Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Chemical Composition and Combinatory Antifungal Activities of Ammoides verticillata, Allium sativum and Curcuma longa Essential Oils Against Four Fungi Responsible for Tomato Diseases

Author(s): Hanane Senouci, Nassira G. Benyelles, Mohammed E.A. Dib*, Jean Costa and Alain Muselli

Volume 23, Issue 3, 2020

Page: [196 - 204] Pages: 9

DOI: 10.2174/1386207323666200219123214

Price: $65

Abstract

Background: Tomato is considered a model plant in genetics and is one of the most economically important crops of all those that exist in the world. Several species of fungi are reported on tomato fruit, causing damage both during cultivation and after harvest. Some of the appropriate actions that could be initiated to resolve the problem are to develop and search for new antimicrobial substances isolated from the bioactive natural products, such as essential oils.

Aims and Objective: The aim of this work was to determine the chemical composition of essential oils of Ammoides verticillata, Allium sativum and Curcuma longa, to evaluate their in-vitro antifungal activities and in-vivo antifungal effect of essential oils to prevent the diseases caused by tomato.

Materials and Methods: The essential oils obtained from aerial parts of plants were analyzed by GC/MS and tested for their antifungal activities against Penicillium expansum, Fusarium solani, Rhizopus stolonifer and Alternaria alternata using the radial growth technique method. The effectiveness in-vivo of the association between Allium sativum and Curcuma longa essential oils was also investigated on tomatoes inoculated by fungi.

Results: The essential oil from A. verticilata was mainly composed of phenolic compounds (54.4%), the A. sativum oil was mainly composed of sulfur compounds (91.5%) and C. longa oil was dominated by oxygenated monoterpenes (82.0%). The obtained results in-vitro antifungal revealed that individual essential oils of A. verticillata and A. sativum were more active than the essential oil of C. longa against all screened microorganisms. An important antifungal effect of A. sativum and C. longa essential oils blend was obtained against P. expansum (100%), F. solani (95.2%), R. stolonifer (95.1%) and A. alternata (48.5%). Furthermore, A. sativum and C. longa essential oils blends have demonstrated promising in-vivo antifungal activity to control infection of tomato against P. expansum and R. stolonifer.

Conclusion: A. sativum and C. longa essential oil blends can be used as a natural food preservative and alternative to chemical fungicides to protect stored tomato against many phytopathogens.

Keywords: Essential oils blend, natural antifungals, tomato diseases, fungus, in-vitro activities, in-vivo activities.

[1]
Travis, W.; Reynolds, S.R.; Waddington, C.; Leigh Anderson, A.C. Zoe, True.; Alison, Cullen. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. J. Food Secur, 2015, 7(4), 795-822.
[http://dx.doi.org/10.1007/s12571-015-0478-1]
[2]
Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front. Public Health, 2016, 4, 148.
[http://dx.doi.org/10.3389/fpubh.2016.00148] [PMID: 27486573]
[3]
Ezeanya-Esiobu, C. Africa’s Indigenous Knowledge: From Education to Practice. In: Indigenous Knowledge and Education in Africa; , 2019; pp. 55-80.
[4]
Mochiah, M.; Banful, B.; Fening, K. Botanicals for the management of insect pests in organic vegetable production. J. Entomol. Nematol, 2011, 3, 85-97.
[5]
Mondédji, A.D.; Nyamador, W.S.; Amévoin, K.; Abbey, G.A.; Ketoh, G.K.; Glitho, A.I. Analysis of socio-demographic characteristics and identification of the perceptions of pesticide distributors and consumers on the use of botanical extracts in the management of insect pests of vegetable crops in southern Togo. IFAN Bulletin Cheikh Anta Diop, Series A., 2014, 53(2), 135-150.
[6]
Asare-Bediako, E.; Addo-Quaye, A.A.; Mohammed, A. Control of Diamondback Moth (Plutella xylostella) on Cabbage (Brassica oleracea var capitata) using Intercropping with Non-Host Crops. Am. J. Food Technol., 2010, 5(4), 269-274.
[http://dx.doi.org/10.3923/ajft.2010.269.274]
[7]
Baidoo, P.K.; Mochiah, M.B.; Apusiga, K. Onion as a pest control intercrop in organic cabbage (Brassica oleracea) production system in Ghana. Sustain. Agric. Res., 2012, 1(1), 36-41.
[http://dx.doi.org/10.5539/sar.v1n1p36]
[8]
Doumbouya, M. Abo, K.; Lepengue A.N.; Camara, B.; Kanko, K.; Aidara, D.; Kone, D. Activités comparées in-vitro de deux fongicides de synthèse et de deux huiles essentielles, sur des champignons telluriques des cultures maraichères en Côte d’Ivoire. J. Appl. Biosci., 2012, 50, 3520-3532.
[9]
Bolou Bi Bolou, A.; Kouakou, T.H.; Kouamé, K.K.; Kassi, F.; Tuo, S.; Cherif, M.; Lézin Edson, B.; Koné, D. Inhibition de Sclerotium rolfsii Sacc. (Corticiaceae), agent causal de la pourriture du collet de la tige de la tomate (Solanaceae), par Xylopia aethiopica (Dunal) A. Rich. (Annonaceae) et Trichoderma sp. Eur. Sci. J., 2015, 11(12), 61-85.
[10]
F.; Mossini, S.A.; DiasFerreira, F.M.; Arrotéia, C.C.; Costa, C.L.; Nakamura, C.V.; Machinski, M. The inhibitory effects of Curcuma longa L. essentialoil and curcumin on Aspergillus flavus Link growth and morphology. ScientificWorldJournal, 2013, 2013 Article ID 343804
[11]
Dhingra, O.D.; Jham, G.N.; Barcelos, R.C.; Mendonça, F.A.; Ghiviriga, I. Isolation and identification of the principal fungitoxic component of turmeric essential oil. J. Essent. Oil Res., 2007, 19(4), 387-391.
[http://dx.doi.org/10.1080/10412905.2007.9699312]
[12]
Kim, M.K.; Choi, G.J.; Lee, H.S. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J. Agric. Food Chem., 2003, 51(6), 1578-1581.
[http://dx.doi.org/10.1021/jf0210369] [PMID: 12617587]
[13]
Sharifi-Rad, J.; Mnayer, D.; Tabanelli, G.; Stojanović-Radić, Z.Z.; Sharifi-Rad, M.; Yousaf, Z.; Vallone, L.; Setzer, W.N.; Iriti, M. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell. Mol. Biol., 2016, 62(9), 57-68.
[PMID: 27585263]
[14]
Benkeblia, N. Antimicrobial activityof essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum). Lebensm. Wiss. Technol., 2004, 37, 263-268.
[http://dx.doi.org/10.1016/j.lwt.2003.09.001]
[15]
Bekhechi, C.; Boti, J.B.; Bekkara, F.A.; Abdelouahid, D.E.; Casanova, J.; Tomi, F. Isothymol in Ajowan essential oil. Nat. Prod. Commun., 2010, 5(7), 1107-1110.
[http://dx.doi.org/10.1177/1934578X1000500726] [PMID: 20734951]
[16]
Bhargava, P.P.; Hakasas, C.N. Examination of essential oil from ajowan seeds Perfum. J. Essent. Oil Res., 1959, 50, 204-206.
[17]
Senouci, H.; Gaouar Benyelles, N.; Dib, M.A.; Costa, J.; Muselli, A. Ammoides verticillata essential oil as biocontrol agent of selected fungi and pest of olive tree. Recent. Pat. Food Nutr. (Roma), 2019. [e-pub ahead of print]
[http://dx.doi.org/10.2174/2212798410666190619110251] [PMID: 31215382]
[18]
Davidson, P.M.; Parish, M.E. Methods for testing the efficacy of food antimicrobials. Food Technol., 1987, 43, 148-155.
[19]
Gill, A.O.; Delaquis, P.; Russo, P.; Holley, R.A. Evaluation of antilisterial action of cilantro oil on vacuum packed ham. Int. J. Food Microbiol., 2002, 73(1), 83-92.
[http://dx.doi.org/10.1016/S0168-1605(01)00712-7] [PMID: 11883677]
[20]
Conseil, de l’Europe. Pharmacopée Européenne; France: Maisonneuve S.A.: Sainte Ruffine, 1996.
[21]
Adams, R. Identification of essential oils by Capillary Gas Chromatography/Mass Spectroscopy; Allured Publ. Corp.: Carol Stream, IL, 2001.
[22]
Kçnig, W.; Joulain, D.; Hochmuth, D. Terpenoids and Related Constituents of Essential Oils, Library of Mass Finder 2.1. In: ; Institute of Organic Chemistry, University of Hamburg: Hamburg, 2001.
[23]
Mc Lafferty, F.; Stauffer, D. Wiley Register of Mass Spectral Data, 6th ed. Mass Spectrometry Library Search System Bench- Top/PBM; Version. , 1994.
[24]
Standards, N.I.O. Technology, PC Version 1.7 of The NIST/EPA/NIH Mass Spectral Library. 1999.
[25]
Belabbes, R.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Tabti, B.; Costa, J.; Muselli, A. Chemical Variability, Antioxidant and Antifungal Activities of Essential Oils and Hydrosol Extract of Calendula arvensis L. from Western Algeria. Chem. Biodivers., 2017, 14(5) e1600482
[http://dx.doi.org/10.1002/cbdv.201600482] [PMID: 28109063]
[26]
Alsohaili, S.A.; Bani-Hasan, B.M. Morphological and molecular identification of fungi isolated from different environmental sources in the northern eastern desert of Jordan. Jordan J. Biol. Sci., 2018, 11(3), 329-337.
[27]
Gaddeyya, G.; Niharika, P.S.; Bharathi, P.; Kumar, P.K.R. Isolation and identification of soil mycoflora in different crop fields at Salur Mandal. Adv. Appl. Sci. Res., 2012, 3, 2020-2026.
[28]
Tian, J.; Ban, X.; Zeng, H.; He, J.; Huang, B.; Wang, Y. Chemical composition and antifungal activity of essential oil from Cicuta virosa L. var. latisecta Celak. Int. J. Food Microbiol., 2011, 145(2-3), 464-470.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.023] [PMID: 21320730]
[29]
Singh, P.; Srivastava, B.; Kumar, A.; Kumar, R.; Dubey, N.K.; Gupta, R. Assessment of Pelargonium graveolens oil as plant-based antimicrobial and aflatoxin suppressor in food preservation. J. Sci. Food Agric., 2008, 88, 2421-2425.
[http://dx.doi.org/10.1002/jsfa.3342]
[30]
Tabet Zatla, A.; Dib, M.E.A.; Djabou, N.; Ilias, F.; Costa, J.; Muselli, A. Antifungal activities of essential oils and hydrosol extracts of Daucus carota subsp. sativus for the control of fungal pathogens, in particular gray rot of strawberry during storage. J. Essent. Oil Res., 2017, 29, 391-399.
[http://dx.doi.org/10.1080/10412905.2017.1322008]
[31]
Attou, A.; Davenne, D.; Benmansour, A.; Lazouni, H.A. Chemical Composition and Biological Activities of Ammoides verticillata Essential Oil from West Algeria. Phytotherapie, 2019, 17(1), 2-8.
[http://dx.doi.org/10.3166/phyto-2019-0116]
[32]
Benyoucef, F.; Dib, M.A.; Tabti, B.; Zoheir, A.; Costa, J.; Muselli, A. Synergistic effects of essential oils of Ammoides verticillata and Satureja candidissima against many pathogenic microorganisms. Antiinfect. Agents, 2020, 18, 72-78.
[http://dx.doi.org/10.2174/2211352517666190227161811]
[33]
Douiri, L.; Boughdad, A.; Assobhei, O.; Moumni, M. Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculatus. IOSR J. Environ. Sci. Toxicol. Food Technol, 2013, 3, 30-36.
[34]
Dziri, S.; Casabianca, H.; Hanchi, B.; Hosni, K. Composition of garlic essential oil (Allium sativum L.) as influenced by drying method. J. Essent. Oil Res., 2014, 26, 91-96.
[http://dx.doi.org/10.1080/10412905.2013.868329]
[35]
Kimbaris, A.C.; Siatis, N.G.; Daferera, D.J.; Tarantilis, P.A.; Pappas, C.S.; Polissiou, M.G. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrason. Sonochem., 2006, 13(1), 54-60.
[http://dx.doi.org/10.1016/j.ultsonch.2004.12.003] [PMID: 16223688]
[36]
Kocić-Tanackov, S.; Dimić, G.; Lević, J.; Tanackov, I.; Tepić, A.; Vujičić, B.; Gvozdanović-Varga, J. Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production. J. Food Sci., 2012, 77(5), M278-M284.
[http://dx.doi.org/10.1111/j.1750-3841.2012.02662.x] [PMID: 22497489]
[37]
Mnayer, D.; Fabiano-Tixier, A.S.; Petitcolas, E.; Hamieh, T.; Nehme, N.; Ferrant, C.; Fernandez, X.; Chemat, F. Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules, 2014, 19(12), 20034-20053.
[http://dx.doi.org/10.3390/molecules191220034] [PMID: 25470273]
[38]
Gounder, D.K.; Lingamallu, J. Comparison of chemical composition and antioxidant potencial of volatile oil from fresh dried and cured turmeric (Curcuma longa) rhizomes. Ind. Crops Prod., 2012, 38, 124-131.
[http://dx.doi.org/10.1016/j.indcrop.2012.01.014]
[39]
Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem. Toxicol., 2010, 48(4), 1026-1031.
[http://dx.doi.org/10.1016/j.fct.2010.01.015] [PMID: 20096323]
[40]
Sharma, R.K.; Misra, B.P.; Sarma, T.C.; Bordoloi, A.K.; Pathak, M.G.; Leclercq, P.A. Essential oils of Curcuma longa L. from Bhutan. J. Essent. Oil Res., 1997, 9(5), 589-592.
[http://dx.doi.org/10.1080/10412905.1997.9700783]
[41]
Singh, G.; Singh, O.P.; Maurya, S. Chemical and biocidal investigations on essential oils of some Indian Curcuma species. Prog. Cryst. Growth Charact. Mater., 2002, 45(1-2), 75-81.
[http://dx.doi.org/10.1016/S0960-8974(02)00030-X]
[42]
Kaluđerović, G.N.; Krajnović, T.; Momcilovic, M.; Stosic-Grujicic, S.; Mijatović, S.; Maksimović-Ivanić, D.; Hey-Hawkins, E. Ruthenium(II) p-cymene complex bearing 2,2′-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without disruption of antitumor immune response. J. Inorg. Biochem., 2015, 153, 315-321.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.09.006] [PMID: 26428537]
[43]
Li, J.; Liu, C.; Sato, T. Novel antitumor invasive actions of p-cymene by decreasing MMP-9/TIMP-1 expression ratio in human fibrosarcoma HT-1080 cells. Biol. Pharm. Bull., 2016, 39(8), 1247-1253.
[http://dx.doi.org/10.1248/bpb.b15-00827] [PMID: 27476935]
[44]
Păunescu, E.; Nowak-Sliwinska, P.; Clavel, C.M.; Scopelliti, R.; Griffioen, A.W.; Dyson, P.J. Anticancer organometallic osmium(II)-p-cymene complexes. ChemMedChem, 2015, 10(9), 1539-1547.
[http://dx.doi.org/10.1002/cmdc.201500221] [PMID: 26190176]
[45]
Apisariyakul, A.; Vanittanakom, N.; Buddhasukh, D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J. Ethnopharmacol., 1995, 49(3), 163-169.
[http://dx.doi.org/10.1016/0378-8741(95)01320-2] [PMID: 8824742]
[46]
Norajit, K.; Laohakunjit, N.; Kerdchoechuen, O. Antibacterial effect of five Zingiberaceae essential oils. Molecules, 2007, 12(8), 2047-2060.
[http://dx.doi.org/10.3390/12082047] [PMID: 17960105]
[47]
Bin, J.I.; Yassin, M.S.M.; Chin, C.B.; Chen, L.L.; Sim, N.L. Antifungal activity of the essential oils of nine zingiberaceae species. Pharm. Biol., 2003, 41(5), 392-397.
[http://dx.doi.org/10.1076/phbi.41.5.392.15941]
[48]
Wilson, B.; Abraham, G.; Manju, V.S.; Mathew, M.; Vimala, B.; Sundaresan, S.; Nambisan, B. Antimicrobial activity of Curcuma zedoaria and Curcuma malabarica tubers. J. Ethnopharmacol., 2005, 99(1), 147-151.
[http://dx.doi.org/10.1016/j.jep.2005.02.004] [PMID: 15848035]
[49]
Park, S.Y.; Kim, Y.H.; Kim, Y.; Lee, S.J. Aromatic-turmerone’s anti-inflammatory effects in microglial cells are mediated by protein kinase A and heme oxygenase-1 signaling. Neurochem. Int., 2012, 61(5), 767-777.
[http://dx.doi.org/10.1016/j.neuint.2012.06.020] [PMID: 22766494]
[50]
Park, S.Y.; Jin, M.L.; Kim, Y.H.; Kim, Y.; Lee, S.J. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int. Immunopharmacol., 2012, 14(1), 13-20.
[http://dx.doi.org/10.1016/j.intimp.2012.06.003] [PMID: 22728094]
[51]
Yin, M.C.; Tsao, S.M. Inhibitory effect of seven Allium plants upon three Aspergillus species. Int. J. Food Microbiol., 1999, 49(1-2), 49-56.
[http://dx.doi.org/10.1016/S0168-1605(99)00061-6] [PMID: 10477070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy