Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

ZnO-nanorods Promoted Synthesis of α-amino Nitrile Benzofuran Derivatives using One-pot Multicomponent Reaction of Isocyanides

Author(s): Asef H. Najar, Zinatossadat Hossaini*, Shahrzad Abdolmohammadi and Daryoush Zareyee

Volume 23, Issue 4, 2020

Page: [345 - 355] Pages: 11

DOI: 10.2174/1386207323666200219124625

Price: $65

Abstract

Aims and Objective: In this work ZnO-nanorod (ZnO-NR) as reusable catalyst promoted Strecker-type reaction of 2,4-dihydroxyacetophenone, isopropenylacetylene, trimethylsilyl cyanide (TMSCN), primary amines and isocyanides at ambient temperature under solvent-free conditions and produced α-amino nitriles benzofuran derivatives in high yields. These synthesized compounds may have antioxidant ability.

Materials and Methods: ZnO-NRs in these reactions were prepared according to reported article. 2,4-dihydroxyacetophenone 1 (2 mmol) and isopropenylacetylene 2 (2 mmol) were mixed and stirred for 30 min in the presence of ZnO-NR (10 mol%) under solvent-free conditions at room temperature. After 30 min, primary amine 3 (2 mmol) was added to the mixture gently and the mixture was stirred for 15 min. After this time TMSCN 4 (2 mmol) was added to the mixture and stirred for 15 min. After completion of the reaction, as indicated by TLC, isocyanides 5 was added to mixture in the presence of catalyst.

Results: In the first step of this research, the reaction of 2,4-dihydroxyacetophenone 1, isopropenylacetylene 2, methyl amine 3a, trimethylsilyle cyanide 4 and tert-butyl isocyanides 5a was used as a sample reaction to attain the best reaction conditions. The results showed this reaction performed with catalyst and did not have any product without catalyst after 12 h.

Conclusion: In conclusion, we investigate multicomponent reaction of 2,4-dihydroxyacetophenone 1, isopropenylacetylene 2, primary amines 3, trimethylsilyl cyanide 4 and isocyanides along with ZnO-NRs as reusable catalyst at room temperature under solvent-free conditions which generates α-amino nitrile benzofuran derivatives in high yields. The advantages of our method are high atom economy, green reaction conditions, higher yield, shorter reaction times, and easy work-up, which are in good agreement with some principles of green chemistry. The compounds 8c exhibit excellent DPPH radical scavenging activity and FRAP compared to synthetic antioxidants BHT and TBHQ.

Keywords: Strecker reaction, antioxidant ability, α-amino nitrile benzofurans, five component reaction, DPPH radical scavenging, ZnO nanorod.

« Previous
[1]
Li, C.J.; Chan, T.H. Comprehensive Organic Reactions in Aqueous Media; John Wiley & Sons, 2007.
[http://dx.doi.org/10.1002/9780470131442]
[2]
Chanda, A.; Fokin, V.V. Organic synthesis “on water”. Chem. Rev., 2009, 109(2), 725-748.
[http://dx.doi.org/10.1021/cr800448q] [PMID: 19209944]
[3]
Breslow, R. Hydrophobic effects on simple organic reactions in water. Acc. Chem. Res., 1991, 24, 159.
[http://dx.doi.org/10.1021/ar00006a001]
[4]
Dömling, A. Isocyanide based multi component reactions in combinatorial chemistry. Comb. Chem. High Throughput Screen., 1998, 1(1), 1-22.
[PMID: 10499126]
[5]
Wang, J.; Masui, Y.; Onaka, M. Synthesis of α-amino nitriles from carbonyl compounds, amines, and trimethylsilyl cyanide: comparison between catalyst-free conditions and the presence of tin ion-exchanged montmorillonite. Eur. J. Org. Chem., 2010, 2010(9), 1763-1771.http://dx.doi.org/doi:10.1002/ejoc.200901323
[6]
Weber, L. Multi-component reactions and evolutionary chemistry. Drug Discov. Today, 2002, 7(2), 143-147.
[http://dx.doi.org/10.1016/S1359-6446(01)02090-6] [PMID: 11790626]
[7]
Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[8]
Wipf, P.; Kendall, C. Novel applications of alkenyl zirconocenes. Chemistry, 2002, 8, 1779.
[9]
Balme, G.; Bossharth, E.; Monteiro, N. Pd‐assisted multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 4101
[http://dx.doi.org/10.1002/ejoc.200300378]
[10]
Jacobi von Wangelin, A.; Neumann, H.; Gördes, D.; Klaus, S.; Strübing, D.; Beller, M. Multicomponent coupling reactions for organic synthesis: chemoselective reactions with amide-aldehyde mixtures. Chemistry, 2003, 9, 4286.
[http://dx.doi.org/10.1002/chem.200305048] [PMID: 14502613]
[11]
Chao, W.; Ling-Hui, L.; Ai-Zhong, P.; Guo-Kai, J.; Cun, P.; Zhong, C.; Zilong, T.; Wei-Min, H.; Xinhua, X. Ultrasound-promoted Brønsted acid ionic liquid-catalyzed hydrothiocyanation of activated alkynes under minimal solvent conditions. Green Chem., 2018, 20, 3683.
[http://dx.doi.org/10.1039/C8GC00491A]
[12]
Ling-Hui, L.; Zheng, W.; Weng, X.; Ping, C.; Bo, Zh.; Zhong, C.; Wei-Min, H. Sustainable routes for quantitative green selenocyanation of activated alkynes. Chin. Chem. Lett., 2019, 30, 1237.
[http://dx.doi.org/10.1016/j.cclet.2019.04.033]
[13]
Lu, L-H.; Zhou, S-J.; Sun, M.; Chen, J-L.; Xia, W.; Yu, X.; Xu, X.; He, W-M. Metal- and solvent-free ultrasonic multicomponent synthesis of (z)-β-iodo vinylthiocyanates. ACS Sustain. Chem.& Eng., 2019, 7, 1574-1579.
[14]
Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chem. A Eur. J., 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140]
[15]
(a) Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s]
(b) Ugi, I.; Dömling, A. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18, 115.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
(c)Heck, S.; Dömling, A. A versatile multi-component one-pot thiazole synthesis. Synlett, 2000, 2000, 424-426.
[16]
a)Kolb, J.; Beck, B.; Almstetter, M.; Heck, S.; Herdtweck, E.; Dömling, A. New MCRs: the first 4-component reaction leading to 2,4-disubstituted thiazoles. Mol. Divers., 2003, 6, 297.
[http://dx.doi.org/10.1023/B:MODI.0000006827.35029.e4]
b)Gharib, A.; Noroozi Pesyan, N.; Vojdani Fard, L.; Roshani, M. Catalytic synthesis of α-Aminonitriles using nano copper ferrite under green conditions. Org. Chem. Int., 2014, 2014, 1-8.
[17]
(a)Shaabani, A.; Maleki, A.; Rezayan, A.H.; Sarvary, A. Recent progress of isocyanide-based multicomponent reactions in Iran. Mol. Divers., 2011, 15(1), 41-68.
[http://dx.doi.org/10.1007/s11030-010-9258-1] [PMID: 20669047]
(b)Altug, C.; Burnett, A.K.; Caner, E.; Dürüst, Y.; Elliott, M.C.; Glanville, R.P.J.; Guy, C.; Westwell, A.D. An efficient one-pot multicomponent approach to 5-amino-7-aryl-8-nitrothiazolo[3,2-a]pyridines. Tetrahedron, 2011, 67, 9522-9528.
[http://dx.doi.org/10.1016/j.tet.2011.10.005]
[18]
Rostami-Charati, F.; Hajinasiri, R.; Sayyed Alangi, S.Z.; Afshari Sharif Abad, S. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water. Chem. Pap., 2016, 70, 907-912.
[http://dx.doi.org/10.1515/chempap-2016-0030]
[19]
Sajjadi-Ghotbabadi, H.; Javanshir, Sh.; Rostami-Charati, F. Nano KF/clinoptilolite: an effective heterogeneous base nanocatalyst for synthesis of substituted quinolines in water. Catal. Lett., 2016, 146, 338-344.
[http://dx.doi.org/10.1007/s10562-015-1652-y]
[20]
Soleimani, A.; Asadi, J.; Rostami-Charati, F.; Gharaei, R. High cytotoxicity and apoptotic effects of natural bioactive benzofuran derivative on the MCF-7 breast cancer cell line. Comb. Chem. High Throughput Screen., 2015, 18(5), 505-513.
[http://dx.doi.org/10.2174/1386207318666150430114815] [PMID: 25924658]
[21]
Rostami-Charati, F.; Hossaini, Z.S.; Sheikholeslami-Farahani, F.; Azizi, Z.; Siadati, S.A. Synthesis of 9H-furo [2,3-f]chromene derivatives by promoting ZnO nanoparticles. Comb. Chem. High Throughput Screen., 2015, 18, 872-880.
[http://dx.doi.org/10.2174/1386207318666150525094109] [PMID: 26004051]
[22]
(a)Elinson, M.N.; Ilovaisky, A.I.; Merkulova, V.M.; Belyakov, P.A.; Chizhov, A.O. Solvent-free cascade reaction: direct multicomponent assembling of 2-amino-4H-chromene scaffold from salicylaldehyde, malononitrile or cyanoacetate and nitroalkanes. Tetrahedron, 2010, 66, 4043-4048.
[http://dx.doi.org/10.1016/j.tet.2010.04.024]
(b)Dekamin, M.G.; Mokhtari, Z. Highly efficient and convenient Strecker reaction of carbonyl compounds and amines with TMSCN catalyzed by MCM-41 anchored sulfonic acid as a recoverable catalyst. Tetrahedron, 2012, 68, 922-930.
[http://dx.doi.org/10.1016/j.tet.2011.10.087]
(c) Dekamin, M.G.; Mokhtari, Z. Karimi, Z. Nano-ordered B-MCM-41: An efficient and recoverable solid acid catalyst for three-component Strecker reaction of carbonyl compounds, amines and TMSCN. Sci. Iran. Trans. C: Chem. Chem. Eng., 2011, 18, 1356-1364.
[http://dx.doi.org/10.1016/j.scient.2011.11.005]
[23]
Joschka Holzhäuser, F. Mensah, Joel B.; Palkovits, R. (Non-)Kolbe electrolysis in biomass valorization – a discussion of potential applications. Green Chem., 2020, 22, 286-301.
[http://dx.doi.org/10.1039/C9GC03264A]
[24]
Cao, Z.; Zhu, Q.; Lin, Y.; He, W. The concept of dual roles design in clean organic preparation. Chin. Chem. Lett., 2019, 30, 2132-2138.
[http://dx.doi.org/10.1016/j.cclet.2019.09.041]
[25]
Xie, L.; Jiang, L.; Tan, J.; Wang, X.; Xu, X.; Zhang, B.; Cao, Z.; He, W. Visible-light-initiated decarboxylative alkylation of quinoxalin-2(1H)-ones with phenyliodine(III) dicarboxylates in recyclable ruthenium(II) catalytic system. ACS Sustain. Chem.& Eng., 2019, 7, 14153-14160.
[http://dx.doi.org/10.1021/acssuschemeng.9b02822]
[26]
Lu, L-H.; Wang, Z.; Xia, W.; Cheng, P.; Zhang, B.; Cao, Z.; He, W. Sustainable routes for quantitative green selenocyanation of activated alkynes. Chin. Chem. Lett., 2019, 30, 1237-1240.
[http://dx.doi.org/10.1016/j.cclet.2019.04.033]
[27]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
[28]
Banfi, L.; Basso, A.; Guanti, G.; Kielland, N.; Repetto, C.; Riva, R. Ugi multicomponent reaction followed by an intramolecular nucleophilic substitution: convergent multicomponent synthesis of 1-sulfonyl 1,4-diazepan-5-ones and of their benzo-fused derivatives. J. Org. Chem., 2007, 72, 2151.
[http://dx.doi.org/10.1021/jo062626z]
[29]
Shafran, Y.M.; Bakulev, V.A.; Mokrushin, V.S. Synthesis and properties of α-aminonitriles. Russ. Chem. Rev., 1989, 58, 148-162.
[http://dx.doi.org/10.1070/RC1989v058n02ABEH003432]
[30]
Matier, W.L.; Owens, D.A.; Comer, W.T.; Deitchman, D.; Ferguson, H.C.; Seidehamel, R.J.; Young, J.R. Antihypertensive agents. Synthesis and biological properties of 2-amino-4-aryl-2-imidazolines. J. Med. Chem., 1973, 16(8), 901-908.
[http://dx.doi.org/10.1021/jm00266a008] [PMID: 4745833]
[31]
Duthaler, R.O. Recent developments in the stereoselective synthesis of α-aminoacids. Tetrahedron, 1994, 50, 1539-1650.
[http://dx.doi.org/10.1016/S0040-4020(01)80840-1]
[32]
Enders, D.; Shilvock, J.P. Some recent applications of α-amino nitrile chemistry. Chem. Soc. Rev., 2000, 29, 359-373.
[http://dx.doi.org/10.1039/a908290e]
[33]
Dyker, G. Amino acid derivatives by multicomponent reactions. Angew. Chem. Int. Ed. Engl., 1997, 36, 1700-1702.
[http://dx.doi.org/10.1002/anie.199717001]
[34]
Paraskar, A.S.; Sudalai, A. Cu(OTf)2 or Et3N-catalyzed three-component condensation of aldehydes, amines and cyanides: a high yielding synthesis of α-aminonitriles. Tetrahedron Lett., 2006, 47, 5759.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.008]
[35]
De, S.K.; Gibbs, R.A. Bismuth trichloride catalyzed synthesis of α-aminonitriles. Tetrahedron Lett., 2004, 4, 7407.
[http://dx.doi.org/10.1016/j.tetlet.2004.08.071]
[36]
De, S.K. Nickel(II) chloride catalyzed one-pot synthesis of α-aminonitriles. J. Mol. Catal. A, 2005, 225, 169.
[http://dx.doi.org/10.1016/j.molcata.2004.09.005]
[37]
Shen, Z.L.; Ji, S.J.; Loh, T.P. Indium(III) iodide-mediated Strecker reaction in water: an efficient and environmentally friendly approach for the synthesis of α-aminonitrile via a three-component condensation. Tetrahedron, 2008, 64, 8159.
[http://dx.doi.org/10.1016/j.tet.2008.06.047]
[38]
Majhi, A.; Kimm, S.S.; Kadam, S.T. Rhodium(III) iodide hydrate catalyzed three-component coupling reaction: synthesis of α-aminonitriles from aldehydes, amines, and trimethylsilyl cyanide. Tetrahedron, 2008, 64, 5509.
[http://dx.doi.org/10.1016/j.tet.2008.03.106]
[39]
Karimi, B.; Zareyee, D. Solvent-free three component Strecker reaction of ketones using highly recyclable and hydrophobic sulfonic acid based nanoreactors. J. Mater. Chem., 2009, 19, 8665.
[http://dx.doi.org/10.1039/b911388f]
[40]
Iwanami, K.; Seo, H.; Choi, J.C.; Sakakura, T.; Yasuda, H. Al-MCM-41 catalyzed three-component Strecker-type synthesis of α-aminonitriles. Tetrahedron, 2010, 66, 1898.
[http://dx.doi.org/10.1016/j.tet.2010.01.001]
[41]
March, J. Advanced Organic Chemistry, 4th ed; Wiley: New York, 1999, p. 965.
[42]
Strecker, A. Krrper. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Ann. Chem. Pharm., 1850, 75, 27.
[http://dx.doi.org/10.1002/jlac.18500750103]
[43]
Kalidindi, S.B.; Jagirdar, B.R. Nanocatalysis and prospects of green chemistry. ChemSusChem, 2012, 5(1), 65-75.
[http://dx.doi.org/10.1002/cssc.201100377] [PMID: 22190344]
[44]
Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Role of nanoparticles in photocatalysis. J. Nanopart. Res., 1999, 1, 439-458.
[http://dx.doi.org/10.1023/A:1010044830871]
[45]
Rostamizadeh, S.; Nojavan, M.; Aryan, R.; Isapoor, E.; Azad, M. Amino acid-based ionic liquid immobilized on α-Fe2O3-MCM-41: An efficient magnetic nanocatalyst and recyclable reaction media for the synthesis of quinazolin-4(3H)-one derivatives. J. Mol. Catal. A, 2013, 374-375, 102-110.
[http://dx.doi.org/10.1016/j.molcata.2013.04.002]
[46]
Mirjafary, Z.; Saeidian, H.; Sadeghi, A.; Moghaddam, F.M. ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction. Catal. Commun., 2008, 9, 299-306.
[http://dx.doi.org/10.1016/j.catcom.2007.06.018]
[47]
Moghaddam, F.M.; Saeidian, H. Controlled microwave-assisted synthesis of ZnO nanopowder and its catalytic activity for O-acylation of alcohol and phenol. Mater. Sci. Eng. B, 2007, 139, 265-269.
[http://dx.doi.org/10.1016/j.mseb.2007.03.002]
[48]
Lietti, L.; Tronconi, E.; Forzatti, P.; Busca, G. Surface properties of zno-based catalysts and related mechanistic features of the higher alcohol synthesis by FT-IR spectroscopy and TPSR. J. Mol. Catal., 1989, 55, 43-54.
[http://dx.doi.org/10.1016/0304-5102(89)80241-X]
[49]
Gupta, M.; Paul, S.; Gupta, R.; Loupy, A. ZnO: a versatile agent for benzylic oxidations. Tetrahedron Lett., 2005, 46, 4957-4960.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.104]
[50]
(a)Halliwell, B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res., 1999, 31(4), 261-272.
[http://dx.doi.org/10.1080/10715769900300841] [PMID: 10517532]
(b) Ahmadi, F.; Kadivar, M.; Shahedi, M. Food Chem., 2007, 105, 57-64.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.056]
[51]
Ezzatzadeh, E.; Hossaini, Z.S. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem., 2007, 105, 57-64.
[http://dx.doi.org/10.1080/14786419.2018.1428598]
[52]
Ezzatzadeh, E.; Hossaini, Z.S. A novel one-pot three-component synthesis of benzofuran derivatives via Strecker reaction: Study of antioxidant activity. Nat. Prod. Res., 2020, 34(7), 923-929.
[http://dx.doi.org/10.1080/14786419.2018.1542389]
[53]
Ezzatzadeh, E.; Hossaini, Z. Four-component green synthesis of benzochromene derivatives using nano-KF/clinoptilolite as basic catalyst: study of antioxidant activity. Mol. Divers., 2020, 24, 81-91.
[http://dx.doi.org/10.1007/s11030-019-09935-6] [PMID: 30830596]
[54]
Rajabi, M.; Hossaini, Z.; Khalilzadeh, M.A.; Datta, S.; Halder, M.; Mousa, S.A. Synthesis of a new class of furo[3,2-c]coumarins and its anticancer activity. J. Photochem. Photobiol. B, 2015, 148, 66-72.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.027] [PMID: 25889947]
[55]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Efficient synthesis of functionalized 2,5-dihydrofurans and 1,5-dihydro-2H-pyrrol-2-ones by reaction of isocyanides with activated acetylenes in the presence of hexachloroacetone. Chemical Monthly, 2008, 139, 625-628.
[http://dx.doi.org/10.1007/s00706-007-0810-3]
[56]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Proline-promoted efficient synthesis of 4-Aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones in aqueous media. Synlett, 2008, 1153-1154
[http://dx.doi.org/10.1055/s-2008-1072656]
[57]
Yavari, I.; Hossaini, Z.S.; Sabbaghan, M.; Ghazanfarpour-Darjani, M. Efficient synthesis of functionalized spiro-2,5-dihydro-1,2-λ5-oxaphospholes. Tetrahedron, 2007, 63, 9423-9428.
[58]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S.; Ghazanfarpour-Darjani, M. Surprising Formation of Chlorinated Butenolides from Dialkyl Acetylenedicarboxylates and Hexachloroacetone in the Presence of Triphenyl Phosphite. Helv. Chim. Acta, 2008, 91, 1144-1147.
[http://dx.doi.org/10.1002/hlca.200890123]
[59]
Rostami-Charati, F. Efficient synthesis of functionalized hydroindoles via catalyst-free multicomponent reactions of ninhydrin in water. Chin. Chem. Lett., 2014, 25, 169-171.
[http://dx.doi.org/10.1016/j.cclet.2013.09.016]
[60]
Rostami‐Charati, F.; Hossaini, Z.S.; Khalilzadeh, M.A.; Jafaryan, H. Solvent‐free synthesis of pyrrole derivatives. J. Heterocycl. Chem., 2012, 49, 217-220.
[http://dx.doi.org/10.1002/jhet.785]
[61]
Hajinasiri, R.; Hossaini, Z.S.; Rostami‐Charati, F. Efficient synthesis of α‐aminophosphonates via one‐pot reactions of aldehydes, amines, and phosphates in ionic liquid. Heteroatom Chem., 2011, 22, 625-629.
[http://dx.doi.org/10.1002/hc.20724]
[62]
Rostami Charati, F.; Hossaini, Z.S.; Hosseini-Tabatabaei, M.R. A simple synthesis of oxaphospholes. Phosphorus, Sulfur, and Silicon and the Related Elements A., 2011, 186, 1443-1448.
[http://dx.doi.org/10.1080/10426507.2010.515953]
[63]
Rostami-Charati, F.; Hossaini, Z.S. Facile synthesis of phosphonates via catalyst-free multicomponent reactions in water. Synlett, 2012, 23, 2397-2399.
[http://dx.doi.org/10.1055/s-0032-1317078]
[64]
Bao, W.H.; He, M.; Wang, J.T.; Peng, X.; Sung, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W.M. Iodine-catalyzed odorless synthesis of s-thiocarbamates with sulfonyl chlorides as a sulfur source. J. Org. Chem., 2019, 84(10), 6065-6071.
[http://dx.doi.org/10.1021/acs.joc.9b00178] [PMID: 30999750]
[65]
Bao, W.; Wang, Z.; Tang, X.; Zhang, Y.; Tana, J.; Zhu, Q.; Cao, Z.; Lin, Y.; He, W. Clean preparation of S-thiocarbamates with in situ generated hydroxide in 2-methyltetrahydrofuran. Chin. Chem. Lett., 2019, 30, 2259-2262.
[http://dx.doi.org/10.1016/j.cclet.2019.06.052]
[66]
(a)Sabbaghan, M.; Anaraki Firooz, A.; Jan Ahmadi, V. The effect of template on morphology, optical and photocatalytic properties of ZnO nanostructures. J. Mol. Liq., 2012, 175, 135-140.
[http://dx.doi.org/10.1016/j.molliq.2012.08.019]
(b) Hajinasiri, R.; Hossaini, Z.; Sheikholeslami-Farahani, F. ZnO-nanorods as the catalyst for the synthesis of 1,3-thiazole derivatives via multicomponent reactions. Comb. Chem. High Throughput Screen., 2015, 18(1), 42-47.
[http://dx.doi.org/10.2174/1386207317666141203123133] [PMID: 25469698]
[67]
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945-948.
[http://dx.doi.org/10.1021/jf00018a005]
[68]
Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem., 1994, 42, 629-632.
[http://dx.doi.org/10.1021/jf00039a005]
[69]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]
[70]
Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 2005, 53(6), 1841-1856.
[http://dx.doi.org/10.1021/jf030723c] [PMID: 15769103]
[71]
Greeff, J.; Joubert, J.; Malan, S.F.; van Dyk, S. Antioxidant properties of 4-quinolones and structurally related flavones. Bioorg. Med. Chem., 2012, 20(2), 809-818.
[http://dx.doi.org/10.1016/j.bmc.2011.11.068] [PMID: 22197671]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy