Abstract
Multi-Component Reactions (MCRs) have emerged as an excellent tool in organic chemistry for the synthesis of various bioactive molecules. Among these, one-pot MCRs are included, in which organic reactants react with domino in a single-step process. This has become an alternative platform for the organic chemists, because of their simple operation, less purification methods, no side product and faster reaction time. One of the important applications of the MCRs can be drawn in carbon- carbon (C-C) and carbon-heteroatom (C-X; X = N, O, S) bond formation, which is extensively used by the organic chemists to generate bioactive or useful material synthesis. Some of the key carbon- carbon bond forming reactions are Grignard, Wittig, Enolate alkylation, Aldol, Claisen condensation, Michael and more organic reactions. Alternatively, carbon-heteroatoms containing C-N, C-O, and C-S bond are also found more important and present in various heterocyclic compounds, which are of biological, pharmaceutical, and material interest. Thus, there is a clear scope for the discovery and development of cleaner reaction, faster reaction rate, atom economy and efficient one-pot synthesis for sustainable production of diverse and structurally complex organic molecules. Reactions that required hours to run completely in a conventional method can now be carried out within minutes. Thus, the application of microwave (MW) radiation in organic synthesis has become more promising considerable amount in resource-friendly and eco-friendly processes. The technique of microwaveassisted organic synthesis (MAOS) has successfully been employed in various material syntheses, such as transition metal-catalyzed cross-coupling, dipolar cycloaddition reaction, biomolecule synthesis, polymer formation, and the nanoparticle synthesis. The application of the microwave-technique in carbon-carbon and carbon-heteroatom bond formations via MCRs with major reported literature examples are discussed in this review.
Keywords: Heterocyclic compounds, microwave irradiation, multicomponent reactions, bioactive, faster reaction, cycloaddition.
Graphical Abstract
[http://dx.doi.org/10.1021/acsomega.8b01773] [PMID: 31458044]
(b) Davies, H.M.L.; Itami, K.; Stoltz, B.M. New directions in natural product synthesis. Chem. Soc. Rev., 2018, 47(21), 7828-7829.
[http://dx.doi.org/10.1039/C8CS90115E] [PMID: 30345443]
(c) Damien, D.; Gad, F.; Joakim, H.; Emilie, M.; Alexis, P.; Xuyang, Y.; Nicolas, G. Design of collective motions from synthetic molecular switches rotors, and motors. Chem. Rev., 2020, 120, 310-433.
[http://dx.doi.org/10.1021/acs.chemrev.9b00288] [PMID: 31869214]
(d) Galloway, W.R.; Isidro-Llobet, A.; Spring, D.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun., 2010, 1(8), 80-92.
[http://dx.doi.org/10.1038/ncomms1081] [PMID: 20865796]
[http://dx.doi.org/10.1016/j.trechm.2019.05.008]
(b) Hong, J. Natural product synthesis at the interface of chemistry and biology. Chemistry, 2014, 20(33), 10204-10212.
[http://dx.doi.org/10.1002/chem.201402804] [PMID: 25043880]
(c) Brown, D.G.; Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: Where have all the new reactions gone? J. Med. Chem., 2016, 59(10), 4443-4458.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01409] [PMID: 26571338]
[http://dx.doi.org/10.1155/2013/640936]
(b) Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev., 2018, 47(23), 8572-8610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
(c) Latthe, S.S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules, 2014, 19(4), 4256-4283.
[http://dx.doi.org/10.3390/molecules19044256] [PMID: 24714190]
(d) Olugbenga, S.B.; Kayode, A.A.; Rhoda, O.O. Biomimetic materials in our world: A Review. IOSR J. App. Chem., 2013, 5(3), 22-35.
[http://dx.doi.org/10.9790/5736-0532235]
(b) Nicolaou, K.C. Inspirations, discoveries, and future perspectives in total synthesis. J. Org. Chem., 2009, 74(3), 951-972.
[http://dx.doi.org/10.1021/jo802351b] [PMID: 19152273]
(c) Nicolaou, K.C.; Petasis, N.A.; Uenishi, J.; Zipkin, R.E. The endiandric acid cascade. electrocyclizations in organic synthesis-2-stepwise, stereo controlled total synthesis of endiandric acids C-G. J. Am. Chem. Soc., 1982, 104, 5558-5560.
[http://dx.doi.org/10.1021/ja00384a079]
[http://dx.doi.org/10.1021/acs.joc.6b00849] [PMID: 27227655]
(b) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
(c) Di Mola, A.; Tiffner, M.; Scorzelli, F.; Palombi, L.; Filosa, R.; De Caprariis, P.; Waser, M.; Massa, A. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones. Beilstein J. Org. Chem., 2015, 11, 2591-2599.
[http://dx.doi.org/10.3762/bjoc.11.279] [PMID: 26734105]
[http://dx.doi.org/10.1021/cc070015u] [PMID: 17760414]
(b) Sayyad, M.; Mal, A.; Wani, I.A.; Ghorai, M.K. A synthetic route to chiral tetrahydropyrroloindoles via ring opening of activated aziridines with 2-bromoindoles followed by copper-catalyzed C-N cyclization. J. Org. Chem., 2016, 81(15), 6424-6432.
[http://dx.doi.org/10.1021/acs.joc.6b01049] [PMID: 27399283]
(c) Hans, M.; Lorkowski, J.; Demonceau, A.; Delaude, L. Efficient synthetic protocols for the preparation of common N-heterocyclic carbene precursors. Beilstein J. Org. Chem., 2015, 11, 2318-2325.
[http://dx.doi.org/10.3762/bjoc.11.252] [PMID: 26734080]
(d) Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[http://dx.doi.org/10.1038/460197a] [PMID: 19587760]
(b) Gaich, T.; Baran, P.S. Aiming for the ideal synthesis. J. Org. Chem., 2010, 75(14), 4657-4673.
[http://dx.doi.org/10.1021/jo1006812] [PMID: 20540516]
(c) Wender, P.A. Toward the ideal synthesis and transformative therapies: The roles of step economy and function oriented synthesis. Tetrahedron, 2013, 69(36), 7529-7550.
[http://dx.doi.org/10.1016/j.tet.2013.06.004] [PMID: 23956471]
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
(b) Cortés-Borda, D.; Wimmer, E.; Gouilleux, B.; Barré, E.; Oger, N.; Goulamaly, L.; Peault, L.; Charrier, B.; Truchet, C.; Giraudeau, P.; Rodriguez-Zubiri, M.; Le Grognec, E.; Felpin, F.X. An autonomous self-optimizing flow reactor for the synthesis of natural product carpanone. J. Org. Chem., 2018, 83(23), 14286-14299.
[http://dx.doi.org/10.1021/acs.joc.8b01821] [PMID: 30212208]
(c) Nicolaou, K.C.; Sorensen, E.J.; Winssinger, N. the art and science of organic and natural products synthesis. J. Chem. Educ., 1998, 75(10), 1225-1258.
[http://dx.doi.org/10.1021/ed075p1225]
[http://dx.doi.org/10.3762/bjoc.13.97] [PMID: 28684977]
(b) Sun, K.; Xiao, Z.; Lu, S.; Zajaczkowski, W.; Pisula, W.; Hanssen, E.; White, J.M.; Williamson, R.M.; Subbiah, J.; Ouyang, J.; Holmes, A.B.; Wong, W.W.; Jones, D.J. A molecular nematic liquid crystalline material for high-performance organic photovoltaics. Nat. Commun., 2015, 6, 6013.
[http://dx.doi.org/10.1038/ncomms7013] [PMID: 25586307]
(c) Lignell, A.; Gudipati, M.S. Mixing of the immiscible: hydrocarbons in water-ice near the ice crystallization temperature. J. Phys. Chem. A, 2015, 119(11), 2607-2613.
[http://dx.doi.org/10.1021/jp509513s] [PMID: 25302532]
(b) Tatsuta, K. Total synthesis of the big four antibiotics and related antibiotics. J. Antibiot. (Tokyo), 2013, 66(3), 107-129.
[http://dx.doi.org/10.1038/ja.2012.126] [PMID: 23532019]
(c) Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
(d) Chanteau, S.H.; Tour, J.M. Synthesis of anthropomorphic molecules: the NanoPutians. J. Org. Chem., 2003, 68(23), 8750-8766.
[http://dx.doi.org/10.1021/jo0349227] [PMID: 14604341]
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
(b) Liu, S.; Xu, L.; Wei, Y. One-pot, multistep reactions for the modular synthesis of N, N′-diarylindazol-3-ones. J. Org. Chem., 2019, 84(3), 1596-1604.
[http://dx.doi.org/10.1021/acs.joc.8b02548] [PMID: 30586499]
[http://dx.doi.org/10.1021/acs.joc.5b01727] [PMID: 26366609]
(b) Estévez, V.; Villacampa, M.; Menéndez, J.C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev., 2010, 39(11), 4402-4421.
[http://dx.doi.org/10.1039/b917644f] [PMID: 20601998]
[http://dx.doi.org/10.1021/ol7018357] [PMID: 17887692]
[http://dx.doi.org/10.1039/C4GC00013G]
(b) Weber, L. Multi-component reactions and evolutionary chemistry. Drug Discov. Today, 2002, 7(2), 143-147.
[http://dx.doi.org/10.1016/S1359-6446(01)02090-6] [PMID: 11790626]
[http://dx.doi.org/10.1252/jcej.12we280]
[http://dx.doi.org/10.3390/molecules22030349]
(b) Panday, A.K.; Mishra, R.; Jana, A.; Parvin, T.; Choudhury, L.H. Synthesis of pyrimidine fused quinolines by ligand-free copper-catalyzed domino reactions. J. Org. Chem., 2018, 83(7), 3624-3632.
[http://dx.doi.org/10.1021/acs.joc.7b03272] [PMID: 29570285]
(c) Johnston, C.P.; West, T.H.; Dooley, R.E.; Reid, M.; Jones, A.B.; King, E.J.; Leach, A.G.; Lloyd-Jones, G.C. Anion-Initiated trifluoromethylation by TMSCF3: Deconvolution of the siliconate-carbanion dichotomy by stopped-flow NMR/IR. J. Am. Chem. Soc., 2018, 140(35), 11112-11124.
[http://dx.doi.org/10.1021/jacs.8b06777] [PMID: 30080973]
[http://dx.doi.org/10.1039/c2gc35635j]
(b) Tzu-Ting, K.; Bo-Kai, P.; Min-Chieh, L.; Chia-Jui, L. I-Chia, C.; Kak-Shan, S.; Yen-Ku, Wu. Temperature-controlled thiation of α-Cyano-β-alkynyl carbonyl derivatives for De Novo synthesis of 2-aminothiophenes and thieno[2,3-c]isothiazoles. J. Org. Chem., 2018, 83(23), 14219-14842.
[PMID: 30223647]
(c) Ming, Rao.; Wanhua, Wu.; Cheng, Y. Effects of temperature and host concentration on the supramolecular enantiodierentiating [4+4] photodimerization of 2-anthracenecarboxylate through triplet-triplet annihilation catalyzed by Pt-modified cyclodextrins. Molecules, 2019, 24, 1502.
[http://dx.doi.org/10.3390/molecules24081502]
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
(b) Lutz, W.; Katrin, I.; Michael, A. Discovery of new multi component reactions with combinatorial methods. Synlett, 1999, 3, 366-374.
(c) Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[http://dx.doi.org/10.3390/molecules24081640]
(b) Felicia, P.L.L.; Lin, Y.T.; Edward, R.T.T.; Anton, V.D. A one-pot, multicomponent reaction for the synthesis of novel 2-alkyl substituted 4-aminoimidazo[1,2-a][1,3,5]triazines. RSC Advances, 2018, 8, 1495-21504.
(c) Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
[http://dx.doi.org/10.13005/ojc/340401]
(b) Sunderhaus, J.D.; Martin, S.F. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds. Chemistry, 2009, 15(6), 1300-1308.
[http://dx.doi.org/10.1002/chem.200802140] [PMID: 19132705]
(c) Musawwer, Md. K.; Raveed, Y.; Sarfaraz, K.; Shafiullah. Recent advances in multicomponent reactions involving carbohydrates. RSC Advances, 2015, 5, 57883-57905.
[http://dx.doi.org/10.1039/C5RA08059B]
[http://dx.doi.org/10.3390/molecules21040492] [PMID: 27089315]
(b) Gomha, S.M.; Farghaly, T.A.; Mabkhot, Y.N.; Zayed, M.E.; Mohamed, A.M. Microwave-assisted synthesis of some novel azoles and azolopyrimidines as antimicrobial agents. Molecules, 2017, 22(3), 346.
[http://dx.doi.org/10.3390/molecules22030346] [PMID: 28241500]
(c) Byk, G.; Gottlieb, H.E.; Herscovici, J.; Mirkin, F. New regioselective multicomponent reaction: one pot synthesis of spiro heterobicyclic aliphatic rings. J. Comb. Chem., 2000, 2(6), 732-735.
[http://dx.doi.org/10.1021/cc000056p] [PMID: 11126301]
(d) Paul, S.; Eelco, R.; Romano, V.A.O. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3, 1189-2118.
[http://dx.doi.org/10.1039/c2md20089a]
[http://dx.doi.org/10.1021/ol902764k] [PMID: 20050598]
(b) Tu, S.J.; Zhang, X.H.; Han, Z.G.; Cao, X.D.; Wu, S.S.; Yan, S.; Hao, W.J.; Zhang, G.; Ma, N. Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions in water. J. Comb. Chem., 2009, 11(3), 428-432.
[http://dx.doi.org/10.1021/cc800212v] [PMID: 19364093]
(c) Zhu, J. Recent developments in the isonitrile-based multicomponent synthesis of heterocycles. Eur. J. Org. Chem., 2003, 7, 1133-1144.
[http://dx.doi.org/10.1002/ejoc.200390167]
[http://dx.doi.org/10.1007/s11164-013-1411-x]
(b) Eman, M.H.A.; Sobhi, M.G.; Thoraya, A.F. Multicomponent reactions for synthesis of bioactive polyheterocyclic ring systems under controlled microwave irradiation. Arab. J. Chem., 2014, 7(5), 623-629.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.036]
(c) Liu, S.; Yao, W.; Liu, Y.; Wei, Q.; Chen, J.; Wu, X.; Xia, F.; Hu, W. A Rh(II)-catalyzed multicomponent reaction by trapping an α-amino enol intermediate in a traditional two-component reaction pathway. Sci. Adv., 2017, 3(3) e1602467
[http://dx.doi.org/10.1126/sciadv.1602467] [PMID: 28345053]
[http://dx.doi.org/10.1039/C6CC05544C] [PMID: 27492553]
(b) Lerner, N.R.; Peterson, E.; Chang, S. The Strecker synthesis as a source of amino acids in carbonaceous chondrites: Deuterium retention during synthesis Gmchrmrcae. Cosmochrmrca Acla, 1993, 51, 4713-4123.
[http://dx.doi.org/10.1016/0016-7037(93)90195-3]
(c) Behzad, Z.; Masumeh, G. Microwave-promoted three-component Hantzsch synthesis of acridinediones under green conditions Cur. Chem. Lett., 2020, 9, 71-78.
(d) Qingjian, L.; Ning, P.; Jiehua, X.; Wenwen, Z. Fanpeng, Kong. Microwave-Assisted and Iodine-Catalyzed synthesis of dihydropyrimidin-2-thiones via Biginelli reaction under solvent-free conditions, Syntt. Commu., 2013, 43(1), 139-146.
(e) Joao, F. Allochio, Filho.; Barbara, C. L.; Acacio, S. de S.; Sergio, P.; Sandro, J.G. Multicomponent Mannich reactions: General aspects, methodologies and applications. Tetrahedron, 2017, 73, 6977-7004.
[http://dx.doi.org/10.1016/j.tet.2017.10.063]
(f) Barbero, A.; Diez-Varga, A.; Pulido, F.J. Multicomponent prins cyclization from allylsilyl alcohols leading to dioxaspirodecanes. Org. Lett., 2013, 15(20), 5234-5237.
[http://dx.doi.org/10.1021/ol402425u] [PMID: 24090371]
(g) Wang, K.; Kim, D.; Dömling, A. Cyanoacetamide MCR (III): three-component Gewald reactions revisited. J. Comb. Chem., 2010, 12(1), 111-118.
[http://dx.doi.org/10.1021/cc9001586] [PMID: 19958011]
[http://dx.doi.org/10.1038/nprot.2007.71] [PMID: 17406624]
(b) Rodrigo, A.; Juan, C.C. Recent contributions to the Diversity-Oriented Synthesis (DOS) mediated byiminium ions through multicomponent Mannich-type reactions. ARKIVOC, 2018, 2, 170-191.
(c) Boukis, A.C.; Reiter, K.; Frölich, M.; Hofheinz, D.; Meier, M.A.R. Multicomponent reactions provide key molecules for secret communication. Nat. Commun., 2018, 9(1), 1439.
[http://dx.doi.org/10.1038/s41467-018-03784-x] [PMID: 29651145]
(d) Kalinski, C.; Umkehrer, M.; Weber, L.; Kolb, J.; Burdack, C.; Ross, G. On the industrial applications of MCRs: molecular diversity in drug discovery and generic drug synthesis. Mol. Divers., 2010, 14(3), 513-522.
[http://dx.doi.org/10.1007/s11030-010-9225-x] [PMID: 20229364]
[http://dx.doi.org/10.3390/sym11060798]
(b) Mal, D.; De, S.R. Total synthesis of euplectin, a natural product with a chromone fused indenone. Org. Lett., 2009, 11(19), 4398-4401.
[http://dx.doi.org/10.1021/ol901817r] [PMID: 19736910]
[http://dx.doi.org/10.1007/s10593-006-0150-y]
(b) Pelle, L.; Jason, T.; Bernard, W.; Jacob, W. Microwave assisted organic synthesis-a review. Tetrahedron, 2001, 57, 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
(c) Ghosh, M.; Shinde, V.S.; Rueping, M. A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J. Org. Chem., 2019, 15, 2710-2746.
[http://dx.doi.org/10.3762/bjoc.15.264] [PMID: 31807206]
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[http://dx.doi.org/10.1021/ed082p518]
(b) Kremsner, J.M.; Kappe, C.O. Silicon carbide passive heating elements in microwave-assisted organic synthesis. J. Org. Chem., 2006, 71(12), 4651-4658.
[http://dx.doi.org/10.1021/jo060692v] [PMID: 16749800]
(c) Joana, P.; Vera, L.M.S.; Ana, M.G.S.; Artur, M.S.S.; Jose, C.S.C.; Luis, M.N.B.F.S.; Roger, E.; Jose, A.S.C.; Antonio, A.M.O.S.V.; Jose, A.C.T. Ohmic heating as a new efficient process for organic synthesis in water. Green Chem., 2013, 15, 970-975.
[http://dx.doi.org/10.1039/c3gc36881e]
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
(b) Sumitra, N.; Ruchi, S.; Subramanian, R. Importance of microwave heating in organic synthesis. Adv. J. Chem-Section A., 2019, 2(2), 94-104.
[http://dx.doi.org/10.1021/ar400309b] [PMID: 24666323]
(b) Zhou, M.; Cheng, K.; Sun, H.; Jia, G. Investigation of nonlinear output-input microwave power of DMSO-ethanol mixture by molecular dynamics simulation. Sci. Rep., 2018, 8(1), 7186.
[http://dx.doi.org/10.1038/s41598-018-21846-4] [PMID: 29739957]
(b) Murray, J.K.; Gellman, S.H. Microwave-assisted parallel synthesis of a 14-helical β-peptide library. J. Comb. Chem., 2006, 8(1), 58-65.
[http://dx.doi.org/10.1021/cc0501099] [PMID: 16398554]
(c) Flores, E.M.; Barin, J.S.; Paniz, J.N.; Medeiros, J.A.; Knapp, G. Microwave-assisted sample combustion: a technique for sample preparation in trace element determination. Anal. Chem., 2004, 76(13), 3525-3529.
[http://dx.doi.org/10.1021/ac0497712] [PMID: 15228320]
[http://dx.doi.org/10.1021/jo035723q] [PMID: 15230609]
(b) Charde, M.; Shukla, A.; Bukhariya, V.; Mehta, J.; Chakole, R. A review on: a significance of microwave assist technique in. Green Chem., 2012, 2(2), 39-50.
(c) Monika, G.; Neelima, D. Microwave chemistry: General features and applications. Ind J Pharm Edu. Res., 2011, 45, 175-183.
[http://dx.doi.org/10.1021/jo200251q] [PMID: 21391618]
(b) Ahmed, A.; Joakim, B.; Jonas, B.; Jonas, S.; Mats, L. Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Org. Process Res. Dev., 2017, 21, 947-955.
[http://dx.doi.org/10.1021/acs.oprd.7b00063]
(c) Pol, S.V.; Pol, V.G.; Gedanken, A. Reactions under autogenic pressure at elevated temperature (RAPET) of various alkoxides: formation of metals/metal oxides-carbon core-shell structures. Chemistry, 2004, 10(18), 4467-4473.
[http://dx.doi.org/10.1002/chem.200400014] [PMID: 15378624]
(d) Solmaz, A.P.; Amiri, C. Effect of catalyst, temperature, and hydrogen pressure on slurry hydrocracking reactions of naphthalene. Chem. Eng. Technol., 2015, 38(5), 917-930.
[http://dx.doi.org/10.1002/ceat.201400300]
[http://dx.doi.org/10.1021/jo00025a004]
[PMID: 29905399]
[http://dx.doi.org/10.1038/s41598-018-23465-5] [PMID: 29581443]
[http://dx.doi.org/10.4315/0362-028X-43.8.618] [PMID: 30822982]
[http://dx.doi.org/10.1021/jp0470905] [PMID: 16851105]
(b) Haghi, A.K.; Amanifard, N. Analysis of Heat and Mass Transfer During Microwave Drying of FoodProducts, 2008, 25(3), 491-501.
(c) Datta, A. K.; Rakesh, V. Principles of microwave combination heating. J. Food production, 2013, 12(1), 24-39.
[http://dx.doi.org/10.1007/s41981-018-0021-6]
(b) Metaxas, A.C. Microwave heating. Power Eng., 1991, 5(5), 237-247.
[http://dx.doi.org/10.1049/pe:19910047]
(b) Furkan, K.; Kadhim, A.H.; Mohammed, S.; Ahmed, A.A-A. Microwave-assisted solvent-free synthesis of new Polyimine. Cogent Chemistry, 2015, 1 1075853
(c) Rodríguez, A.M.; Prieto, P.; de la Hoz, A.; Díaz-Ortiz, Á.; Martín, D.R.; García, J.I. Influence of polarity and activation energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen, 2015, 4(3), 308-317.
[http://dx.doi.org/10.1002/open.201402123] [PMID: 26246993]
[http://dx.doi.org/10.1039/B310502D]
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
(b) Biswa, M.S. Microwave Assisted Drug Synthesis (MADS): A green technology in medicinal chemistry. J App Pharm, 2016, 8, 11-17.
[http://dx.doi.org/10.1021/acs.cgd.6b01658]
(b) Gour, J.; Gatadi, S.; Malasala, S.; Yaddanpudi, M.V.; Nanduri, S. A microwave-assisted SmI2-catalyzed direct N-Alkylation of anilines with alcohols. J. Org. Chem., 2019, 84(11), 7488-7494.
[http://dx.doi.org/10.1021/acs.joc.9b00717] [PMID: 31066282]
[http://dx.doi.org/10.1021/jo900629g] [PMID: 19449842]
(b) Montes, I.; Sanabria, D.; Garcia, M.; Castro, J.; Fajardo, J. A greener approach to aspirin synthesis using microwave irradiation. J. Chem. Educ., 2006, 83(4), 628-631.
[http://dx.doi.org/10.1021/ed083p628]
[http://dx.doi.org/10.1038/nrd1926] [PMID: 16374514]
[http://dx.doi.org/10.1002/tcr.201800064] [PMID: 30211475]
[http://dx.doi.org/10.3390/molecules21030253] [PMID: 26927033]
[http://dx.doi.org/10.1039/C6CS00830E] [PMID: 28106210]
[http://dx.doi.org/10.1038/srep37186] [PMID: 27853264]
(b) Jignasa, K.S.; Ketan, T.S.; Bhumika, S.P.; Anuradha, K.G. Microwave assisted organic synthesis: an alternative synthetic strategy. Pharma Chem., 2010, 2(1), 342-353.
[http://dx.doi.org/10.3390/cryst8100379]
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
[http://dx.doi.org/10.1039/C6RA14399G]
(b) Devdutt, C.; Nabin, C.B. Recent Developments on Carbon-Carbon Bond Forming Reactions in Water. Curr. Org. Synth., 2012, 9, 17-30.
(c) Ashish, K.J.; Swagatika, S. Review on Fe-catalyzed carbon-carbon, carbon-heteroatom oxidative coupling reactions: En route to heterocycles. J. Chem. Pharm. Res., 2017, 9(10), 315-341.
[http://dx.doi.org/10.1093/bioinformatics/btx277] [PMID: 28882005]
[http://dx.doi.org/10.1021/op400258a]
[http://dx.doi.org/10.1021/acs.chemrev.5b00662] [PMID: 27070820]
[http://dx.doi.org/10.1021/acs.joc.8b01058] [PMID: 29969034]
[http://dx.doi.org/10.1021/acs.chemrev.7b00571] [PMID: 29300087]
(b) Xingchao, D.; Feng, S. Green synthesis of N-alkyl-amines and amides via the building and transformation ofcarbonyl-containing molecules. Curr. Opin. Green Sustain. Chem., 2020, 22, 1-6.
[http://dx.doi.org/10.1016/j.cattod.2018.07.060]
[http://dx.doi.org/10.1039/C8GC01276H]
(b) Anastas, P.T.; Kirchhoff, M.M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35(9), 686-694.
[http://dx.doi.org/10.1021/ar010065m] [PMID: 12234198]
[http://dx.doi.org/10.3389/fchem.2018.00084] [PMID: 29666791]
(b) Li, D.D.; Li, Z.Y.; Wang, G.W. Catalyst-free approach to construct C-C bond initiated by N-O bond cleavage under thermal conditions. J. Org. Chem., 2015, 80(1), 190-195.
[http://dx.doi.org/10.1021/jo502287y] [PMID: 25423187]
(c) Han, M.Y.; Lin, J.; Li, W.; Luan, W.Y.; Mai, P.L.; Zhang, Y. Catalyst-free nucleophilic addition reactions of silyl glyoxylates in water. Green Chem., 2018, 20(6), 1228-1232.
[http://dx.doi.org/10.1039/C7GC03775A]
[http://dx.doi.org/10.1021/cr400215u] [PMID: 24304297]
[http://dx.doi.org/10.1016/S0040-4039(97)01093-9]
[http://dx.doi.org/10.1023/B:MODI.0000006809.48284.ed] [PMID: 14870843]
[http://dx.doi.org/10.1007/s706-002-8251-8]
[http://dx.doi.org/10.1039/C8OB00253C] [PMID: 29577137]
[http://dx.doi.org/10.1021/acs.joc.5b00413] [PMID: 25803829]
[http://dx.doi.org/10.1021/acs.joc.7b02199] [PMID: 29058426]
[http://dx.doi.org/10.1038/ncomms11287] [PMID: 27090156]
[http://dx.doi.org/10.1021/acs.joc.9b00785] [PMID: 31074279]
[http://dx.doi.org/10.1021/jo3014947] [PMID: 22978377]
[http://dx.doi.org/10.1016/j.bmcl.2005.06.041] [PMID: 16040241]
[http://dx.doi.org/10.1016/j.tetlet.2008.11.114]
[http://dx.doi.org/10.1002/slct.201800096]
[http://dx.doi.org/10.22631/ajgc.2017.93142.1006]
[http://dx.doi.org/10.14233/ajchem.2018.21191]
[http://dx.doi.org/10.1021/co1000376] [PMID: 21218828]
[http://dx.doi.org/10.1007/s12039-013-0421-y]
[http://dx.doi.org/10.1021/acs.joc.6b02656] [PMID: 28150494]
[http://dx.doi.org/10.1021/acs.joc.7b03138] [PMID: 29338221]
(b) Blair, L.M.; Sperry, J. Natural products containing a nitrogen-nitrogen bond. J. Nat. Prod., 2013, 76(4), 794-812.
[http://dx.doi.org/10.1021/np400124n] [PMID: 23577871]
[http://dx.doi.org/10.1021/jo00286a020]
(b) Bahrami, K.; Khodaei, M.M.; Naali, F. Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. J. Org. Chem., 2008, 73(17), 6835-6837.
[http://dx.doi.org/10.1021/jo8010232] [PMID: 18652508]
[http://dx.doi.org/10.1038/nchem.1878] [PMID: 24651197]
(b) Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.1021/cr0200872] [PMID: 15137789]
[http://dx.doi.org/10.1023/A:1017505929583]
(b) Rani, R.; Granchi, C. Bioactive heterocycles containing endocyclic N-hydroxy groups. Eur. J. Med. Chem., 2015, 97(1), 505-524.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.031] [PMID: 25466924]
[http://dx.doi.org/10.1038/srep13516] [PMID: 26310858]
(b) Appukkuttan, P.; Dehaen, W.; Van der Eycken, E. Microwave-assisted transition-metal-catalyzed synthesis of N-shifted and ring-expanded buflavine analogues. Chemistry, 2007, 13(22), 6452-6460.
[http://dx.doi.org/10.1002/chem.200700177] [PMID: 17508369]
[http://dx.doi.org/10.1038/s42004-019-0160-1]
[http://dx.doi.org/10.1021/jo0625352] [PMID: 17362044]
(b) Wei, G.; Mingming, Z.; Wen, T.; Lvyin, Z.; Kailiang, T.; Xiaolin, F. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org. Chem. Front., 2019, 6, 2120-2141.
[http://dx.doi.org/10.1039/C9QO00283A]
[http://dx.doi.org/10.1021/acscombsci.5b00053] [PMID: 26101959]
[http://dx.doi.org/10.4172/2329-6798.1000253]
[http://dx.doi.org/10.1002/jhet.508]
[http://dx.doi.org/10.2174/138620707783220356] [PMID: 18288950]
[http://dx.doi.org/10.1021/ol020238n] [PMID: 12583737]
[http://dx.doi.org/10.1186/1860-5397-3-11] [PMID: 17338816]
[http://dx.doi.org/10.1002/adsc.200700289]
[http://dx.doi.org/10.1080/17415990500195198]
(b) Sartori, G.; Ballini, R.; Bigi, F.; Bosica, G.; Maggi, R.; Righi, P. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem. Rev., 2004, 104(1), 199-250.
[http://dx.doi.org/10.1021/cr0200769] [PMID: 14719975]
[http://dx.doi.org/10.1021/jf0201677] [PMID: 12059155]
(b) McCourt, R.O.; Dénès, F.; Scanlan, E.M. Radical-mediated reactions of α-bromo aluminium thioacetals, α-bromothioesters, and xanthates for thiolactone synthesis. Molecules, 2018, 23(4), 897.
[http://dx.doi.org/10.3390/molecules23040897] [PMID: 29652812]
(c) Farag, M.; Abdel-Mageed, W.M.; Basudan, O.; El-Gamal, A. Persicaline, a new antioxidant sulphur-containing imidazoline alkaloid from salvadora persica roots. Molecules, 2018, 23(2), 483.
[http://dx.doi.org/10.3390/molecules23020483] [PMID: 29473845]
(d) Wang And, X.; Guo, Z. The role of sulfur in platinum anticancer chemotherapy. Anticancer. Agents Med. Chem., 2007, 7(1), 19-34.
[http://dx.doi.org/10.2174/187152007779314062] [PMID: 17266503]
(e) Beno, B.R.; Yeung, K.S.; Bartberger, M.D.; Pennington, L.D.; Meanwell, N.A. A survey of the role of noncovalent sulfur interactions in drug design. J. Med. Chem., 2015, 58(11), 4383-4438.
[http://dx.doi.org/10.1021/jm501853m] [PMID: 25734370]
[http://dx.doi.org/10.1007/7081_008]
[http://dx.doi.org/10.1039/C5RA05377C]