Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Mini-Review Article

Mitigation of Harmonics from Output of Cascaded H Bridge Multilevel Inverter Using SHE PWM and AI Technique: A Review

Author(s): Kaushal Bhatt and Sandeep Chakravorty*

Volume 13, Issue 7, 2020

Page: [952 - 968] Pages: 17

DOI: 10.2174/2213111607666200214121450

Price: $65

Abstract

An extensive use of fossil fuel has led to an extreme increment of carbon footprint in the world globally. Glaciers are melting on the earth’s poles due to the greenhouse effect. Many such natural indications urge us to adopt renewable energy sources. In most cases, renewable power is generated in electrical form, which does not suit the existing grid requirements. Cascaded H bridge with multilevel inverter topology is promising in this context. The output of the multilevel inverter is near to sinusoidal. It has added advantages of low device stress, no need for step-up transformers, low common-mode voltage, near sinusoidal input current, low switching frequency, and reduced harmonics. The direct output of Cascaded H bridge multilevel inverters may not be suitable for many applications like integrating solar panel output with an existing grid where harmonic reduction is necessary. Various modulation techniques are available like sinusoidal pulse width modulation, space vector modulation, and selective harmonic elimination. Among the listed modulation techniques, selective harmonic elimination can be implemented with the low switching frequency, and it is suitable where low electromagnetic interference, low switching loss, and good power quality are required. To reduce the harmonics, one must solve the non-linear transcendental output equations of the cascaded H-bridge Multilevel inverter (CHB-MLI). Various Artificial Intelligent (AI) algorithms are introduced, and researchers have worked on eliminating harmonics or minimizing Total Harmonics Distortion (THD) from the output of CHB-MLI. This paper gives a review of the harmonic reduction using some of the well-known explored AI algorithms. It also provides insight into some of the unexplored algorithms in this area.

Keywords: Artificial intelligence, cascaded H bridge multilevel inverter, renewable energy, selective harmonic elimination, optimization techniques, simulation techniques.

Graphical Abstract

[1]
F. Perera, "Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist", Int. J. Environ. Res. Public Health, vol. 15, no. 1, p. 16, 2017.
[http://dx.doi.org/10.3390/ijerph15010016 PMID: 29295510]
[2]
A. Haines, T. McMichael, R. Anderson, and J. Houghton, "Fossil fuels, transport, and public health", BMJ, vol. 321, no. 7270, pp. 1168-1169, 2000.
[http://dx.doi.org/10.1136/bmj.321.7270.1168 PMID: 11073493]
[3]
S. Jaber, "Environmental Impacts of Wind Energy", J. Clean Energy Technol., vol. 1, no. 3, pp. 251-254, 2014.
[http://dx.doi.org/10.7763/JOCET.2013.V1.57]
[4]
R. Saidur, N. Rahim, M. Islam, and K. Solangi, "Environmental impact of wind energy", Renew. Sustain. Energy Rev., vol. 15, no. 5, pp. 2423-2430, 2011.
[http://dx.doi.org/10.1016/j.rser.2011.02.024]
[5]
M. Labordena, D. Neubauer, D. Folini, A. Patt, and J. Lilliestam, "Blue skies over China: The effect of pollution-control on solar power generation and revenues", PLoS One, vol. 13, no. 11, 2018.e0207028
[http://dx.doi.org/10.1371/journal.pone.0207028 PMID: 30462670]
[6]
G. Zhu, H. Wang, B. Liang, S. Tan, and J. Jiang, "Enhanced single-phase full-bridge inverter with minimal low-frequency current ripple", IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 937-943, 2016.
[http://dx.doi.org/10.1109/TIE.2015.2491881]
[7]
I. de Freitas, C. Jacobina, and E. Cipriano dos Santos, "Single-phase to single-phase full-bridge converter operating with reduced AC power in the DC-Link capacitor", IEEE Trans. Power Electron., vol. 25, no. 2, pp. 272-279, 2010.
[http://dx.doi.org/10.1109/TPEL.2009.2031225]
[8]
M.R. Jawahar, V. Ajay Kumar, S. Moorthi, and M.P. Selvan, "FPGA based SHEPWM switching scheme für single phase cascaded H-bridge multi-level inverter", , In: IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1-6
[9]
N. Booma, "Nine level cascaded H-bridge multilevel DC-link inverter", In International Conference on Emerging Trends in Electrical and Computer Technology, 2011pp. 315-320
[10]
B. Rajesh, "Comparison of harmonics and THD suppression with three and 5 level multilevel inverter-cascaded H-bridge", In International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016pp. 1-6
[11]
M. Gamal, "Complete solutions for stepped SHEPWM technique applied to multilevel inverter", In: 16th International Middle- East Power Systems Conference -MEPCON'2014, 2014.
[12]
J. Rodriguez, "Jih-Sheng Lai and Fang Zheng Peng, “Multilevel inverters: A survey of topologies, controls, and applications", IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724-738, 2002.
[http://dx.doi.org/10.1109/TIE.2002.801052]
[13]
M.M. Haleth, R.P. Kumar, and J.J. Priska, "Cascaded multilevel inverter for hybrid electric vehicles", Int. J. Adv. Res. Elec. Electron. Instrumen. Eng., vol. 5, no. 7, pp. 116-124, 2007.
[14]
K. Shah and, H. Raj, K. Bhonsale, and G. Mehta, "A review on cascaded H-bridge multilevel inverter in electric vehicle", Imperial J. Interdisciplin. Res., vol. 3, no. 3, pp. 717-720, 2017.
[15]
S. Thamizharasan, J. Baskaran, S. Ramkumar, and S. Jeevananthan, "A new dual bridge multilevel DC-link inverter topology", Int. J. Electr. Power Energy Syst., vol. 45, no. 1, pp. 376-383, 2013.
[http://dx.doi.org/10.1016/j.ijepes.2012.09.024]
[16]
A. Gaikwad, and P. Arbune, "Study of cascaded H-Bridge multilevel inverter", In: International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 2016, pp. 179-182,
[http://dx.doi.org//10.1109/ICACDOT.2016.7877574]
[17]
L.M. Tolbert, F.Z. Peng, and T.G. Habetler, "“Multilevel inverters for electric vehicle applications”", Power Electron. Transport., (Cat. No.98TH8349). Dearborn, MI, USA, USA, 1998, pp. 79-84..
[http://dx.doi.org/10.1109/PET.1998.731062]
[18]
L. Kere, M. Doumbia, S. Kelouwani, and K. Agbossou, "Cascaded H-bridge multilevel converter for electric vehicle speed control", In: IEEE Vehicle Power and Propulsion Conference (VPPC), 2015,
[http://dx.doi.org/10.1109/VPPC.2015.7352907]
[19]
F. Filho, Y. Cao, and L. Tolbert, "11-level cascaded H-bridge grid-tied inverter interface with solar panels", In Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2010
[http://dx.doi.org/10.1109/APEC.2010.5433387]
[20]
L. Liu, H. Li, and Y. Xue, "A coordinated active and reactive power control strategy for grid-connected cascaded Photovoltaic (PV) system in high voltage high power applications", In Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Long Beach, CA, USA, 2019, pp. 1301-1308.,
[21]
S. Du, J. Liu, J. Lin, and Y. He, "A novel DC voltage control method for STATCOM based on hybrid multilevel H-bridge converter", IEEE Trans. Power Electron., vol. 28, no. 1, pp. 101-111, 2013.
[http://dx.doi.org/10.1109/TPEL.2012.2195508]
[22]
J. George, and A. Benny, "Real-time harmonic minimization of multilevel inverters used in photovoltaic systems", In Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) Tiruchengode, India 2019,
[23]
M. Saravanan, and R. Jeyabharath, "“Three phase 15 level cascaded H-bridges multilevel inverter for motor drives”, American-Eurasian J", Scient. Res., vol. 11, no. 1, pp. 21-27, 2016.
[24]
M. Malinowski, K. Gopakumar, J. Rodriguez, and M. Pérez, "A Survey on Cascaded Multilevel Inverters", IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197-2206, 2010.
[http://dx.doi.org/10.1109/TIE.2009.2030767]
[25]
M. Memon, S. Mekhilef, M. Mubin, and M. Aamir, "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review", Renew. Sustain. Energy Rev., vol. 82, pp. 2235-2253, 2018.
[http://dx.doi.org/10.1016/j.rser.2017.08.068]
[26]
I. Colak, E. Kabalci, and R. Bayindir, "Review of multilevel voltage source inverter topologies and control schemes", Energy Convers. Manage., vol. 52, no. 2, pp. 1114-1128, 2011.
[http://dx.doi.org/10.1016/j.enconman.2010.09.006]
[27]
S.H. Hosseini, M. Ahmadi, and S. Ghassem Zadeh, "Reducing the output harmonics of cascaded H-bridge multilevel inverter for electric vehicle applications", In: The 8th Electrical Engineering! Electronics, Computer, Telecommunications and Information Technology (ECTI) Association of Thailand Conference 2011. 2011, pp. 752-755..
[http://dx.doi.org/10.1109/ECTICON.2011.5947949]
[28]
B. Rajesh, "Comparison of harmonics and THD suppression with three and 5 level multilevel inverter-cascaded H-bridge", In International Conference on Circuit, Power and Computing Technologies (ICCPCT), 2016pp. 1-6
[29]
G. Ghosh, Comparison of different techniques for selective harmonic elimination PWM in inverters- A review.In Electronics and Mobile Communication Conference., IEMCON: Vancouver, BC, Canada, 2017, pp. 509-515.
[30]
M. Dahidah, G. Konstantinou, and V. Agelidis, "A Review of multilevel selective harmonic elimination PWM: Formulations, solving algorithms, implementation and applications", IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4091-4106, 2015.
[http://dx.doi.org/10.1109/TPEL.2014.2355226]
[31]
F. Armi, L. Manai, and M. Besbes, "Newton Raphson algorithm for selective harmonic elimination in asymmetrical CHB multilevel inverter using FPGA ", In: Proceedings of Engineering & Technology, 2016, pp. 887-894.
[32]
M. Rasheed, R. Omar, A. Sabari, and M. Sulaiman, "Validation of a three-phase cascaded multilevel inverter based on newton Raphson (N.R.)", Indian J. Sci. Technol., vol. 9, no. 20, pp. 1-13, 2016.
[http://dx.doi.org/10.17485/ijst/2016/v9i20/89357]
[33]
F. Chabni, R. Taleb, and A. Belboula, "Comparative analysis of NR and DE methods for multilevel inverters: An experimental case study", Rev. Énerg. Renouv., vol. 20, no. 2, pp. 219-230, 2017.
[34]
M. Al-Hitmi, S. Ahmad, A. Iqbal, S. Padmanaban, and I. Ashraf, "Selective harmonic elimination in a wide modulation range using modified newton-Raphson and pattern generation methods for a multilevel inverter", Energies, vol. 11, no. 2, pp. 458-473, 2018.
[http://dx.doi.org/10.3390/en11020458]
[35]
A. K. M., "Parkash, and M. M. C., “Selective harmonic elimination for multilevel inverter in Statcom", Int. J. Res. Appl. Sci. Eng. Technol., vol. V, no. VIII, pp. 1108-1114, 2017.
[http://dx.doi.org/10.22214/ijraset.2017.8156]
[36]
A. Parkash, Harmonics Elimination in Cascade Multilevel Inverters Using Newton-Raphson and Genetic Algorithm, pp. 1-5.,
[37]
G.M. Hashem, and R.M. Hossam, "“Selective harmonic elimination PWM for cascaded multilevel inverter based genetic algorithm and newton raphson: A comparison study”, Int", Review on Modelling and Simulations, vol. 6, no. 5, 2013.
[38]
A. Kumar, D. Chatterjee, and A. Dasgupta, "Harmonic mitigation of cascaded multilevel inverter with non-equal DC sources using hybrid newton Raphson method", In 4th International Conference on Power, Control & Embedded Systems (ICPCES), 2017
[http://dx.doi.org/10.1109/ICPCES.2017.8117653]
[39]
Z. Salam, S.S. Yee, and Y. Saleem, "On the improved computational speed and convergence of the Newton Raphson iteration method for selective harmonics elimination PWM applied to cascaded multilevel inverter with equal and non‐equal DC sources", In: COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32. 2013, no. 3, pp. 901-922.,
[http://dx.doi.org/10.1108/03321641311305827]
[40]
W.A. Halim, T.N. Ariana, T. Azam, K. Applasamy, and A. Jidin, "Selective harmonic elimination based on Newton-Raphson method for cascaded H-bridge multilevel inverter", Int. J. Power Electron. Drive Syst., vol. 8, no. 3, pp. 1193-1202, 2017.
[41]
I.A. Adeyemo, D.O. Aborisade, and J.A. Ojo, "Selective harmonic elimination in multilevel inverter using real coded genetic algorithm initialized Newton Raphson Method", Int. J. Eng. Res. Technol. (Ahmedabad), vol. 2, no. 9, pp. 3107-3113, 2013.
[42]
T. Sumithira, and A.N. Kumar, "Elimination of harmonics in multilevel inverters connected to solar photovoltaic systems using ANFIS: An experimental case study", J. Appl. Res. Technol., vol. 11, no. 1, pp. 124-132, 2013.
[http://dx.doi.org/10.1016/S1665-6423(13)71521-9]
[43]
K. Prasadpanda, B.P. Sahu, D. Samal, and Y. Gopal, "Switching angle estimation using GA toolbox for simulation of cascaded multilevel inverter", Int. J. Comput. Appl., vol. 73, no. 21, pp. 21-26, 2013.
[http://dx.doi.org/10.5120/13018-0073]
[44]
B. Ozpineci, L. Tolbert, and J. Chiasson, "Harmonic optimization of multilevel converters using genetic algorithms", In: IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), vol. 3, Sep 2005, no. 3, pp. 92-95.,
[http://dx.doi.org/10.1109/LPEL.2005.856713]
[45]
C. Sarkar, S. Saha, P.K. Saha, and G.K. Panda, "Selective harmonics elimination of cascaded multilevel inverter using genetic algorithm", Int. J. Adv. Res. Electron. Commun. Eng., vol. 2, no. 2, pp. 935-939, 2013.
[46]
D. Kumar, S. Pattnaik, and V. Singh, "Genetic algorithm based approach for optimization of conducting angles in cascaded multilevel inverter", Eng. Res. Appl., vol. 2, no. 3, pp. 2389-2395, 2012.
[47]
M. Dahidah, and V. Agelidis, "A hybrid genetic algorithm for selective harmonic elimination control of a multilevel inverter with non-equal DC sources", In International Conference on Power Electronics and Drives Systems, 2005pp. 1205-1210
[http://dx.doi.org/10.1109/PEDS.2005.1619871]
[48]
F.H. Dupont, J.R. Pinheiro, V.F. Montagner, and H. Pinheiro, GA Optimization to Mitigate Voltage Harmonics of Cascade Multilevel Converters., IEEE, 2015, pp. 461-466.
[http://dx.doi.org/10.1109/Chilecon.2015.7400418]
[49]
F. Filho, H.Z. Maia, T.H.A. Mateus, B. Ozpineci, L.M. Tolbert, and J.O.P. Pinto, "Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying DC sources", IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1955-1962, 2013.
[http://dx.doi.org/10.1109/TIE.2012.2224072]
[50]
K. Bommassani, and P.R. Prasad, "Harmonic reduction in multilevel inverter based on GA optimization", Int. J. Scient. Technol. Res., vol. 3, no. 5, pp. 316-321, 2014.
[51]
S.V. Pawar, Int. J. Adv. Res. Comput. Commun. Eng., vol. 4, no. 6, pp. 386-390, 2015.
[52]
S. Jeevananthan, L. Prabu, and P. Dananjayan, "Evolutionary computing based area integration PWM technique for multilevel inverters", In India International Conference on Power Electronics, 2006pp. 62-67
[http://dx.doi.org/10.1109/IICPE.2006.4685342]
[53]
M.S.A. Dahidah, and V.G. Agelidis, "Selective harmonic elimination PWM control for cascaded multilevel voltage source converters: A generalized formula", IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1620-1630, 2008.
[http://dx.doi.org/10.1109/TPEL.2008.925179]
[54]
P. Song, E. Guan, L. Zhao, and S. Liu, "Hybrid electric vehicles with multilevel cascaded converter using genetic algorithm", In: 1ST IEEE Conference on Industrial Electronics and Applications, 2006.
[http://dx.doi.org/10.1109/ICIEA.2006.257211]
[55]
H. Karaca, and E. Bektaş, "GA based selective harmonic elimination for multilevel inverter with reduced number of switches", In Proceedings of the World Congress on Engineering and Computer Science, vol. 1, 2015
[56]
J. Diaz, and A. Pardo, "Particle swarm optimization to minimize THD in multilevel inverters", Int. J. Circ. Electron., vol. 2, pp. 22-29, 2017.
[57]
A. Jain, "Particle swarm optimization approach for mitigation of harmonics in multilevel inverters: A review", Int. J. Eng. Res. Gen. Sci., vol. 3, no. 3, pp. 1308-1317, 2015.
[58]
A. Papriwal, A. Mahor, and A. Sirsat, "Review of Mitigation of Harmonics in Multilevel Inverters using PSO", Int. J. Electric. Electron., vol. 2, no. 4, pp. 65-72, 2012.
[59]
S. Ali, R. Kannan, and M. Kumar, "Exploration of modulation index in multi-level inverter using particle swarm optimization algorithm", Procedia Comput. Sci., vol. 105, pp. 144-152, 2017.
[http://dx.doi.org/10.1016/j.procs.2017.01.194]
[60]
A. Al-Othman, and T. Abdelhamid, "Elimination of harmonics in multilevel inverters with non-equal DC sources using PSO", Energy Convers. Manage., vol. 50, no. 3, pp. 756-764, 2009.
[http://dx.doi.org/10.1016/j.enconman.2008.09.047]
[61]
S. Debnath, and R. Ray, "Harmonic elimination in multilevel inverter using GA and PSO: A comparison", In Conference on Electrical, Electronics and Computer Science, 2012
[62]
V. Gupta, and R. Mahanty, "Optimized switching scheme of cascaded H-bridge multilevel inverter using PSO", Electric. Power Energ. Syst., vol. 64, pp. 699-707, 2015.
[http://dx.doi.org/10.1016/j.ijepes.2014.07.072]
[63]
M. Hagh, H. Taghizadeh, and K. Razi, "Harmonic minimization in multilevel inverters using modified species-based particle swarm optimization", IEEE Trans. Power Electron., vol. 24, no. 10, pp. 2259-2267, 2009.
[http://dx.doi.org/10.1109/TPEL.2009.2022166]
[64]
R. Mohanty, D. Chatterjee, and G. Sengupta, "Design of PSO based cascaded multilevel inverter with unequal DC sources", IACSIT Int. J. Eng. Technol., vol. 7, no. 438, pp. 7-10, 2018.
[http://dx.doi.org/10.14419/ijet.v7i4.38.24310]
[65]
B. Ismail, M. Isa, S. Syed Hassan, R. Che Ismail, M. Arshad, and M. Hafizi Rohani, "Application of PSO to determine the HEPWM switching angles of a three phase cascaded multilevel inverter", In IEEE Student Conference on Research and Development (SCOReD), 2015pp. 234-238
[http://dx.doi.org/10.1109/SCORED.2015.7449331]
[66]
K. Kaviani, S. Fathi, N. Farokhnia, and A. Ardakani, "PSO, an effective tool for harmonics elimination and optimization in multi-level inverters", In IEEE Conference of Industrial Engineering and Applications, 2009pp. 2902-2907
[http://dx.doi.org/10.1109/ICIEA.2009.5138740]
[67]
S. Patil, and S. Kadwane, "Application of optimization technique in SHE controlled multilevel inverter", In International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017), 2017pp. 26-30
[http://dx.doi.org/10.1109/ICECDS.2017.8390050]
[68]
R. Ray, D. Chatterjee, and S. Goswami, "Harmonics elimination in a multilevel inverter using the particle swarm optimisation technique", IET Power Electron., vol. 2, no. 6, pp. 646-652, 2009.
[http://dx.doi.org/10.1049/iet-pel.2008.0180]
[69]
R. Ray, D. Chatterjee, and S. Goswami, "A PSO based optimal switching technique for voltage harmonic reduction of multilevel inverter", Expert Syst. Appl., vol. 37, no. 12, pp. 7796-7801, 2010.
[http://dx.doi.org/10.1016/j.eswa.2010.04.060]
[70]
H. Taghizadeh, and M.T. Hagh, "Harmonic elimination of cascade multilevel inverters with nonequal DC sources using particle swarm optimization", IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3678-3684, 2010.
[http://dx.doi.org/10.1109/TIE.2010.2041736]
[71]
Z. Salam, A.M. Amjad, and A. Majed, "Using differential evolution to solve the harmonic elimination pulse width modulation for five level cascaded multilevel voltage source inverter", In First International Conference on Artificial Intelligence, Modelling & Simulation, 2013pp. 35-40
[http://dx.doi.org/10.1109/AIMS.2013.15]
[72]
A. Amjad, Z. Salam, and A. Saif, "Application of differential evolution for cascaded multilevel VSI with harmonics elimination PWM switching", Int. J. Electr. Power Energy Syst., vol. 64, pp. 447-456, 2015.
[http://dx.doi.org/10.1016/j.ijepes.2014.07.023]
[73]
S. Das, and P. Suganthan, "Differential evolution: A survey of the state-of-the-art", IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4-31, 2011.
[http://dx.doi.org/10.1109/TEVC.2010.2059031]
[74]
S. Letha, T. Thakur, and J. Kumar, "Harmonic elimination in a solar powered cascaded multilevel inverter using genetic algorithm and differential evolution optimization techniques", In Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition IMECE2015 Houston, Texas, USA, 2015, pp. 1-9.,
[75]
S. Pawar, Engineering & Technology, vol. 2, no. 5, pp. 144-150, 2015.
[76]
A. Majed, Z. Salama, and A. Amjad, "Harmonics elimination PWM based direct control for 23-levelmultilevel distribution STATCOM using differential evolution algorithm", Electr. Power Syst. Res., vol. 152, pp. 48-59, 2017.
[http://dx.doi.org/10.1016/j.epsr.2017.06.022]
[77]
R. Taleb, and M. Helaimi, "Differential Evolution based SHEPWM for seven-level inverter with non-equal DC Sources", Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 9, pp. 304-311, 2016.
[http://dx.doi.org/10.14569/ijacsa.2016.070943]
[78]
Z. Salam, A. Majed, and A. Amjad, "Design and implementation of 15-level cascaded multi-level voltage source inverter with harmonics elimination pulse-width modulation using differential evolution method", IET Power Electron., vol. 8, no. 9, pp. 1740-1748, 2015.
[http://dx.doi.org/10.1049/iet-pel.2014.0482]
[79]
Y. Yu, P. Zhang, Z. Song, and F. Chai, "Composite differential evolution algorithm for SHM with low carrier ratio", IET Power Electron., vol. 11, no. 6, pp. 1101-1109, 2018.
[http://dx.doi.org/10.1049/iet-pel.2017.0588]
[80]
A. Edalatian, and K. Abbaszadeh, "Harmonic minimization in cascaded H-bridge multilevel inverter by ICA", Int. J. Tech. Physic. Prob. Eng., vol. 5, no. 17, pp. 72-76, 2013.
[81]
A. Ajami, M. Oskuee, and A. Mokhberdoran, "Implementation of novel technique for selective harmonic elimination in multilevel inverters based on ICA", Adv. Power Electron., vol. 2013, pp. 1-10, 2013.
[http://dx.doi.org/10.1155/2013/847365]
[82]
A. Ajami, M. Oskuee, A. Mokhberdoran, and H. Shokri, "Selective harmonic elimination method for wide range of modulation indexes in multilevel inverters using ICA", J. Cent. South Univ., vol. 21, no. 4, pp. 1329-1338, 2014.
[http://dx.doi.org/10.1007/s11771-014-2070-9]
[83]
A. Aghazadeh, F. Arasteh, T. Yousefi, and S. Niyaragh, "Using imperialist competitive algorithm to optimize the switching angle of the multilevel inverter in order to eliminate low order harmonics considering the variation of DC voltage sources", In International Conference on Non-Linear System & Optimization in Computer & Electrical Engineering, 2015
[84]
Z. Gong, Q. Cui, X. Zheng, P. Dai, and R. Zhu, "An improved imperialist competitive algorithm to solve the selected harmonic elimination pulse-width modulation in multilevel converters", Energies, vol. 11, no. 11, pp. 1-16, 2018.
[http://dx.doi.org/10.3390/en11113080]
[85]
M. Etesami, N. Farokhnia, and S. Fathi, "Minimization of THD in multilevel inverter’s output voltage waveform using imperialist competitive algorithm", In 6th IEEE Conference on Industrial Electronics and Applications, 2011pp. 2216-2221
[http://dx.doi.org/10.1109/ICIEA.2011.5975958]
[86]
M. Etesami, N. Farokhnia, and S. Fathi, "A method based on Imperialist Competitive Algorithm (ICA), aiming to mitigate harmonics in multilevel inverters", In: Drive Systems and Technologies Conference, 2011, pp. 32-37..
[http://dx.doi.org/10.1109/PEDSTC.2011.5742441]
[87]
E. Gargari, and C. Lucas, "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition", In: IEEE Congress on Evolutionary Computation (CEC 2007, 2007, pp. 4661-4667.
[http://dx.doi.org/10.1109/CEC.2007.4425083]
[88]
Y. Naderi, S. Hosseini, A. Mahari, and R. Naderi, "A new strategy for harmonic minimization based on triple switching of multilevel converters", In 21st Iranian Conference on Electrical Engineering (ICEE), 2013
[http://dx.doi.org/10.1109/IranianCEE.2013.6599883]
[89]
X. Yang, and S. Deb, "Cuckoo search via levy flights", In World Congress on Nature & Biologically Inspired Computing (NaBIC 2009) Coimbatore, India, 2009, pp. 210-214.,
[http://dx.doi.org/10.1109/NABIC.2009.5393690]
[90]
A. Ajami, B. Mohammadzadeh, and M. Oskuee, "Utilizing the cuckoo optimization algorithm for selective harmonic elimination strategy in the cascaded multilevel inverter", ECTI Transact. Elec. Eng. Electron. Commun., vol. 12, no. 1, pp. 7-15, 2013.
[91]
L. Varghese, and B. Maraivanan, "Harmonic elimination in multilevel inverters using cuckoos search algorithm", Adv. Nat. Appl. Sci., vol. 11, no. 3, pp. 190-198, 2017.
[92]
K.M. Ravi Eswar, D. Thomas, V. Guptha, and M. Kousalya, "Applying selective harmonic elimination in cascaded multilevel inverter using cuckoo algorithm", Int. J. Engine Res., vol. 4, no. 09, pp. 270-273, 2015.
[http://dx.doi.org/10.17577/ijertv4is090370]
[93]
D. Singla, and P. Sharma, "Optimal minimization of THD and loss analysis in multilevel inverter using cuckoo search algorithm", J. Emerg. Technol. Innov. Res., vol. 5, no. 8, pp. 1104-1110, 2018.
[94]
N.V. Kumar, V.K. Chinnaiyan, M. Pradish and and M.S. Divekar, "Selective Harmonic elimination : An comparative analysis for seven level inverter", In: IEEE Students’ Technology Symposium (TechSym), 2016, pp. 157-162,
[95]
T. Manjunath, and A. Kusagur, "Multilevel inverter fault diagnosis using optimised radial basis neural network –a novel performance enhancement", In International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT) Mysuru, India, 2016,pp. 102-105.,
[http://dx.doi.org/10.1109/ICEECCOT.2016.7955194]
[96]
H. Massrur, T. Niknam, M. Mardaneh, and A. Rajaei, "Harmonic elimination in multilevel inverters under unbalanced voltages and switching deviation using a new stochastic strategy", IEEE Trans. Industr. Inform., vol. 12, no. 2, pp. 716-725, 2016.
[http://dx.doi.org/10.1109/TII.2016.2529589]
[97]
N. Yazdani, A. Sequerloo, and M. Panahi, "Reduction of harmonic in multilevel inverters using FA and LAFA algorithms", J. Basic Appl. Sci. Res., vol. 3, no. 1, pp. 130-135, 2013.
[98]
M. Rasheed, R. Omar, and M. Sulaiman, "Harmonic minimization of a single phase cascade H-bridge multilevel inverters using firefly algorithm", In 5th IET International Conference on Clean Energy and Technology (CEAT2018), 2018
[http://dx.doi.org/10.1049/cp.2018.1295]
[99]
T. Ramalingam, "Harmonic optimization in cascaded multi level inverter using firefly algorithm", J. Theoret. Appl. Inform. Technol., vol. 64, no. 3, pp. 773-780, 2019.
[100]
X.S. Yang, “Firefly algorithms for multimodal optimization”, Stochastic Algorithms: Foundations and Applications. SAGA 2009, vol. 5792. Springer: Berlin, Heidelberg, 2009,
[http://dx.doi.org/10.1007/978-3-642-04944-6_14]
[101]
M.G. Sundari, M. Rajaram, and S. Balaraman, "Application of improved firefly algorithm for programmed PWM in multilevel inverter with adjustable DC sources", Appl. Soft Comput., vol. 41, pp. 169-179, 2016.
[http://dx.doi.org/10.1016/j.asoc.2015.12.036]
[102]
N. Karthik, and R. Arul, "Harmonic elimination in cascade multilevel inverters using firefly algorithm", In: International Conference on Circuit, Power and Computing Technologies [ICCPCT], Nagercoil, India, 2014, pp. 838-843,
[http://dx.doi.org/10.1109/ICCPCT.2014.7054758]
[103]
L. Manai, M. Dabboussi, F. Armi, and M. Besbes, "Cascaded multilevel inverter control considering low harmonic content based on comparison study between firefly and newton Raphson algorithm", In 4th International Conference on Control Engineering & Information Technology (CEIT), 2016
[104]
R.E.M. Belkacem, R. Benzid, and N. Bouguechal, "Multilevel inverter with optimal THD through the firefly algorithm", Archiv. Electric. Eng., vol. 66, no. 1, pp. 141-154, 2017.
[http://dx.doi.org/10.1515/aee-2017-0010]
[105]
F. Nawaz, M. Yaqoob, Z. Ming, and M. Taha Ali, “Low Order Harmonics Minimization in Multilevel Inverters using Firefly Algorithm”, in 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference., APPEEC: Kowloon, China, 2013, pp. 1-6.
[106]
N. Ould Cherchali, A. Tlemçani, A. Morsli, M.S. Boucherit, and L. Barazane, "Application of firefly algorithm on the SHEPWM strategy for the multilevel inverters", In International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM) Tunis, Tunisia, 2014, pp. 1-6.,
[http://dx.doi.org/10.1109/CISTEM.2014.7076975]
[107]
K. Ganesan, K. Barathi, P. Chandrasekar, and D. Balaji, "Selective harmonic elimination of cascaded multilevel inverter using BAT algorithm", Procedia Technol., vol. 21, pp. 651-657, 2015.
[http://dx.doi.org/10.1016/j.protcy.2015.10.078]
[108]
X.S. Yang, A new metaheuristic bat-inspired algorithm.In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence., vol. 284. Springer: Berlin, Heidelberg, 2010.
[http://dx.doi.org/10.1007/978-3-642-12538-6_6]
[109]
D. Wolpert, and W. Macready, "No free lunch theorems for optimization", IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, 1997.
[http://dx.doi.org/10.1109/4235.585893]
[110]
R. Venkata Rao, "Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems", Dec. Sci. Lett., 2016, pp. 1-30..
[111]
A. Kaveh, and V. Mahdavi, "Colliding bodies optimization: A novel meta-heuristic method", Comput. Struc., vol. 139, pp. 18-27, 2014.
[http://dx.doi.org/10.1016/j.compstruc.2014.04.005]
[112]
E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: A gravitational search algorithm", Inf. Sci., vol. 179, no. 13, pp. 2232-2248, 2009.
[http://dx.doi.org/10.1016/j.ins.2009.03.004]
[113]
A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, "Harris hawks optimization: Algorithm and applications", Future Gener. Comput. Syst., vol. 97, pp. 849-872, 2019.
[http://dx.doi.org/10.1016/j.future.2019.02.028]
[114]
T. Biyanto, "Killer whale algorithm: An algorithm inspired by the life of killer whale", Procedia Comput. Sci., vol. 124, pp. 151-157, 2017.
[http://dx.doi.org/10.1016/j.procs.2017.12.141]
[115]
I. Fister, X. Yang, I. Fister, J. Brest, and D. Fister, "A brief review of nature-inspired algorithms for optimization", Elektrotehniˇski Vestnik, vol. 80, no. 3, pp. 1-7, 2013.
[116]
U. Andral, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, "Fiber laser mode locked through an evolutionary algorithm", Optica, vol. 2, no. 4, p. 275, 2015.
[http://dx.doi.org/10.1364/OPTICA.2.000275]
[117]
Y. Wang, "An all‐optical, actively Q-switched fiber laser by an antimonene-based optical modulator", Laser Photonics Rev., vol. 13, no. 4, 2019.1800313..
[http://dx.doi.org/10.1002/lpor.201800313]
[118]
C. Wang, Yunzheng Wang, Xiantao Jiang, Jiawei Xu, “MXene Ti 3 C 2 T x: A promising photothermal conversion material and application in all-optical modulation and all-optical information loading, Adv. Optic. Mater., vol. 7, no. 12, 2019,
[http://dx.doi.org/10.1002/adom.201900060]]
[119]
M. Kardan, "Improved stabilization of nonlinear DC microgrids: Cubature Kalman filter approach", IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 5104-5112, 2018.
[http://dx.doi.org/10.1109/TIA.2018.2848959]
[120]
M. Khooban, "Robust frequency regulation in mobile microgrids: HIL implementation", IEEE Syst. J., vol. 13, no. 4, pp. 1-11, 2019.
[http://dx.doi.org/10.1109/JSYST.2019.2911210]
[121]
N. Vafamand, M. Khooban, T. Dragicevic, and F. Blaabjerg, "Networked fuzzy predictive control of power buffers for dynamic stabilization of DC microgrids", IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1356-1362, 2019.
[http://dx.doi.org/10.1109/TIE.2018.2826485]
[122]
N. Vafamand, M. Khooban, T. Dragicevic, F. Blaabjerg, and J. Boudjadar, "Robust non-fragile fuzzy control of uncertain DC microgrids feeding constant power loads", IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11300-11308, 2019.
[http://dx.doi.org/10.1109/TPEL.2019.2896019]
[123]
N. Vafamand, S. Yousefizadeh, M. Khooban, J. Bendtsen, and T. Dragicevic, "Adaptive TS fuzzy-based MPC for DC microgrids with dynamic CPLs: Nonlinear power observer approach", IEEE Syst. J., vol. 13, no. 3, pp. 3203-3210, 2019.
[http://dx.doi.org/10.1109/JSYST.2018.2880135]
[124]
N. Vafamand, M. Khooban, T. Dragicevic, J. Boudjadar, and M. Asemani, "Time-delayed stabilizing secondary load frequency control of shipboard microgrids", IEEE Syst. J., vol. 13, no. 3, pp. 3233-3241, 2019.
[http://dx.doi.org/10.1109/JSYST.2019.2892528]
[125]
N. Rai, and S. Chakravorty, "Generalized formulations and solving techniques for selective harmonic elimination PWM strategy: A review", J. Institut. Eng.. Series B: India, 2019..
[http://dx.doi.org/10.1007/s40031-019-00411-1]
[126]
N. Tung, S. Chakravorty, and H. Bhullar, "Gravity local search inspired particle swarm algorithm for economic power dispatch planning problem in small scale system", Int. J. Grid Distrib. Comput., vol. 9, no. 5, pp. 111-124, 2016.
[http://dx.doi.org/10.14257/ijgdc.2016.9.5.11]
[127]
N. Tung, and S. Chakravorty, "Grey wolf optimization for active power dispatch planning problem considering generator constraints and valve point effect", Int. J. Hybrid Inform. Technol., vol. 8, no. 12, pp. 117-134, 2015.
[http://dx.doi.org/10.14257/ijhit.2015.8.12.07]
[128]
N. Tung, and S. Chakravorty, "Active power dispatch planning using pattern search", Int. J. Electric. Energ., vol. 2, no. 3, 2014..
[http://dx.doi.org/10.12720/ijoee.2.3.216-220]
[129]
N. Tung, and S. Chakravorty, "Solution to economic power dispatch planning problem considering generator constraints using artificial bee colony algorithm", Int. J. Hybrid Inform. Technol., vol. 9, no. 5, pp. 399-406, 2016.
[http://dx.doi.org/10.14257/ijhit.2016.9.5.34]
[130]
N. Tung, and S. Chakravorty, "Neuro inspired genetic hybrid algorithm for active power dispatch planning problem in small scale system", Int. J. Hybrid Inform. Technol., vol. 8, no. 9, pp. 171-184, 2015.
[http://dx.doi.org/10.14257/ijhit.2015.8.9.17]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy