Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

雄性5xFAD Alzheimer模型小鼠的睾丸激素水平和尿液气味标记升高

卷 17, 期 1, 2020

页: [80 - 92] 页: 13

弟呕挨: 10.2174/1567205017666200217105537

价格: $65

摘要

背景:淀粉样前体蛋白(AβPP)及其各种裂解产物的功能仍未阐明。尽管它在阿尔茨海默氏病(AD)中作为神经毒性淀粉样蛋白(Aβ)肽的来源的作用是无可争议的,并且它作为细胞附着蛋白的特性令人着迷,但几乎没有研究神经元以外的功能。这尤其值得注意,因为AβPP具有普遍的表达特征,并且其较长的同种型AβPP750和770在脑外和非神经元细胞的各种组织中发现。 目的:在这里,我们旨在分析与男性性功能有关的5xFAD阿尔茨海默氏病小鼠模型。该小鼠模型的转基因受Thy1启动子活性调节,并且Thy1在睾丸中表达,例如在睾丸中。通过支持细胞。这允许推测对性行为的影响。 方法:我们分析了5xFAD小鼠和野生型同窝仔的睾丸组织的形态和生化特性以及血清,睾丸和大脑中的睾丸激素水平。两组通过不同年龄的尿液气味标记测试来评估性行为。结果:虽然精子数量,睾丸重量和精子形态表型与野生型同窝小鼠几乎没有区别,但AD模型小鼠的睾丸睾丸激素水平显着增加。如尿气味标记测试所示,这伴随着性兴趣的提高和延长。 结论:我们建议,AβPP的过表达(通常用于模拟模型小鼠的AD)也会影响男性的性行为,如通过尿液气味标记(USM)测试进行的其他评估。睾丸激素水平升高可能会对中枢神经系统雄激素受体产生额外影响,并且在评估学习和记忆能力时也必须予以考虑。

关键词: 阿尔茨海默氏病,淀粉样蛋白前体蛋白,小鼠,性行为,睾丸激素,尿液气味标记试验。

« Previous
[1]
Duke Han S, Nguyen CP, Stricker NH, Nation DA. Detectable neuropsychological differences in early preclinical Alzheimer’s disease: a meta-analysis. Neuropsychol Rev 27(4): 305-25. (2017).
[http://dx.doi.org/10.1007/s11065-017-9345-5] [PMID: 28497179]
[2]
Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, Tan L, et al. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: systematic review and meta-analysis. J Affect Disord 190: 264-71. (2016).
[http://dx.doi.org/10.1016/j.jad.2015.09.069] [PMID: 26540080]
[3]
Hallikainen I, Koivisto AM, Välimäki T. The influence of the individual neuropsychiatric symptoms of people with Alzheimer disease on family caregiver distress-A longitudinal ALSOVA study. Int J Geriatr Psychiatry (2018).
[http://dx.doi.org/10.1002/gps.4911] [PMID: 29851148]
[4]
Derouesné C, Guigot J, Chermat V, Winchester N, Lacomblez L. Sexual behavioral changes in Alzheimer disease. Alzheimer Dis Assoc Disord 10(2): 86-92. (1996).
[http://dx.doi.org/10.1097/00002093-199601020-00006] [PMID: 8727170]
[5]
Tsai SJ, Hwang JP, Yang CH, Liu KM, Lirng JF. Inappropriate sexual behaviors in dementia: a preliminary report. Alzheimer Dis Assoc Disord 13(1): 60-2. (1999).
[http://dx.doi.org/10.1097/00002093-199903000-00009] [PMID: 10192644]
[6]
Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology 48(5)(Suppl. 6): S10-6. (1997).
[http://dx.doi.org/10.1212/WNL.48.5_Suppl_6.10S] [PMID: 9153155]
[7]
Ruesink GB, Georgiadis JR. brain imaging of human sexual response: recent developments and future directions. Curr Sex Health Rep 9(4): 183-91. (2017).
[http://dx.doi.org/10.1007/s11930-017-0123-4] [PMID: 29225553]
[8]
Mendez MF, Shapira JS. Hypersexual behavior in frontotemporal dementia: a comparison with early-onset Alzheimer’s disease. Arch Sex Behav 42(3): 501-9. (2013).
[http://dx.doi.org/10.1007/s10508-012-0042-4] [PMID: 23297146]
[9]
Sandbrink R, Masters CL, Beyreuther K. Similar alternative splicing of a non-homologous domain in beta A4-amyloid protein precursor-like proteins. J Biol Chem 269(19): 14227-34. (1994).
[PMID: 8188705]
[10]
Beer J, Masters CL, Beyreuther K. Cells from peripheral tissues that exhibit high APP expression are characterized by their high membrane fusion activity. Neurodegeneration 4(1): 51-9. (1995).
[http://dx.doi.org/10.1006/neur.1995.0006] [PMID: 7600184]
[11]
Fardilha M, Vieira SI, Barros A, Sousa M, Da Cruz e Silva OA, et al. Differential distribution of Alzheimer’s amyloid precursor protein family variants in human sperm. Ann N Y Acad Sci 1096: 196-206. (2007).
[http://dx.doi.org/10.1196/annals.1397.086] [PMID: 17405931]
[12]
Chalmel F, Com E, Lavigne R, Hernio N, Teixeira-Gomes AP, Dacheux JL, et al. An integrative omics strategy to assess the germ cell secretome and to decipher sertoli-germ cell crosstalk in the Mammalian testis. PLoS One 9(8) e104418 (2014).
[http://dx.doi.org/10.1371/journal.pone.0104418] [PMID: 25111155]
[13]
Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40): 10129-40. (2006).
[http://dx.doi.org/10.1523/JNEUROSCI.1202-06.2006] [PMID: 17021169]
[14]
Eimer WA, Vassar R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation. Mol Neurodegener 8: 2. (2013).
[http://dx.doi.org/10.1186/1750-1326-8-2] [PMID: 23316765]
[15]
Lehmann ML, Geddes CE, Lee JL, Herkenham M. Urine scent marking (USM): a novel test for depressive-like behavior and a predictor of stress resiliency in mice. PLoS One 8(7) e69822 (2013).
[http://dx.doi.org/10.1371/journal.pone.0069822] [PMID: 23875001]
[16]
Brandscheid C, Schuck F, Reinhardt S, Schäfer KH, Pietrzik CU, Grimm M, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56(2): 775-88. (2017).
[http://dx.doi.org/10.3233/JAD-160926] [PMID: 28035935]
[17]
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8): 911-7. (1959).
[http://dx.doi.org/10.1139/o59-099] [PMID: 13671378]
[18]
Tang Z, Guengerich FP. Dansylation of unactivated alcohols for improved mass spectral sensitivity and application to analysis of cytochrome P450 oxidation products in tissue extracts. Anal Chem 82(18): 7706-12. (2010).
[http://dx.doi.org/10.1021/ac1015497] [PMID: 20795636]
[19]
Shou WZ, Jiang X, Naidong W. Development and validation of a high-sensitivity liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with chemical derivatization for the determination of ethinyl estradiol in human plasma. Biomed Chromatogr 18(7): 414-21. (2004).
[http://dx.doi.org/10.1002/bmc.329] [PMID: 15340965]
[20]
Zhao S, Luo X, Li L. Chemical isotope labeling LC-MS for high coverage and quantitative profiling of the hydroxyl submetabolome in metabolomics. Anal Chem 88(21): 10617-23. (2016).
[http://dx.doi.org/10.1021/acs.analchem.6b02967] [PMID: 27690392]
[21]
Björndahl L, Söderlund I, Kvist U. Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Hum Reprod 18(4): 813-6. (2003).
[http://dx.doi.org/10.1093/humrep/deg199] [PMID: 12660276]
[22]
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to Image J: 25 years of image analysis. Nat Methods 9(7): 671-5. (2012).
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[23]
Reinhardt S, Stoye N, Luderer M, Kiefer F, Schmitt U, Lieb K, et al. Identification of disulfiram as a secretase-modulating compound with beneficial effects on Alzheimer’s disease hallmarks. Sci Rep 8(1): 1329. (2018).
[http://dx.doi.org/10.1038/s41598-018-19577-7] [PMID: 29358714]
[24]
Gaskill BN, Karas AZ, Garner JP, Pritchett-Corning KR. Nest building as an indicator of health and welfare in laboratory mice. J Vis Exp (82): 51012 (2013).
[http://dx.doi.org/10.3791/51012] [PMID: 24429701]
[25]
Bronson FH, Desjardins C. Relationships between scent marking by male mice and the pheromone-induced secretion of the gonadotropic and ovarian hormones that accompany puberty in female mice. Adv Behav Biol 11: 157-78. (1974).
[http://dx.doi.org/10.1007/978-1-4684-3069-1_7] [PMID: 4475644]
[26]
Van Der Lee S, Boot LM. Spontaneous pseudopregnancy in mice. Acta Physiol Pharmacol Neerl 1955; 4(3): 442-4.
[PMID: 13301816]
[27]
Liao HF, Chen WS, Chen YH, Kao TH, Tseng YT, Lee CY, et al. DNMT3L promotes quiescence in postnatal spermatogonial progenitor cells. Development 141(12): 2402-13. (2014).
[http://dx.doi.org/10.1242/dev.105130] [PMID: 24850856]
[28]
Postina R, Schroeder A, Dewachter I, Juergen Bohl, Ulrich Schmitt, Elzbieta K, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113(10): 1456-64. (2004).
[http://dx.doi.org/10.1172/JCI20864] [PMID: 15146243]
[29]
O’Keane JC, Brien TG, Hooper AC, Graham A. Testicular activity in mice selected for increased body weight. Andrologia 1986; 18(2): 190-5.
[http://dx.doi.org/10.1111/j.1439-0272.1986.tb01760.x] [PMID: 3717607]
[30]
Schmidt JA, Oatley JM, Brinster RL. Female mice delay reproductive aging in males. Biol Reprod 80(5): 1009-14. (2009).
[http://dx.doi.org/10.1095/biolreprod.108.073619] [PMID: 19164172]
[31]
Kim C. Nest building, general activity, and salt preference of rats following hippocampal ablation. J Comp Physiol Psychol 53: 11-6. (1960).
[http://dx.doi.org/10.1037/h0038350] [PMID: 14409079]
[32]
Deacon RM, Croucher A, Rawlins JN. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res 132(2): 203-13. (2002).
[http://dx.doi.org/10.1016/S0166-4328(01)00401-6] [PMID: 11997150]
[33]
Lin L, Chen G, Kuang H, Wang D, Tsien JZ. Neural encoding of the concept of nest in the mouse brain. Proc Natl Acad Sci USA 104(14): 6066-71. (2007).
[http://dx.doi.org/10.1073/pnas.0701106104] [PMID: 17389405]
[34]
Deacon RM. Assessing nest building in mice. Nat Protoc 1(3): 1117-9. (2006).
[http://dx.doi.org/10.1038/nprot.2006.170] [PMID: 17406392]
[35]
Devi L, Ohno M. TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice. Transl Psychiatry 5(5) e562 (2015).
[http://dx.doi.org/10.1038/tp.2015.55] [PMID: 25942043]
[36]
Kovács T, Cairns NJ, Lantos PL. Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. Neuroreport 12(2): 285-8. (2001).
[http://dx.doi.org/10.1097/00001756-200102120-00021] [PMID: 11209936]
[37]
Wesson DW, Levy E, Nixon RA, Wilson DA. Olfactory dysfunction correlates with amyloid-beta burden in an Alzheimer’s disease mouse model. J Neurosci 30(2): 505-14. (2010).
[http://dx.doi.org/10.1523/JNEUROSCI.4622-09.2010] [PMID: 20071513]
[38]
Yao ZG, Hua F, Zhang HZ, Li YY, Qin YJ. Olfactory dysfunction in the APP/PS1 transgenic mouse model of Alzheimer’s disease: morphological evaluations from the nose to the brain. Neuropathology 37(6): 485-94. (2017).
[http://dx.doi.org/10.1111/neup.12391] [PMID: 28643854]
[39]
Roddick KM, Roberts AD, Schellinck HM, Brown RE. Sex and genotype differences in odor detection in the 3×Tg-AD and 5XFAD mouse models of Alzheimer’s Disease at 6 months of age. Chem Senses 41(5): 433-40. (2016).
[http://dx.doi.org/10.1093/chemse/bjw018] [PMID: 26969629]
[40]
Park JH, Bonthius PJ, Tsai HW, Bekiranov S, Rissman EF. Amyloid beta precursor protein regulates male sexual behavior. J Neurosci 30(30): 9967-72. (2010).
[http://dx.doi.org/10.1523/JNEUROSCI.1988-10.2010] [PMID: 20668181]
[41]
Richter MC, Ludewig S, Winschel A, Abel T, Bold C, Salzburger LR, et al. Distinct in vivo roles of secreted APP ectodomain variants APPsα and APPsβ in regulation of spine density, synaptic plasticity, and cognition. EMBO J 37(11) e98335 (2018).
[http://dx.doi.org/10.15252/embj.201798335] [PMID: 29661886]
[42]
Huo DS, Sun JF, Zhang B, Yan XS, Wang H, Jia JX, et al. Protective effects of testosterone on cognitive dysfunction in Alzheimer’s disease model rats induced by oligomeric beta amyloid peptide 1-42. J Toxicol Environ Health A 79(19): 856-63. (2016).
[http://dx.doi.org/10.1080/15287394.2016.1193114] [PMID: 27599231]
[43]
Seyedreza P, Alireza MN, Seyedebrahim H. Role of testosterone in memory impairment of Alzheimer disease induced by Streptozotocin in male rats. Daru 20(1): 98. (2012).
[http://dx.doi.org/10.1186/2008-2231-20-98] [PMID: 23351237]
[44]
Yan XS, Yang ZJ, Jia JX, Song W, Fang X, Cai ZP, et al. Protective mechanism of testosterone on cognitive impairment in a rat model of Alzheimer’s disease. Neural Regen Res 14(4): 649-57. (2019).
[http://dx.doi.org/10.4103/1673-5374.245477] [PMID: 30632505]
[45]
Grimm A, Schmitt K, Lang UE, Mensah-Nyagan AG, Eckert A. Improvement of neuronal bioenergetics by neurosteroids: implications for age-related neurodegenerative disorders. Biochim Biophys Acta 1842(12 Pt A): 2427-38. (2014).
[http://dx.doi.org/10.1016/j.bbadis.2014.09.013] [PMID: 25281013]
[46]
Lau CF, Ho YS, Hung CH, Wuwongse S, Poon CH, Chiu K, et al. Protective effects of testosterone on presynaptic terminals against oligomeric β-amyloid peptide in primary culture of hippocampal neurons. BioMed Res Int 2014 103906 (2014).
[http://dx.doi.org/10.1155/2014/103906] [PMID: 25045655]
[47]
Wang JH, Cheng XR, Zhang XR, Wang TX, Xu WJ, Li F, et al. Neuroendocrine immunomodulation network dysfunction in SAMP8 mice and PrP-hAβPPswe/PS1ΔE9 mice: potential mechanism underlying cognitive impairment. Oncotarget 7(17): 22988-3005. (2016).
[http://dx.doi.org/10.18632/oncotarget.8453] [PMID: 27049828]
[48]
Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike JC, et al. Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 34(4): 1080-9. (2013).
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.10.007] [PMID: 23122920]
[49]
Overk CR, Perez SE, Ma C, Taves MD, Soma KK, Mufson EJ. Sex steroid levels and AD-like pathology in 3xTgAD mice. J Neuroendocrinol 25(2): 131-44. (2013).
[http://dx.doi.org/10.1111/j.1365-2826.2012.02374.x] [PMID: 22889357]
[50]
Nuruddin S, Syverstad GH, Lillehaug S, Leergaard TB, Nilsson LNG, Ropstad E, et al. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer’s disease transgenic mice. PLoS One 9(8) e103607 (2014).
[http://dx.doi.org/10.1371/journal.pone.0103607] [PMID: 25089901]
[51]
Lee JH, Byun MS, Yi D, Choe YM, Choi HJ, Baek H, et al. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiol Aging 58: 34-40. (2017).
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.06.005] [PMID: 28692878]
[52]
Lv W, Du N, Liu Y, Fan X, Wang Y, Jia X, et al. Low Testosterone level and risk of alzheimer’s disease in the elderly men: a systematic review and meta-analysis. Mol Neurobiol 53(4): 2679-84. (2016).
[http://dx.doi.org/10.1007/s12035-015-9315-y] [PMID: 26154489]
[53]
Xu J, Xia LL, Song N, Chen SD, Wang G. Testosterone, estradiol, and sex hormone-binding globulin in Alzheimer’s disease: a meta-analysis. Curr Alzheimer Res 13(3): 215-22. (2016).
[http://dx.doi.org/10.2174/1567205013666151218145752] [PMID: 26679858]
[54]
Kang L, Li S, Xing Z, Li J, Su Y, Fan P, et al. Dihydrotestosterone treatment delays the conversion from mild cognitive impairment to Alzheimer’s disease in SAMP8 mice. Horm Behav 65(5): 505-15. (2014).
[http://dx.doi.org/10.1016/j.yhbeh.2014.03.017] [PMID: 24717850]
[55]
Domonkos E, Hodosy J, Ostatníková D, Celec P. On the role of testosterone in anxiety-like behavior across life in experimental rodents. Front Endocrinol (Lausanne) 9: 441. (2018).
[http://dx.doi.org/10.3389/fendo.2018.00441] [PMID: 30127767]
[56]
Schneider F, Baldauf K, Wetzel W, Reymann KG. Behavioral and EEG changes in male 5xFAD mice. Physiol Behav 135: 25-33. (2014).
[http://dx.doi.org/10.1016/j.physbeh.2014.05.041] [PMID: 24907698]
[57]
Kosel F, Torres Munoz P, Yang JR, Wong AA, Franklin TB. Age-related changes in social behaviours in the 5xFAD mouse model of Alzheimer’s disease. Behav Brain Res 362: 160-72. (2019).
[http://dx.doi.org/10.1016/j.bbr.2019.01.029] [PMID: 30659846]
[58]
Maruniak JA, Owen K, Bronson FH, Desjardins C. Urinary marking in male house mice: responses to novel environmental and social stimuli. Physiol Behav 12(6): 1035-9. (1974).
[http://dx.doi.org/10.1016/0031-9384(74)90151-6] [PMID: 4832444]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy