Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Synthesis of Kraton/Polyaniline Ionomer Composite Membrane as Cu (II) Ion Selective Membrane Electrode

Author(s): Mohd I. Ahamed, Nimra Shakeel, Naushad Anwar, Lutfullah* and Anish Khan

Volume 17, Issue 5, 2021

Published on: 20 February, 2020

Page: [653 - 661] Pages: 9

DOI: 10.2174/1573411016666200220114301

Price: $65

Abstract

Background: Kraton/polyaniline ionomer is synthesized and further characterized by electrochemical studies to check the redox properties of the material. Ion exchange capacity, proton conductivity, and selectivity of the synthesized membrane were determined. And found that the membrane was selective for Cu (II) ions.

Methods: The dry Kraton membranes were weighed and kept in 25 mL of 10 % prepared aniline solution in a conical flask for 5, 10, 15, and 20 minutes below 10 0C for socking. The prepared solution of 30 mL of 0.1 M potassium peroxydisulfate was added in a conical flask at constant stirring below 10 0C for half an hour. Finally, the aluminum foil-covered conical flask was kept in the refrigerator for 24 h and modified Kraton membranes were weighed again before carrying out further studies.

Results: The membrane was characterized by some physicochemical methods like SEM, TGA, T-IR, IEC, proton conductivity and selectivity sorption studies. An ionomeric membrane of Kraton polymer was developed as reported earlier. Kraton membrane showed the IEC of 1.9 meq·g-1. The FTIR spectrum of Kraton/PANI film reveals that weight loss up to 400°C may be found because of the thermal degradation of composite substances.

Conclusion: Ion-selective potentiometric was carried out using the self-prepared ion-selective membrane electrode. The membrane was prepared by solution casting method. The membrane was characterized by some physicochemical methods like SEM, TGA, T-IR, IEC, proton conductivity and selectivity sorption studies. On the basis of selectivity studies, the composite material was found selective for Cu (II) ion. A copper ISME was successfully fabricated using the solution casting method. The ISME possessed good selectivity, linearity, working pH range, and response time which was also used as an indicator electrode for the titration of copper using EDTA.

Keywords: Cyclic voltammetry, kraton/polyaniline composite, membrane electrode, proton conductivity, Scanning Electron Microscopy (SEM), selectivity.

Graphical Abstract

[1]
Lu, G.; Long, D.; Li, D.; Zhan, T.; Zhao, H.; Liu, C. Determination of Copper in food by stripping voltammetry using Cu(II)-[2-(2,3,5- Triazolylazo)-5-Dimethylaninobenzonic] Complex. Food Chem., 2004, 84(2), 319-322..
[http://dx.doi.org/10.1016/S0308-8146(03)00261-9]
[2]
Ghaedi, M.; Khajehsharifi, H.; Montazerozohori, M.; Tavallali, H.; Tahmasebi, K.; Khodadoust, S. Designing and synthesis of Bis(2,4-Dihydroxybenzylidene)-1,6-Diaminohexane and its efficient application as neutral carrier for preparation of new copper selective electrode. Mater. Sci. Eng. C, 2012, 32(4), 674-679.
[http://dx.doi.org/10.1016/j.msec.2012.01.006]
[3]
Cui, L.; Wu, J.; Li, J.; Ge, Y.; Ju, H. Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine. Biosens. Bioelectron., 2014, 55, 272-277.
[http://dx.doi.org/10.1016/j.bios.2013.11.081] [PMID: 24389390]
[4]
Kim, Y.; Johnson, R.C.; Hupp, J.T. Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett., 2001, 1(4), 165-167.
[http://dx.doi.org/10.1021/nl0100116]
[5]
Vanhoe, H.; Vandecasteele, C.; Versieck, J.; Dams, R. Determination of iron, cobalt, copper, zinc, rubidium, molybdenum, and cesium in human serum by inductively coupled plasma mass spectrometry. Anal. Chem., 1989, 61(17), 1851-1857.
[http://dx.doi.org/10.1021/ac00192a014] [PMID: 2802147]
[6]
Yan, B.; Worsfold, P.J. Determination of Cobalt(II), Copper(II) and Iron(II) by ion chromatography with chemiluminescence detection. Anal. Chim. Acta, 1990, 236, 287-292.
[http://dx.doi.org/10.1016/S0003-2670(00)83324-3]
[7]
Tokalioǧlu, Ş.; Kartal, Ş.; Elçi, L. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Anal. Chim. Acta, 2000, 413(1-2), 33-40.
[http://dx.doi.org/10.1016/S0003-2670(00)00726-1]
[8]
Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta, 2012, 84, 49-61.
[http://dx.doi.org/10.1016/j.electacta.2012.04.044]
[9]
Hung, Y.L.; Hsiung, T.M.; Chen, Y.Y.; Huang, Y-F.; Huang, C.C. Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J. Phys. Chem. C, 2010, 114(39), 16329-16334.
[http://dx.doi.org/10.1021/jp1061573]
[10]
Vogl, J.; Heumann, K.G. Determination of heavy metal complexes with humic substances by HPLC/ICP-MS coupling using on-line isotope dilution technique. Fresenius J. Anal. Chem., 1997, 359(4-5), 438-441.
[http://dx.doi.org/10.1007/s002160050606]
[11]
Wȩgrzynek, D.; Hołyńska, B. Simultaneous analysis of trace concentrations of lead and arsenic by energy-dispersive x-ray fluorescence spectrometry. Appl. Radiat. Isot., 1993, 44(8), 1101-1104.
[http://dx.doi.org/10.1016/0969-8043(93)90113-O]
[12]
Barbosa, F.; Krug, F.J.; Lima, É.C. On-line coupling of electrochemical preconcentration in tungsten coil electrothermal atomic absorption spectrometry for determination of lead in natural waters. Spectrochim. Acta B At. Spectrosc., 1999, 54(8), 1155-1166.
[http://dx.doi.org/10.1016/S0584-8547(99)00055-5]
[13]
Lin, M.; Hu, X.; Ma, Z.; Chen, L. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Anal. Chim. Acta, 2012, 746, 63-69.
[http://dx.doi.org/10.1016/j.aca.2012.08.017] [PMID: 22975181]
[14]
Gholamian, F.; Sheikh-Mohseni, M.A.; Salavati-Niasari, M. Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Mater. Sci. Eng. C, 2011, 31(8), 1688-1691.
[http://dx.doi.org/10.1016/j.msec.2011.07.017]
[15]
Chaiyo, S.; Chailapakul, O.; Sakai, T.; Teshima, N.; Siangproh, W. Highly sensitive determination of trace copper in food by adsorptive stripping voltammetry in the presence of 1,10-phenanthroline. Talanta, 2013, 108, 1-6.
[http://dx.doi.org/10.1016/j.talanta.2013.02.031] [PMID: 23601862]
[16]
Ashkenani, H.; Taher, M.A. Selective voltammetric determination of Cu(II) Based on multiwalled carbon nanotube and nano-Porous Cu-Ion imprinted polymer. J. Electroanal. Chem. (Lausanne Switz.), 2012, 683, 80-87.
[http://dx.doi.org/10.1016/j.jelechem.2012.08.010]
[17]
Jacintho, A.O.; Zagatto, E.A.G.; Bergamin, F.H.; Krug, F.J.; Reis, B.F.; Bruns, R.E.; Kowalski, B.R. Flow injection systems with inductively-coupled argon plasma atomic emission spectrometry. Anal. Chim. Acta, 1981, 130(2), 243-255.
[http://dx.doi.org/10.1016/S0003-2670(01)93002-8]
[18]
Ghaedi, M.; Shabani, R.; Shokrollahi, A.; Montazerozohori, M.; Sahraiean, A.; Soylak, M. Preconcentration and separation of trace amount of copper (II) on N1, N2-bis(4-fluorobenzylidene)ethane-1,2-diamine loaded on Sepabeads SP70. J. Hazard. Mater., 2009, 170(1), 169-174.
[http://dx.doi.org/10.1016/j.jhazmat.2009.04.110] [PMID: 19481865]
[19]
Ghaedi, M.; Amini, M.K.; Rafi, A.; Gharaghani, S.; Shokrollahi, A. Adsorptive stripping voltammetric determination of copper(II) ion using phenyl pyridyl ketoneoxime (PPKO). Ann. Chim., 2005, 95(6), 457-464.
[http://dx.doi.org/10.1002/adic.200590052] [PMID: 16136840]
[20]
Akhond, M.; Ghaedi, M.; Tashkhourian, J. Development of a new Copper(II) Ion-Selective Poly(Vinyl Chloride) membrane Electrode Based on 2-Mercaptobenzoxazole. Bull. Korean Chem. Soc., 2005, 26(6), 882-886.
[http://dx.doi.org/10.5012/bkcs.2005.26.6.882]
[21]
Inamuddin; Alam, M. M. Studies on the preparation and analytical applications of various metal ion-selective membrane electrodes based on polymeric, inorganic and composite materials-a review. J. Macromol. Sci. Part A, 2008, 45(12), 1084-1101.
[http://dx.doi.org/10.1080/10601320802458178]
[22]
Tomova, R.; Spasov, G.; Stoycheva-Topalova, R.; Buroff, A. Copper-Doped vacuum evaporated chalcogenide layers as sensitive ion-selective membranes. J. Non-Cryst. Solids, 2000, 266-269, 985-988.
[http://dx.doi.org/10.1016/S0022-3093(00)00039-9]
[23]
Kamata, S.; Bhale, A.; Fukunaga, Y.; Murata, H. Copper(II)-Selective electrode using thiuram disulfide neutral carriers. Anal. Chem., 1988, 60(22), 2464-2467.
[http://dx.doi.org/10.1021/ac00173a006]
[24]
Navaei Diva, T.; Zare, K.; Taleshi, F.; Yousefi, M. Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. J. Nanostructure Chem., 2017, 7(3), 273-281.
[http://dx.doi.org/10.1007/s40097-017-0239-0]
[25]
Shown, I.; Ganguly, A. Non-Covalent functionalization of CVD-grown graphene with Au nanoparticles for electrochemical sensing application. J. Nanostructure Chem., 2016, 6(4), 281-288.
[http://dx.doi.org/10.1007/s40097-016-0201-6]
[26]
Salih, E.; Mekawy, M.; Hassan, R.Y.A.; El-Sherbiny, I.M. Synthesis, characterization and electrochemical-sensor applications of zinc oxide/graphene oxide nanocomposite. J. Nanostructure Chem., 2016, 6(2), 137-144.
[http://dx.doi.org/10.1007/s40097-016-0188-z]
[27]
Reilley, C.N.; Schmid, R.W.; Sadek, F.S. Chelon approach to Analysis: I. Survey of theory and application. J. Chem. Educ., 1959, 36(11), 555.
[http://dx.doi.org/10.1021/ed036p555]
[28]
Khan, A.; Jain, R.K.; Banerjee, P. Inamuddin; Asiri, A. M. Soft actuator based on kraton with GO/Ag/Pani composite electrodes for robotic applications. Mater. Res. Express, 2017, 4(11)115701
[http://dx.doi.org/10.1088/2053-1591/aa9394]]
[29]
Inamuddin; Khan, A.; Luqman, M.; Dutta, A. Kraton based ionic polymer metal composite (IPMC) actuator. Sens. Actuators A Phys., 2014, 216, 295-300.
[http://dx.doi.org/10.1016/j.sna.2014.04.015]
[30]
Chu, C.C.; Wang, Y.W.; Wang, L.; Ho, T.I. Synthesis and characterization of novel conductive star polymers containing PSS/PANI Arms. Synth. Met., 2005, 153(1-3), 321-324.
[http://dx.doi.org/10.1016/j.synthmet.2005.07.246]
[31]
Dikobe, D.G.; Luyt, A.S. Morphology and properties of polypropylene/ethylene vinyl acetate copolymer/wood powder blend composites. Express Polym. Lett., 2009, 3(3), 190-199.
[http://dx.doi.org/10.3144/expresspolymlett.2009.24]
[32]
Khan, A.A. Inamuddin; Alam, M. M. Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic-inorganic hybrid cation-exchange material: Polypyrrole thorium(IV) phosphate. React. Funct. Polym., 2005, 63(2), 119-133.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2005.02.001]
[33]
Naushad, M. Inamuddin; Rangreez, T. A.; ALOthman, Z. A. A Mercury ion selective electrode based on Poly-o-Toluidine Zr(IV) tungstate composite membrane. J. Electroanal. Chem. (Lausanne Switz.), 2014, 713, 125-130.
[http://dx.doi.org/10.1016/j.jelechem.2013.12.002]
[34]
Khan, A.A. Inamuddin; Alam, M.M. Preparation, characterization and analytical applications of a new and novel electrically conducting fibrous type polymeric-inorganic composite material: polypyrrole Th(IV) phosphate used as a cation-exchanger and Pb(II) ion-selective membrane electrode. Mater. Res. Bull., 2005, 40(2), 289-305.
[http://dx.doi.org/10.1016/j.materresbull.2004.10.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy