Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Comparative Analysis of In-Vitro Biological Activities of Methyl Eugenol Rich Cymbopogon khasianus Hack., Leaf Essential Oil with Pure Methyl Eugenol Compound

Author(s): Roktim Gogoi, Rikraj Loying, Neelav Sarma, Twahira Begum, Sudin K. Pandey and Mohan Lal*

Volume 21, Issue 10, 2020

Page: [927 - 938] Pages: 12

DOI: 10.2174/1389201021666200217113921

Price: $65

Abstract

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted.

Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol.

Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME).

Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil.

Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.

Keywords: Antioxidant, anti-inflammatory, essential oil, genotoxicity, herbicidal, methyl eugenol rich.

Graphical Abstract

[1]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils-a review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[2]
Weiss, E.A. Essential oil crops; CAB International: Wallingford, UK, 1997, pp. 59-137.
[3]
Kumar, S.; Dwivedi, S.; Kukreja, A.K.; Sharma, J.R.; Bagchi, G.D., Eds.; Cymbopogon: The aromatic grass monograph; Central Institute of Medicinal and Aromatic Plants: Lucknow, India, 2000.
[4]
Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res., 2011, 2(1), 3-8.
[http://dx.doi.org/10.4103/2231-4040.79796] [PMID: 22171285]
[5]
Howlett, F.M. Chemical reactions of fruit flies. Bull. Entomol. Res., 1915, 6, 297-305.
[http://dx.doi.org/10.1017/S0007485300043571]
[6]
Metcalf, R.L.; Mitchell, W.C.; Fukuto, T.R.; Metcalf, E.R. Attraction of the oriental fruit fly, Dacus dorsalis, to methyl eugenol and related olfactory stimulants. Proc. Natl. Acad. Sci. USA, 1975, 72(7), 2501-2505.
[http://dx.doi.org/10.1073/pnas.72.7.2501] [PMID: 1058469]
[7]
Metcalf, R.L. Chemical ecology of dacinae fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am., 1990, 83, 1017-1030.
[http://dx.doi.org/10.1093/aesa/83.6.1017]
[8]
Metcalf, R.L.; Metcalf, E.R. Fruit flies of the family Tephritidae.metcalf, r.l.; metcalf, e.r. plant kairomones in insect ecology and control. in: routledge, chapmen & hall london , 1992; pp. 109-152.
[9]
De Vincenzi, M.; Silano, M.; Maialetti, F.; Scazzocchio, B. Constituents of aromatic plants: II. Estragole. Fitoterapia, 2000, 71(6), 725-729.
[http://dx.doi.org/10.1016/S0367-326X(00)00153-2] [PMID: 11077188]
[10]
Hall, R.L.; Oser, B.L. Recent progress in the consideration of flavoring ingredients under the food additives amendment III. GRAS substances. Food Technol., 1965, 253, 151-197.
[11]
Miller, E.C.; Swanson, A.B.; Phillips, D.H.; Fletcher, T.L.; Liem, A.; Miller, J.A. Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Cancer Res., 1983, 43(3), 1124-1134.
[PMID: 6825084]
[12]
Randerath, K.; Haglund, R.E.; Phillips, D.H.; Reddy, M.V. 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Carcinogenesis, 1984, 5(12), 1613-1622.
[http://dx.doi.org/10.1093/carcin/5.12.1613] [PMID: 6499112]
[13]
toxicology and carcinogenesis studies of methyl eugenol (cas no. 93–15–12) in f344/n rats and b6c3f1 mice (gavage studies). draft ntp-tr-491; nih publication no 2000pp, , 98-3950.
[14]
Choi, Y.K.; Cho, G.S.; Hwang, S.; Kim, B.W.; Lim, J.H.; Lee, J.C.; Kim, H.C.; Kim, W.K.; Kim, Y.S. Methyleugenol reduces cerebral ischemic injury by suppression of oxidative injury and inflammation. Free Radic. Res., 2010, 44(8), 925-935.
[http://dx.doi.org/10.3109/10715762.2010.490837] [PMID: 20815773]
[15]
Tworkoski, T. Herbicide effects of essential oil. weed sci., 2002, 50, 425-431.
[http://dx.doi.org/10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2]
[16]
de Cássia da Silveira e Sá R.; Andrade, L.N.; de Sousa, D.P. A review on anti-inflammatory activity of monoterpenes. Molecules, 2013, 18(1), 1227-1254.
[http://dx.doi.org/10.3390/molecules18011227] [PMID: 23334570]
[17]
William, W.B.; Cuvelier, M.E.; Berset, C. Use of a free radical to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1994, 28, 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[18]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clin. Exp. Immunol., 2007, 147(2), 227-235.
[PMID: 17223962]
[19]
Abbas, A.B.; Lichtman, A.H.; Pillai, S. Innate immunity. Basic Immunology, Functions and Disorders of the Immune System, 4th ed; Elsevier: Amsterdam, The Netherlands, 2009.
[20]
Brandi, G.; Amagliani, G.; Schiavano, G.F.; De Santi, M.; Sisti, M. Activity of Brassica oleracea leaf juice on foodborne pathogenic bacteria. J. Food Prot., 2006, 69(9), 2274-2279.
[http://dx.doi.org/10.4315/0362-028X-69.9.2274] [PMID: 16995537]
[21]
Borah, A.; Paw, M.; Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Lal, M. Chemical composition, antioxidant, anti-inflammatory, anti-microbial and in-vitro cytotoxic efficacy of essential oil of Curcuma caesia Roxb. leaves: An endangered medicinal plant of North East India. Ind. Crops Prod., 2019, 129, 448-454.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.035]
[22]
Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Kumar Pandey, S.; Lal, M. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod., 2018, 125, 131-139.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.052]
[23]
Blois, M.S. Antioxidant determination by the use of a stable free radical. Nature, 1958, 181, 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[24]
Oyaizu, M. Studies on products of browning reaction-antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr, 1986, 4, 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[25]
Sangita, C.; Chatterjee, P.; Dey, P.; Bhattaccharya, S. Evaluation of in-vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed., 2012, 2, 178-180.
[http://dx.doi.org/10.1016/S2221-1691(12)60154-3]
[26]
Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chem., 2007, 104, 1106.
[http://dx.doi.org/10.1016/j.foodchem.2007.01.019]
[27]
Rafael, L.; Teresinha, N.; Moritz, J.C.; Maria, I.G.; Eduardo, M.D.; Tania, S.F. Evaluation of antimicrobial and antiplatelet aggregation effects of Solidago chilensis Meyen; Int J Green Pharm, 2009.
[28]
Rank, J.; Nielsen, M.H. A modified Allium test as a tool in the screening of the genotoxicity of complex mixtures. Hereditas, 1993, 118, 49-53.
[http://dx.doi.org/10.1111/j.1601-5223.1993.t01-3-00049.x]
[29]
Babatunde, B.B.; Bakare, A.A. Genotoxicity screening of waste waters from Agbara Industrial estate Nigeria evaluated with the Allium test. Pollut. Res., 2006, 25, 227-234.
[30]
Fiskesjo, G. Allium test for screening chemicals; Evaluation of cytologic parameters. Plants for Environmental Studies; Wang, W.; Gorsuch, J.W; Hughes, J.S., Ed.; CRC Lewis Publishers: Boca Raton, New York, 1997, pp. 308-333.
[http://dx.doi.org/10.1201/9781420048711.ch11]
[31]
Fiskesjö, G. The Allium test as a standard in environmental monitoring. Hereditas, 1985, 102(1), 99-112.
[http://dx.doi.org/10.1111/j.1601-5223.1985.tb00471.x] [PMID: 3988545]
[32]
Bakare, A.A.; Mosuro, A.A.; Osibanjo, O. Effect of simulated leachate on chromosomes and mitosis in roots of Allium cepa (L). J. Environ. Biol., 2000, 21, 263-271.
[33]
Paudel, V.R.; Gupta, V.N.P. Effect of some essential oil on seed germination and seedling length of Parthenium hysterophorous L. Ecoprint (Kathmandu), 2008, 15, 69-73.
[http://dx.doi.org/10.3126/eco.v15i0.1945]
[34]
Pandey, A.K.; Rai, M.K.; Acharya, D. Chemical composition and Antimycotic activity of the essential oil of Corn Mint (Mentha arvensis) and Lemon Grass (Cymbopogon flexuosus) against human pathogenic fungi. Pharm. Biol., 2003, 6, 421-425.
[http://dx.doi.org/10.1076/phbi.41.6.421.17825]
[35]
Negrelle, R.R.B.; Gomes, E.C. Cymbopogon citrates (DC.) Stapf: chemical composition and biological activities. Rev. Bras. Pl. Med., 2007, 9, 80-92.
[36]
Robbins, S.R.J. Selected markets for the essential oil of lemon grass, citronella and eucalyptus. Tropical Products Institute Report, 1983, 17, 13.
[37]
Tan, K.H.; Nishida, R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci., 2012, 12(56), 1-60.
[http://dx.doi.org/10.1673/031.012.5601] [PMID: 22963669]
[38]
Tabanca, N.; Demirci, B.; Kirimer, N.; Baser, K.H.; Bedir, E.; Khan, I.A.; Wedge, D.E. Gas chromatographic-mass spectrometric analysis of essential oils from Pimpinella aurea, Pimpinella corymbosa, Pimpinella peregrina and Pimpinella puberula gathered from Eastern and Southern Turkey. J. Chromatogr. A, 2005, 1097(1-2), 192-198.
[http://dx.doi.org/10.1016/j.chroma.2005.10.047] [PMID: 16269150]
[39]
Iwashina, T.; Kitajima, J.; Shiuchi, T.; Itou, Y. Chalcones and other flavonoids from Asarum sensu lato (Aristolochiaceae). Biochem. Syst. Ecol., 2005, 33(6), 571-584.
[http://dx.doi.org/10.1016/j.bse.2004.12.005]
[40]
Kothari, S.K.; Bhattacharya, A.K.; Ramesh, S.; Garg, S.N.; Khanuja, S.P.S. Volatile constituents in oil from different plant parts of Methyl eugenol-rich Ocimum tenuiflorum L.f. (syn. O. sanctum L.) grown in south India. J. Essent. Oil Res., 2005, 17(6), 656-658.
[http://dx.doi.org/10.1080/10412905.2005.9699025]
[41]
Janssen, A.M.; Scheffer, J.J.C.; Ntezurubanza, L.; Baerheim Svendsen, A. Antimicrobial activities of some Ocimum species grown in Rwanda. J. Ethnopharmacol., 1989, 26(1), 57-63.
[http://dx.doi.org/10.1016/0378-8741(89)90113-X] [PMID: 2747264]
[42]
Sybiya, V.; Packiavathy, I.A.; Agilandeswari, P.; Musthafa, K.S.; Karutha, P.S.; Veera, R.A. Antibiofilm and quorum sensing inhibitory potential of Cuminum cyminum and its secondary metabolite methyl eugenol against gram negative bacterial pathogens. Food Res. Int., 2012, 45(1), 85-92.
[http://dx.doi.org/10.1016/j.foodres.2011.10.022]
[43]
Cheng, B.; Yong, X.; Gao, Z.; Xuejian, Y.; Jingkai, D. Ways of propagating Chinnamomum tenuipilum and variations in its leaf essential oil components. Yunnan Zhi Wu Yan Jiu, 1993, 15(1), 78-82.
[44]
Jantan, I.B.; Ayop, N.; Hiong, A.B.; Ahmad, A.S. Chemical composition of the essential oils of Cinnamomum cordatum Kosterm. Flav. Frag. J., 2002, 17(3), 212-214.
[http://dx.doi.org/10.1002/ffj.1075]
[45]
Aboutabl, E.A.; Tohamy, S.F.E.; De Footer, H.L.; De Buyck, L.F. A comparative study of the essential oils from three Melaleuca species growing in Egypt. Flav. Frag. J., 1991, 6(2), 139-141.
[http://dx.doi.org/10.1002/ffj.2730060209]
[46]
Farag, R.S.; Shalaby, A.S.; El-Baroty, G.A.; Ibrahim, N.A.; Ali, M.A.; Hassan, E.M. Chemical and biological evaluation of the essential oils of different Melaleuca species. Phytother. Res., 2004, 18(1), 30-35.
[http://dx.doi.org/10.1002/ptr.1348] [PMID: 14750197]
[47]
Joshi, R.K. Chemical composition, in vitro antimicrobial and antioxidant activities of the essential oil of O. gratissimum, O. sanctum and their major constituents. Indian J. Pharm. Sci., 2013, 75(4), 457-462.
[http://dx.doi.org/10.4103/0250-474X.119834] [PMID: 24302801]
[48]
Opie, E.L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med., 1962, 115, 597-608.
[http://dx.doi.org/10.1084/jem.115.3.597] [PMID: 14482110]
[49]
Umapathy, E.; Ndebia, E.J.; Meeme, A.; Adam, B.; Menziwa, P.; Nkeh-Chungag, B.N. An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J. Med. Plants Res., 2010, 4, 789-795.
[50]
Williams, L.A.D.; O’Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.A.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J., 2008, 57(4), 327-331.
[PMID: 19566010]
[51]
Yano, S.; Suzuki, Y.; Yuzurihara, M.; Kase, Y.; Takeda, S.; Watanabe, S.; Aburada, M.; Miyamoto, K. Antinociceptive effect of methyleugenol on formalin-induced hyperalgesia in mice. Eur. J. Pharmacol., 2006, 553(1-3), 99-103.
[http://dx.doi.org/10.1016/j.ejphar.2006.09.020] [PMID: 17049512]
[52]
Morrisj, A.; Khettrya, A.; Seitz, E.W. Antimicrobial activity of aroma chemicals and essential oils. J. Am. Oil Chem. Soc., 1979, 56, 595.
[http://dx.doi.org/10.1007/BF02660245] [PMID: 479491]
[53]
Knoblochk, H.; Weigandn, H.; Weis, H.M.; Schwaramn, D.H. Vigensschoiwn, Progress in Essential Oil Research; brunkep, E.J; J Walter de Gruyter: Berlin, 1986, p. 429.
[54]
Kurita, N.; Miyaji, M.; Kurane, R. Antifungal activity of components of essential oil. Agric. Biol. Chem., 1981, 45, 945-952.
[55]
Kivanç, M. Antimicrobial activity of “Cörtük” (Echinophora sibthorpiana Guss.) spice, its essential oil and methyl-eugenol. Nahrung, 1988, 32(6), 635-637.
[http://dx.doi.org/10.1002/food.19880320631] [PMID: 3231252]
[56]
Burkey, J.L.; Sauer, J.M.; McQueen, C.A.; Sipes, I.G. Cytotoxicity and genotoxicity of methyleugenol and related congeners- a mechanism of activation for methyleugenol. Mutat. Res., 2000, 453(1), 25-33.
[http://dx.doi.org/10.1016/S0027-5107(00)00070-1] [PMID: 11006409]
[57]
Bertoli, A.; Lucchesini, M.; Mensuali-Sodi, A.; Leonardi, M.; Doveri, S.; Magnabosco, A.; Pistelli, L. Aroma characterisation and UV elicitation of purple basil from different plant tissue cultures. Food Chem., 2013, 141(2), 776-787.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.081]
[58]
EFSA Compendium of botanicals that have been reported to contain toxic, addictive, psychotropic or other substances of concern. EFSA Suppor. Pub., 2009, 6(6), 281R.
[http://dx.doi.org/10.2903/j.efsa.2009.281]
[59]
Herrmann, K.; Schumacher, F.; Engst, W.; Appel, K.E.; Klein, K.; Zanger, U.M.; Glatt, H. Abundance of DNA adducts of methyleugenol, a rodent hepatocarcinogen, in human liver samples. Carcinogenesis, 2013, 34(5), 1025-1030.
[http://dx.doi.org/10.1093/carcin/bgt013] [PMID: 23334163]
[60]
Suparmi, S.; Widiastuti, D.; Wesseling, S.; Rietjens, I.M.C.M. Natural occurrence of genotoxic and carcinogenic alkenylbenzenes in Indonesian jamu and evaluation of consumer risks. Food Chem. Toxicol., 2018, 118, 53-67.
[http://dx.doi.org/10.1016/j.fct.2018.04.059]
[61]
Einhelling, F.A.; Ramussen, J.A. Effects of three phenolic acids on chlorophyll content and growth of soybean and grain sorghum seedlings. J. Chem. Ecol., 1979, 5, 815-824.
[http://dx.doi.org/10.1007/BF00986566]
[62]
Glass, A.D.M.; Dunlap, J. Influence of phenolic acids of ion uptake. IV. Depolarization of membrane potentials. Plant Physiol., 1974, 54(6), 855-858.
[http://dx.doi.org/10.1104/pp.54.6.855] [PMID: 16658989]
[63]
Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data, 2011, 40(4), 1-47.
[http://dx.doi.org/10.1063/1.3653552]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy