vitro evaluation. Carbohydr Polym 2017; 164: 258-67.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.004] [PMID: 28325325]
[92]
Ndong Ntoutoume GMA, Granet R, Mbakidi JP, et al. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorg Med Chem Lett 2016; 26(3): 941-5.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.060] [PMID: 26739777]
[93]
Wang X, Ma Y, Chen H, et al. Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment. Colloids Surf B Biointerfaces 2017; 152: 449-58.
[http://dx.doi.org/10.1016/j.colsurfb.2017.02.002] [PMID: 28187379]
[94]
Xie J, Zhang Y, Yan C, et al. High-performance PEGylated Mn-Zn ferrite nanocrystals as a passive-targeted agent for magnetically induced cancer theranostics. Biomaterials 2014; 35(33): 9126-36.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.019] [PMID: 25106772]
[95]
Rahim S, Sasani Ghamsari M, Radiman S. Surface modification of titanium oxide nanocrystals with PEG. Sci Iran 2012; 19(3): 948-53.
[http://dx.doi.org/10.1016/j.scient.2012.03.009]
[96]
Lin P-C, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32(4): 711-26.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.006] [PMID: 24252561]
[97]
Chavda VP. Nanobased nano drug delivery: A comprehensive review In applications of targeted nano drugs and delivery systems. 2019; pp. 69-92. Elsevier
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00004- 1]
[98]
Polini A, Yang F. 5 - Physicochemical characterization of nanofiber composites Nanofiber composites for biomedical applications. Woodhead Publishing 2017; pp. 97-115.http://www.sciencedirect.com/science/article/pii/B9780081001738000053 [Internet] [cited 2019 Nov 29]
[http://dx.doi.org/10.1016/B978-0-08-100173-8.00005-3]
[99]
Alkermes submits NDA to FDA for ALNCD to initiate onto schizophrenia drug [Internet] [cited 2019 Nov 29] https://www.pharmaceutical-technology. com/news/alkermes-submits-nda-fda-alncd-initiate-onto-schizophrenia-drug/
[100]
Making inroads toward eliminating latent HIV reservoirs [Internet] FierceBiotech [cited 2019 Nov 30] https://www.fiercebiotech.com/research/making-inroads-towards-eliminating-latent-hiv-reservoirs
[101]
Acticoat - MRSA - VRE - Nucryst [Internet] [cited 2019 Nov 30] http://www.nucryst.com/acticoat_dressings.htm
[102]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy