Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

GRASP55: A Multifunctional Protein

Author(s): Hongrong Wu, Tianjiao Li and Jianfeng Zhao*

Volume 21, Issue 6, 2020

Page: [544 - 552] Pages: 9

DOI: 10.2174/1389203721666200218105302

Price: $65

Abstract

GRASP55 was first found as Golgi cisternae stacking protein. Due to the crucial role of Golgi in vesicular trafficking and protein modification, GRASP55 was found to function in these two aspects. Further investigation revealed that GRASP55 also participates in the unconventional secretory pathway under stress. Moreover, GRASP55 is involved in autophagy initiation and autophagosome maturation, as well as cell activity.

Keywords: GRASP55, Golgi, Autophagy, Unconventional secretory pathway, Vesicular trafficking, Golgin45.

Graphical Abstract

[1]
Shorter, J. Rose Watson; Maria-Eleni Giannakou; Mairi Clarke; Graham Warren; A.Barr, F; EMBO, 1999.
[2]
Duran, J.M.; Kinseth, M.; Bossard, C.; Rose, D.W.; Polishchuk, R.; Wu, C.C.; Yates, J.; Zimmerman, T.; Malhotra, V. The role of GRASP55 in Golgi fragmentation and entry of cells into mitosis. Mol. Biol. Cell, 2008, 19(6), 2579-2587.
[http://dx.doi.org/10.1091/mbc.e07-10-0998] [PMID: 18385516]
[3]
Xiang, Y.; Wang, Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J. Cell Biol., 2010, 188(2), 237-251.
[http://dx.doi.org/10.1083/jcb.200907132] [PMID: 20083603]
[4]
Reddy, S.T.; Mendes, L.F.S.; Fontana, N.A.; Costa-Filho, A.J. Exploring structural aspects of the human Golgi matrix protein GRASP55 in solution. Int. J. Biol. Macromol., 2019, 135, 481-489.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.089] [PMID: 31102680]
[5]
Zhao, J.; Li, B.; Huang, X.; Morelli, X.; Shi, N. Structural Basis for the Interaction between Golgi Reassembly-stacking Protein GRASP55 and Golgin45. J. Biol. Chem., 2017, 292(7), 2956-2965.
[http://dx.doi.org/10.1074/jbc.M116.765990] [PMID: 28049725]
[6]
Feng, Y.; Yu, W.; Li, X.; Lin, S.; Zhou, Y.; Hu, J.; Liu, X. Structural insight into Golgi membrane stacking by GRASP65 and GRASP55 proteins. J. Biol. Chem., 2013, 288(39), 28418-28427.
[http://dx.doi.org/10.1074/jbc.M113.478024] [PMID: 23940043]
[7]
Truschel, S.T.; Sengupta, D.; Foote, A.; Heroux, A.; Macbeth, M.R.; Linstedt, A.D. Structure of the membrane-tethering GRASP domain reveals a unique PDZ ligand interaction that mediates Golgi biogenesis. J. Biol. Chem., 2011, 286(23), 20125-20129.
[http://dx.doi.org/10.1074/jbc.C111.245324] [PMID: 21515684]
[8]
Cartier-Michaud, A.; Bailly, A.L.; Betzi, S.; Shi, X.; Lissitzky, J.C.; Zarubica, A.; Sergé, A.; Roche, P.; Lugari, A.; Hamon, V.; Bardin, F.; Derviaux, C.; Lembo, F.; Audebert, S.; Marchetto, S.; Durand, B.; Borg, J.P.; Shi, N.; Morelli, X.; Aurrand-Lions, M. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis. PLoS Genet., 2017, 13(6)e1006803
[http://dx.doi.org/10.1371/journal.pgen.1006803] [PMID: 28617811]
[9]
Mendes, L.F.; Garcia, A.F.; Kumagai, P.S.; de Morais, F.R.; Melo, F.A.; Kmetzsch, L.; Vainstein, M.H.; Rodrigues, M.L.; Costa-Filho, A.J. New structural insights into Golgi Reassembly and Stacking Protein (GRASP) in solution. Sci. Rep., 2016, 6, 29976.
[http://dx.doi.org/10.1038/srep29976] [PMID: 27436376]
[10]
Bekier, M.E., II; Wang, L.; Li, J.; Huang, H.; Tang, D.; Zhang, X.; Wang, Y. Knockout of the Golgi stacking proteins GRASP55 and GRASP65 impairs Golgi structure and function. Mol. Biol. Cell, 2017, 28(21), 2833-2842.
[http://dx.doi.org/10.1091/mbc.E17-02-0112]]
[11]
Sengupta, D.; Truschel, S.; Bachert, C. Linstedt., A. D. J. Cell Biol., 2009, 186(1), 15.
[PMID: 19581411]
[12]
Short, B.; Preisinger, C.; Körner, R.; Kopajtich, R.; Byron, O.; Barr, F.A.A. GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J. Cell Biol., 2001, 155(6), 877-883.
[http://dx.doi.org/10.1083/jcb.200108079] [PMID: 11739401]
[13]
Malsam, J.; Satoh, A.; Pelletier, L. Warren. G. Science, 2005, 307(5712), 4.
[PMID: 15718469]
[14]
Gillingham, A.K.; Munro, S. Long coiled-coil proteins and membrane traffic. Biochim. Biophys. Acta, 2003, 1641(2-3), 71-85.
[http://dx.doi.org/10.1016/S0167-4889(03)00088-0] [PMID: 12914949]
[15]
Lee, I.; Tiwari, N.; Dunlop, M.H.; Graham, M.; Liu, X.; Rothman, J.E. Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1849-1854.
[http://dx.doi.org/10.1073/pnas.1323895111] [PMID: 24449908]
[16]
Timothy, N.; Feinstein Linstedt, A.D. Mol. Biol. Cell, 2008, 19, 12.
[17]
Stephen, A. Jesch Timothy S Lewis Natalie G Ahn Linstedt A.D. Mol. Biol. Cell, 2001, 12, 7.
[18]
Klute, M.J.; Melançon, P.; Dacks, J.B. Evolution and diversity of the Golgi. Cold Spring Harb. Perspect. Biol., 2011, 3(8)a007849
[http://dx.doi.org/10.1101/cshperspect.a007849] [PMID: 21646379]
[19]
Nakamura, N.; Wei, J.H.; Seemann, J. Modular organization of the mammalian Golgi apparatus. Curr. Opin. Cell Biol., 2012, 24(4), 467-474.
[http://dx.doi.org/10.1016/j.ceb.2012.05.009] [PMID: 22726585]
[20]
Xiang, Y.; Zhang, X.; Nix, D.B.; Katoh, T.; Aoki, K.; Tiemeyer, M.; Wang, Y. Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65. Nat. Commun., 2013, 4, 1659.
[http://dx.doi.org/10.1038/ncomms2669] [PMID: 23552074]
[21]
D’Angelo, G.; Prencipe, L.; Iodice, L.; Beznoussenko, G.; Savarese, M.; Marra, P.; Di Tullio, G.; Martire, G.; De Matteis, M.A.; Bonatti, S. GRASP65 and GRASP55 sequentially promote the transport of C-terminal valine-bearing cargos to and through the Golgi complex. J. Biol. Chem., 2009, 284(50), 34849-34860.
[http://dx.doi.org/10.1074/jbc.M109.068403] [PMID: 19840934]
[22]
Wong, M.; Munro, S. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science, 2014, 346(6209)1256898
[http://dx.doi.org/10.1126/science.1256898] [PMID: 25359980]
[23]
Joshi, G.; Chi, Y.; Huang, Z. Wang. Y. Proc. Natl. Acad. Sci. USA, 2014, 111(13), 10.
[PMID: 24639524]
[24]
Tan, J.Z.A.; Gleeson, P.A. The role of membrane trafficking in the processing of amyloid precursor protein and production of amyloid peptides in Alzheimer’s disease. Biochim. Biophys. Acta Biomembr., 2019, 1861(4), 697-712.
[http://dx.doi.org/10.1016/j.bbamem.2018.11.013] [PMID: 30639513]
[25]
Burgos, P.V.; Mardones, G.A.; Rojas, A.L.; daSilva, L.L.; Prabhu, Y.; Hurley, J.H.; Bonifacino, J.S. Sorting of the Alzheimer’s disease amyloid precursor protein mediated by the AP-4 complex. Dev. Cell, 2010, 18(3), 425-436.
[http://dx.doi.org/10.1016/j.devcel.2010.01.015] [PMID: 20230749]
[26]
Choy, R.W.; Cheng, Z.; Schekman, R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc. Natl. Acad. Sci. USA, 2012, 109(30), E2077-E2082.
[http://dx.doi.org/10.1073/pnas.1208635109] [PMID: 22711829]
[27]
Toh, W.H.; Tan, J.Z.; Zulkefli, K.L.; Houghton, F.J.; Gleeson, P.A. Amyloid precursor protein traffics from the Golgi directly to early endosomes in an Arl5b- and AP4-dependent pathway. Traffic, 2017, 18(3), 159-175.
[http://dx.doi.org/10.1111/tra.12465] [PMID: 28000370]
[28]
Ward, C.L.; Omura, S.; Kopito, R.R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell, 1995, 83(1), 121-127.
[http://dx.doi.org/10.1016/0092-8674(95)90240-6] [PMID: 7553863]
[29]
Gee, H.Y.; Noh, S.H.; Tang, B.L.; Kim, K.H.; Lee, M.G. Rescue of ΔF508-CFTR trafficking via a GRASP-dependent unconventional secretion pathway. Cell, 2011, 146(5), 746-760.
[http://dx.doi.org/10.1016/j.cell.2011.07.021] [PMID: 21884936]
[30]
Kim, J.; Noh, S.H.; Piao, H.; Kim, D.H.; Kim, K.; Cha, J.S.; Chung, W.Y.; Cho, H.S.; Kim, J.Y.; Lee, M.G. Monomerization and ER Relocalization of GRASP Is a Requisite for Unconventional Secretion of CFTR. Traffic, 2016, 17(7), 733-753.
[http://dx.doi.org/10.1111/tra.12403] [PMID: 27062250]
[31]
van Ziel, A.M.; Largo-Barrientos, P.; Wolzak, K.; Verhage, M.; Scheper, W. Unconventional secretion factor GRASP55 is increased by pharmacological unfolded protein response inducers in neurons. Sci. Rep., 2019, 9(1), 1567.
[http://dx.doi.org/10.1038/s41598-018-38146-6] [PMID: 30733486]
[32]
Dupont, N.; Jiang, S.; Pilli, M.; Ornatowski, W.; Bhattacharya, D.; Deretic, V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J., 2011, 30(23), 4701-4711.
[http://dx.doi.org/10.1038/emboj.2011.398] [PMID: 22068051]
[33]
Chiritoiu, M.; Brouwers, N.; Turacchio, G.; Pirozzi, M.; Malhotra, V. Dev. Cell, 2019.
[34]
Stein, M.F.; Blume, K.; Heilingloh, C.S.; Kummer, M.; Biesinger, B.; Sticht, H.; Steinkasserer, A. CD83 and GRASP55 interact in human dendritic cells. Biochem. Biophys. Res. Commun., 2015, 459(1), 42-48.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.057] [PMID: 25701785]
[35]
Kuo, A1; Zhong, C; Lane, WS R., D. EMBO, 2000, 19(23)13.
[36]
Barr, F.A.; Preisinger, C.; Kopajtich, R.; Körner, R. Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the Golgi apparatus. J. Cell Biol., 2001, 155(6), 885-891.
[http://dx.doi.org/10.1083/jcb.200108102] [PMID: 11739402]
[37]
Son, S. M.; Cha, M. Y.; Choi, H.; Kang, S.; Choi, H.; Lee, M. S.; Park, S. A.; Mook-Jung, I. I. D 101265188 2016, 12(5), 784-800..
[38]
Gopal, S.R.; Lee, Y.T.; Stepanyan, R.; McDermott, B.M.J.A-O.o.; Alagramam, K.N. PNAS;, Electronic. 2019, 1091-6490..
[39]
Nuchel, J.; Ghatak, S.; Zuk, A.V.; Illerhaus, A.; Morgelin, M.; Schonborn, K.; Blumbach, K.; Wickstrom, S.A.; Krieg, T.; Sengle, G.; Plomann, M.; Eckes, B. TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy, 2018, 14(3), 465-486.
[40]
Noh, S. H.; Gee, H. Y.; Kim, Y.; Piao, H.; Kim, J.; Kang, C. M.; Lee, G.; Mook-Jung, I.; Lee, Y.; Cho, J. W.; Lee, M. G. 2018. 101265188.
[41]
Zhang, M.; Kenny, S.J.; Ge, L.; Xu, K.; Schekman, R. eLife, 2015, 4e11205
[http://dx.doi.org/10.7554/eLife.11205]
[42]
Ahat, E.; Xiang, Y.; Zhang, X.; Bekier, M. E.; Wang, Y. Mol Biol Cell,, 2019. mbcE18070462
[43]
Roghi, C.; Jones, L.; Gratian, M.; English, W.R.; Murphy, G. Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen. FEBS J., 2010, 277(15), 3158-3175.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07723.x] [PMID: 20608975]
[44]
Storrie, B.; White, J.; Röttger, S.; Stelzer, E.H.; Suganuma, T.; Nilsson, T. Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol., 1998, 143(6), 1505-1521.
[http://dx.doi.org/10.1083/jcb.143.6.1505] [PMID: 9852147]
[45]
van Zeijl, M.J.; Matlin, K.S. Microtubule perturbation inhibits intracellular transport of an apical membrane glycoprotein in a substrate-dependent manner in polarized Madin-Darby canine kidney epithelial cells. Cell Regul., 1990, 1(12), 921-936.
[http://dx.doi.org/10.1091/mbc.1.12.921] [PMID: 1983109]
[46]
Yana, I.; Weiss, S.J. Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol. Biol. Cell, 2000, 11(7), 2387-2401.
[http://dx.doi.org/10.1091/mbc.11.7.2387] [PMID: 10888676]
[47]
Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 931-937.
[http://dx.doi.org/10.1038/nrm2245] [PMID: 17712358]
[48]
Ohsumi, Y. Historical landmarks of autophagy research. Cell Res., 2014, 24(1), 9-23.
[http://dx.doi.org/10.1038/cr.2013.169] [PMID: 24366340]
[49]
Mizushima, N. Physiological functions of autophagy. Curr. Top. Microbiol. Immunol., 2009, 335, 71-84.
[http://dx.doi.org/10.1007/978-3-642-00302-8_3] [PMID: 19802560]
[50]
Mizushima, N. Autophagy: process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[51]
Rabinowitz, J.D.; White, E. Autophagy and metabolism. Science, 2010, 330(6009), 1344-1348.
[http://dx.doi.org/10.1126/science.1193497] [PMID: 21127245]
[52]
Hardivillé, S. Hart, Gerald W. Cell Metab., 2014, 20(2), 208-213.
[PMID: 25100062]
[53]
Zhang, X.; Wang, L.; Lak, B.; Li, J.; Jokitalo, E.; Wang, Y. GRASP55 Senses Glucose Deprivation through O-GlcNAcylation to Promote Autophagosome-Lysosome Fusion. Dev. Cell, 2018, 45(2), 245-261.e6.
[http://dx.doi.org/10.1016/j.devcel.2018.03.023] [PMID: 29689198]
[54]
Zhang, X.; Wang, L.; Ireland, S.C.; Ahat, E.; Li, J.; Bekier Ii, M.E.; Zhang, Z.; Wang, Y. Autophagy, 2019, 15(10), 1787-1800.
[http://dx.doi.org/10.1080/15548627.2019.1596480]]
[55]
Jia, F.; Howlader, M.A.; Cairo, C.W. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase. Biochim. Biophys. Acta, 2016, 1861(9 Pt A), 1170-1179.
[http://dx.doi.org/10.1016/j.bbalip.2016.06.013] [PMID: 27344026]
[56]
Wan, J.; Zhu, F.; Zasadil, L.M.; Yu, J.; Wang, L.; Johnson, A.; Berthier, E.; Beebe, D.J.; Audhya, A.; Weaver, B.A. A Golgi-localized pool of the mitotic checkpoint component Mad1 controls integrin secretion and cell migration. Curr. Biol., 2014, 24(22), 2687-2692.
[http://dx.doi.org/10.1016/j.cub.2014.09.052] [PMID: 25447996]
[57]
Breuksch, I.; Prosinger, F.; Baehr, F.; Engelhardt, F.P.; Bauer, H.K.; Thüroff, J.W.; Heimes, A.S.; Hasenburg, A.; Prawitt, D.; Brenner, W. Integrin α5 triggers the metastatic potential in renal cell carcinoma. Oncotarget, 2017, 8(64), 107530-107542.
[http://dx.doi.org/10.18632/oncotarget.22501] [PMID: 29296184]
[58]
Hang, Q.; Isaji, T.; Hou, S.; Wang, Y.; Fukuda, T.; Gu, J. A Key Regulator of Cell Adhesion: Identification and Characterization of Important N-Glycosylation Sites on Integrin α5 for Cell Migration. Mol. Cell. Biol., 2017, 37(9), e00558-16.
[http://dx.doi.org/10.1128/MCB.00558-16] [PMID: 28167607]
[59]
Gliki, G.; Ebnet, K.; Aurrand-Lions, M.; Imhof, B.A.; Adams, R.H. Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature, 2004, 431(7006), 320-324.
[http://dx.doi.org/10.1038/nature02877] [PMID: 15372036]
[60]
Wang, Y.; Lui, W.Y. Opposite effects of interleukin-1alpha and transforming growth factor-beta2 induce stage-specific regulation of junctional adhesion molecule-B gene in Sertoli cells. Endocrinology, 2009, 150(5), 2404-2412.
[http://dx.doi.org/10.1210/en.2008-1239] [PMID: 19164472]
[61]
Pellegrini, M.; Claps, G.; Orlova, V.V.; Barrios, F.; Dolci, S.; Geremia, R.; Rossi, P.; Rossi, G.; Arnold, B.; Chavakis, T.; Feigenbaum, L.; Sharan, S.K.; Nussenzweig, A. Targeted JAM-C deletion in germ cells by Spo11-controlled Cre recombinase. J. Cell Sci., 2011, 124(Pt 1), 91-99.
[http://dx.doi.org/10.1242/jcs.072959] [PMID: 21147852]
[62]
Ayala, I.; Colanzi, A. Biol. Cell, 2017, 109(10), 364-374.
[http://dx.doi.org/10.1111/boc.201700032]]
[63]
Colanzi, A.; Hidalgo Carcedo, C.; Persico, A.; Cericola, C.; Turacchio, G.; Bonazzi, M.; Luini, A.; Corda, D. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J., 2007, 26(10), 2465-2476.
[http://dx.doi.org/10.1038/sj.emboj.7601686] [PMID: 17431394]
[64]
Timothy, N.; Feinstein Linstedt, A.D. GRASP55 Regulates Golgi Ribbon Formation. Mol. Biol. Cell, 2007, 18, 11.
[65]
Tang, D.; Yuan, H.; Wang, Y. The role of GRASP65 in Golgi cisternal stacking and cell cycle progression. Traffic, 2010, 11(6), 827-842.
[http://dx.doi.org/10.1111/j.1600-0854.2010.01055.x] [PMID: 20214750]
[66]
Kinoshita, A.; Fukumoto, H.; Shah, T.; Whelan, C.M.; Irizarry, M.C.; Hyman, B.T. Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J. Cell Sci., 2003, 116(Pt 16), 3339-3346.
[http://dx.doi.org/10.1242/jcs.00643] [PMID: 12829747]
[67]
Chia, P.Z.; Toh, W.H.; Sharples, R.; Gasnereau, I.; Hill, A.F.; Gleeson, P.A. Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic, 2013, 14(9), 997-1013.
[http://dx.doi.org/10.1111/tra.12088] [PMID: 23773724]
[68]
Toh, W.H.; Chia, P.Z.C.; Hossain, M.I.; Gleeson, P.A. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production. Mol. Biol. Cell, 2018, 29(2), 191-208.
[http://dx.doi.org/10.1091/mbc.E17-05-0270] [PMID: 29142073]
[69]
Tan, J.Z.A.; Gleeson, P.A. The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons. J. Biol. Chem., 2019, 294, 1618-163.
[70]
Udayar, V.; Buggia-Prevot, V.; Guerreiro, R.L.; Siegel, G.; Rambabu, N.; Soohoo, A.L.; Ponnusamy, M.; Siegenthaler, B.; Bali, J. Aesg; Simons, M.; Ries, J.; Puthenveedu, M. A.; Hardy, J.; Thinakaran, G.; Rajendran, L. Cell Rep., 2013, 5(6), 1536-1551.
[http://dx.doi.org/10.1016/j.celrep.2013.12.005] [PMID: 24373285]
[71]
Vekrellis, K.; Ye, Z.; Qiu, W.Q.; Walsh, D.; Hartley, D.; Chesneau, V.; Rosner, M.R.; Selkoe, D.J. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci., 2000, 20(5), 1657-1665.
[http://dx.doi.org/10.1523/JNEUROSCI.20-05-01657.2000] [PMID: 10684867]
[72]
Paumier, J.M.; Py, N.A.; Garcia-Gonzalez, L.; Bernard, A.; Stephan, D.; Louis, L.; Checler, F.; Khrestchatisky, M.; Baranger, K.; Rivera, S. Proamyloidogenic effects of membrane type 1 matrix metalloproteinase involve MMP-2 and BACE-1 activities, and the modulation of APP trafficking. FASEB J., 2018, fj201801076R
[http://dx.doi.org/10.1096/fj.201801076R] [PMID: 30332299]
[73]
Nilsson, P.; Loganathan, K.; Sekiguchi, M.; Matsuba, Y.; Hui, K.; Tsubuki, S.; Tanaka, M.; Iwata, N.; Saito, T.; Saido, T.C. Aβ secretion and plaque formation depend on autophagy. Cell Rep., 2013, 5(1), 61-69.
[http://dx.doi.org/10.1016/j.celrep.2013.08.042] [PMID: 24095740]
[74]
Resende, R.; Ferreiro, E.; Pereira, C.; Oliveira, C.R. ER stress is involved in Abeta-induced GSK-3beta activation and tau phosphorylation. J. Neurosci. Res., 2008, 86(9), 2091-2099.
[http://dx.doi.org/10.1002/jnr.21648] [PMID: 18335524]
[75]
Ueda, N.; Tomita, T.; Yanagisawa, K.; Kimura, N. Retromer and Rab2-dependent trafficking mediate PS1 degradation by proteasomes in endocytic disturbance. J. Neurochem., 2016, 137(4), 647-658.
[http://dx.doi.org/10.1111/jnc.13586] [PMID: 26896628]
[76]
Fjorback, A.W.; Seaman, M.; Gustafsen, C.; Mehmedbasic, A.; Gokool, S.; Wu, C.; Militz, D.; Schmidt, V.; Madsen, P.; Nyengaard, J.R.; Willnow, T.E.; Christensen, E.I.; Mobley, W.B.; Nykjær, A.; Andersen, O.M. Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J. Neurosci., 2012, 32(4), 1467-1480.
[http://dx.doi.org/10.1523/JNEUROSCI.2272-11.2012] [PMID: 22279231]
[77]
Andersen, O.M.; Schmidt, V.; Spoelgen, R.; Gliemann, J.; Behlke, J.; Galatis, D.; McKinstry, W.J.; Parker, M.W.; Masters, C.L.; Hyman, B.T.; Cappai, R.; Willnow, T.E. Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry, 2006, 45(8), 2618-2628.
[http://dx.doi.org/10.1021/bi052120v] [PMID: 16489755]
[78]
Andersen, O.M.; Reiche, J.; Schmidt, V.; Gotthardt, M.; Spoelgen, R.; Behlke, J.; von Arnim, C.A.; Breiderhoff, T.; Jansen, P.; Wu, X.; Bales, K.R.; Cappai, R.; Masters, C.L.; Gliemann, J.; Mufson, E.J.; Hyman, B.T.; Paul, S.M.; Nykjaer, A.; Willnow, T.E. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA, 2005, 102(38), 13461-13466.
[http://dx.doi.org/10.1073/pnas.0503689102] [PMID: 16174740]
[79]
Ise, M.; Kageyama, H.; Araki, A.; Itami, M. Identification of a novel GORASP2-ALK fusion in an ALK-positive large B-cell lymphoma. Leuk. Lymphoma, 2019, 60(2), 493-497.
[http://dx.doi.org/10.1080/10428194.2018.1493731] [PMID: 30187817]
[80]
Husni, R.E.; Shiba-Ishii, A.; Nakagawa, T.; Dai, T.; Kim, Y.; Hong, J.; Sakashita, S.; Sakamoto, N.; Sato, Y.; Noguchi, M. DNA hypomethylation-related overexpression of SFN, GORASP2 and ZYG11A is a novel prognostic biomarker for early stage lung adenocarcinoma. Oncotarget, 2019, 10(17), 1625-1636.
[http://dx.doi.org/10.18632/oncotarget.26676] [PMID: 30899432]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy