Review Article

关节软骨变性的分子级联

卷 21, 期 9, 2020

页: [838 - 848] 页: 11

弟呕挨: 10.2174/1389450121666200214121323

价格: $65

摘要

保留关节软骨是保护滑膜关节免于成为骨关节炎(OA)关节的有效方法。了解关节软骨变性的分子基础将为开发软骨保存药物提供有价值的信息。当前,尚无可用于在OA发生过程中预防关节软骨破坏的疾病缓解OA药物(DMOAD)。当前用于OA的药物治疗集中于减轻疾病晚期的关节疼痛,肿胀和炎症。但是,根据过去15到20年间几个独立研究实验室和我们实验室的发现,我们相信我们对关节软骨变性具有功能性分子的理解。在这篇综述文章中,我们介绍并讨论实验证据,以证明关节软骨退化的分子事件的顺序链,该分子链由转化生长因子β1,高温需求A1(丝氨酸蛋白酶),盘状蛋白结构域受体2(天然纤维胶原蛋白的细胞表面受体酪氨酸激酶)和基质金属蛋白酶13(一种细胞外基质降解酶)。如我们强烈怀疑的那样,如果该分子途径负责引发和加速关节软骨变性,最终导致进行性关节衰竭,那么这些分子可能是DMOADs发育的理想治疗靶标。

关键词: TGF-β1,HTRA1,DDR2,MMP-13,关节软骨,变性,骨关节炎。

图形摘要

[1]
Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000; 133(8): 635-46.
[http://dx.doi.org/10.7326/0003-4819-133-8-200010170-00016] [PMID: 11033593]
[2]
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012; 64(6): 1697-707.
[http://dx.doi.org/10.1002/art.34453] [PMID: 22392533]
[3]
Hamerman D. The biology of osteoarthritis. N Engl J Med 1989; 320(20): 1322-30.
[http://dx.doi.org/10.1056/NEJM198905183202006] [PMID: 2654632]
[4]
Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D’Lima D. Cartilage cell clusters. Arthritis Rheum 2010; 62(8): 2206-18.
[http://dx.doi.org/10.1002/art.27528] [PMID: 20506158]
[5]
Xu L, Polur I, Lim C, et al. Early-onset osteoarthritis of mouse temporomandibular joint induced by partial discectomy. Osteoarthritis Cartilage 2009; 17(7): 917-22.
[http://dx.doi.org/10.1016/j.joca.2009.01.002] [PMID: 19230720]
[6]
Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 2018; 71-72: 40-50.
[http://dx.doi.org/10.1016/j.matbio.2018.05.008] [PMID: 29800616]
[7]
Xu L, Peng H, Glasson S, et al. Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis Rheum 2007; 56(8): 2663-73.
[http://dx.doi.org/10.1002/art.22761] [PMID: 17665456]
[8]
Sunk IG, Bobacz K, Hofstaetter JG, et al. Increased expression of discoidin domain receptor 2 is linked to the degree of cartilage damage in human knee joints: a potential role in osteoarthritis pathogenesis. Arthritis Rheum 2007; 56(11): 3685-92.
[http://dx.doi.org/10.1002/art.22970] [PMID: 17968949]
[9]
Xu L, Flahiff CM, Waldman BA, et al. Osteoarthritis-like changes and decreased mechanical function of articular cartilage in the joints of mice with the chondrodysplasia gene (cho). Arthritis Rheum 2003; 48(9): 2509-18.
[http://dx.doi.org/10.1002/art.11233] [PMID: 13130470]
[10]
Hu K, Xu L, Cao L, et al. Pathogenesis of Osteoarthritis-like Changes in Joints of Type IX Collagen-Deficient Mice. Arthritis Rheum 2006; 9: 2891-900.
[http://dx.doi.org/10.1002/art.22040] [PMID: 16947423]
[11]
Henry SP, Liang S, Akdemir KC, de Crombrugghe B. The postnatal role of Sox9 in cartilage. J Bone Miner Res 2012; 27(12): 2511-25.
[http://dx.doi.org/10.1002/jbmr.1696] [PMID: 22777888]
[12]
Li H, Wang D, Yuan Y, Min J. New insights on the MMP-13 regulatory network in the pathogenesis of early osteoarthritis. Arthritis Res Ther 2017; 19(1): 248.
[http://dx.doi.org/10.1186/s13075-017-1454-2] [PMID: 29126436]
[13]
Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 1996; 97(3): 761-8.
[http://dx.doi.org/10.1172/JCI118475] [PMID: 8609233]
[14]
Fosang AJ, Last K, Knäuper V, Murphy G, Neame PJ. Degradation of cartilage aggrecan by collagenase-3 (MMP-13). FEBS Lett 1996; 380(1-2): 17-20.
[http://dx.doi.org/10.1016/0014-5793(95)01539-6] [PMID: 8603731]
[15]
Freije JM, Díez-Itza I, Balbín M, et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 1994; 269(24): 16766-73.
[PMID: 8207000]
[16]
Reboul P, Pelletier JP, Tardif G, Cloutier JM, Martel-Pelletier J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J Clin Invest 1996; 97(9): 2011-9.
[http://dx.doi.org/10.1172/JCI118636] [PMID: 8621789]
[17]
Shlopov BV, Lie WR, Mainardi CL, Cole AA, Chubinskaya S, Hasty KA. Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum 1997; 40(11): 2065-74.
[http://dx.doi.org/10.1002/art.1780401120] [PMID: 9365097]
[18]
Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001; 44(3): 585-94.
[http://dx.doi.org/10.1002/1529-0131(200103)44:3<585:AID-ANR107>3.0.CO;2-C] [PMID: 11263773]
[19]
Bau B, Gebhard PM, Haag J, Knorr T, Bartnik E, Aigner T. Relative messenger RNA expression profiling of collagenases and aggrecanases in human articular chondrocytes in vivo and in vitro. Arthritis Rheum 2002; 46(10): 2648-57.
[http://dx.doi.org/10.1002/art.10531] [PMID: 12384923]
[20]
Xu L, Servais J, Polur I, et al. Attenuation of osteoarthritis progression by reduction of discoidin domain receptor 2 in mice. Arthritis Rheum 2010; 62(9): 2736-44.
[http://dx.doi.org/10.1002/art.27582] [PMID: 20518074]
[21]
Neuhold LA, Killar L, Zhao W, et al. Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 2001; 107(1): 35-44.
[http://dx.doi.org/10.1172/JCI10564] [PMID: 11134178]
[22]
Little CB, Barai A, Burkhardt D, et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 2009; 60(12): 3723-33.
[http://dx.doi.org/10.1002/art.25002] [PMID: 19950295]
[23]
Karsdal MA, Madsen SH, Christiansen C, Henriksen K, Fosang AJ, Sondergaard BC. Cartilage degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase activity. Arthritis Res Ther 2008; 10(3): R63.
[http://dx.doi.org/10.1186/ar2434] [PMID: 18513402]
[24]
Verzijl N, DeGroot J, Thorpe SR, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 2000; 275(50): 39027-31.
[http://dx.doi.org/10.1074/jbc.M006700200] [PMID: 10976109]
[25]
Hellio Le Graverand-Gastineau MP. OA clinical trials: current targets and trials for OA. Choosing molecular targets: what have we learned and where we are headed? Osteoarthritis Cartilage 2009; 17(11): 1393-401.
[http://dx.doi.org/10.1016/j.joca.2009.04.009] [PMID: 19426849]
[26]
Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol 2011; 23(5): 471-8.
[http://dx.doi.org/10.1097/BOR.0b013e328349c2b1] [PMID: 21788902]
[27]
Wang Q, Rozelle AL, Lepus CM, et al. Identification of a central role for complement in osteoarthritis. Nat Med 2011; 17(12): 1674-9.
[http://dx.doi.org/10.1038/nm.2543] [PMID: 22057346]
[28]
Mengshol JA, Vincenti MP, Coon CI, Barchowsky A, Brinckerhoff CE. Interleukin-1 induction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes requires p38, c-Jun N-terminal kinase, and nuclear factor kappaB: differential regulation of collagenase 1 and collagenase 3. Arthritis Rheum 2000; 43(4): 801-11.
[http://dx.doi.org/10.1002/1529-0131(200004)43:4<801:AID-ANR10>3.0.CO;2-4] [PMID: 10765924]
[29]
Liacini A, Sylvester J, Li WQ, Zafarullah M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor kappa B (NF-kappa B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol 2002; 21(3): 251-62.
[http://dx.doi.org/10.1016/S0945-053X(02)00007-0] [PMID: 12009331]
[30]
Vincenti MP, Brinckerhoff CE. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 2002; 4(3): 157-64.
[http://dx.doi.org/10.1186/ar401] [PMID: 12010565]
[31]
Clements KM, Price JS, Chambers MG, Visco DM, Poole AR, Mason RM. Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum 2003; 48(12): 3452-63.
[http://dx.doi.org/10.1002/art.11355] [PMID: 14673996]
[32]
Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol 2013; 9(7): 400-10.
[http://dx.doi.org/10.1038/nrrheum.2013.44] [PMID: 23545735]
[33]
van Dalen SC, Blom AB, Slöetjes AW, et al. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthritis Cartilage 2017; 25(3): 385-96.
[http://dx.doi.org/10.1016/j.joca.2016.09.009] [PMID: 27654963]
[34]
Fukai A, Kamekura S, Chikazu D, et al. Lack of a chondroprotective effect of cyclooxygenase 2 inhibition in a surgically induced model of osteoarthritis in mice. Arthritis Rheum 2012; 64(1): 198-203.
[http://dx.doi.org/10.1002/art.33324] [PMID: 21905007]
[35]
Zhu M, Chen M, Zuscik M, et al. Inhibition of β-catenin signaling in articular chondrocytes results in articular cartilage destruction. Arthritis Rheum 2008; 58(7): 2053-64.
[http://dx.doi.org/10.1002/art.23614] [PMID: 18576323]
[36]
Zhu M, Tang D, Wu Q, et al. Activation of β-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult β-catenin conditional activation mice. J Bone Miner Res 2009; 24(1): 12-21.
[http://dx.doi.org/10.1359/jbmr.080901] [PMID: 18767925]
[37]
Saito T, Fukai A, Mabuchi A, et al. Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med 2010; 16(6): 678-86.
[http://dx.doi.org/10.1038/nm.2146] [PMID: 20495570]
[38]
Kim JH, Jeon J, Shin M, et al. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 2014; 156(4): 730-43.
[http://dx.doi.org/10.1016/j.cell.2014.01.007] [PMID: 24529376]
[39]
Loeser RF, Forsyth CB, Samarel AM, Im HJ. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J Biol Chem 2003; 278(27): 24577-85.
[http://dx.doi.org/10.1074/jbc.M304530200] [PMID: 12730223]
[40]
Pendás AM, Balbín M, Llano E, Jiménez MG, López-Otín C. Structural analysis and promoter characterization of the human collagenase-3 gene (MMP13). Genomics 1997; 40(2): 222-33.
[http://dx.doi.org/10.1006/geno.1996.4554] [PMID: 9119388]
[41]
Benbow U, Brinckerhoff CE. The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 1997; 15(8-9): 519-26.
[http://dx.doi.org/10.1016/S0945-053X(97)90026-3] [PMID: 9138284]
[42]
Porte D, Tuckermann J, Becker M, et al. Both AP-1 and Cbfa1-like factors are required for the induction of interstitial collagenase by parathyroid hormone.Oncogene 1999; 21(18(3)): 667-78.
[43]
Hess J, Porte D, Munz C. AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast specific element 2/AP-1 composite element. J Biol Chem 2001; 8(276(23)): 20029-38.
[44]
Hayashida M, Okazaki K, Fukushi J, Sakamoto A, Iwamoto Y. CCAAT/enhancer binding protein beta mediates expression of matrix metalloproteinase 13 in human articular chondrocytes in inflammatory arthritis. Arthritis Rheum 2009; 60(3): 708-16.
[http://dx.doi.org/10.1002/art.24332] [PMID: 19248099]
[45]
Otero M, Plumb DA, Tsuchimochi K, et al. E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress. J Biol Chem 2012; 287(5): 3559-72.
[http://dx.doi.org/10.1074/jbc.M111.265744] [PMID: 22158614]
[46]
Ionescu A, Kozhemyakina E, Nicolae C, Kaestner KH, Olsen BR, Lassar AB. FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program. Dev Cell 2012; 22(5): 927-39.
[http://dx.doi.org/10.1016/j.devcel.2012.03.011] [PMID: 22595668]
[47]
Forsyth CB, Pulai J, Loeser RF. Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum 2002; 46(9): 2368-76.
[http://dx.doi.org/10.1002/art.10502] [PMID: 12355484]
[48]
Zerlin M, Julius MA, Goldfarb M. NEP: a novel receptor-like tyrosine kinase expressed in proliferating neuroepithelia. Oncogene 1993; 8(10): 2731-9.
[PMID: 8397369]
[49]
Karn T, Holtrich U, Bräuninger A, et al. Structure, expression and chromosomal mapping of TKT from man and mouse: a new subclass of receptor tyrosine kinases with a factor VIII-like domain. Oncogene 1993; 8(12): 3433-40.
[PMID: 8247548]
[50]
Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1997; 1(1): 13-23.
[http://dx.doi.org/10.1016/S1097-2765(00)80003-9] [PMID: 9659899]
[51]
Shrivastava A, Radziejewski C, Campbell E, et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1997; 1(1): 25-34.
[http://dx.doi.org/10.1016/S1097-2765(00)80004-0] [PMID: 9659900]
[52]
Xiao L, Liu C, Wang B, et al. Targeting discoidin domain receptor 2 for the development of disease-modifying osteoarthritis drugsCartilage 2019. 1947603519852401 Epub ahead of print
[http://dx.doi.org/10.1177/1947603519852401] [PMID: 31177815]
[53]
Xu L, Polur I, Servais JM, et al. Intact pericellular matrix of articular cartilage is required for unactivated discoidin domain receptor 2 in the mouse model. Am J Pathol 2011; 179(3): 1338-46.
[http://dx.doi.org/10.1016/j.ajpath.2011.05.023] [PMID: 21855682]
[54]
Manning LB, Li Y, Chickmagalur NS, Li X, Xu L. Discoidin Domain Receptor 2 as a Potential Therapeutic Target for Development of Disease-Modifying Osteoarthritis Drugs. Am J Pathol 2016; 186(11): 3000-10.
[http://dx.doi.org/10.1016/j.ajpath.2016.06.023] [PMID: 27640147]
[55]
Leitinger B, Steplewski A, Fertala A. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 2004; 344(4): 993-1003.
[http://dx.doi.org/10.1016/j.jmb.2004.09.089] [PMID: 15544808]
[56]
Konitsiotis AD, Raynal N, Bihan D, Hohenester E, Farndale RW, Leitinger B. Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. J Biol Chem 2008; 283(11): 6861-8.
[http://dx.doi.org/10.1074/jbc.M709290200] [PMID: 18201965]
[57]
Osawa M, Nishida N, Goshima N, Nomura N, Shimada I. Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO J 2007; 26: 4168-76.
[http://dx.doi.org/10.1038/sj.emboj.7601833]
[58]
Suutre S, Kerna I, Lintrop M, et al. Evaluation of correlation of articular cartilage staining for DDR2 and proteoglycans with histological tissue damage and the results of radiographic assessment in patients with early stages of knee osteoarthritis. Int J Clin Exp Pathol 2015; 8(5): 5658-65.
[PMID: 26191278]
[59]
Holt DW, Henderson ML, Stockdale CE, et al. Osteoarthritis-like changes in the heterozygous sedc mouse associated with the HtrA1-Ddr2-Mmp-13 degradative pathway: a new model of osteoarthritis. Osteoarthritis Cartilage 2012; 20(5): 430-9.
[http://dx.doi.org/10.1016/j.joca.2011.11.008] [PMID: 22155431]
[60]
Klatt AR, Zech D, Kühn G, et al. Discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary human chondrocytes. J Pathol 2009; 218(2): 241-7.
[http://dx.doi.org/10.1002/path.2529] [PMID: 19267386]
[61]
Vonk LA, Doulabi BZ, Huang C, Helder MN, Everts V, Bank RA. Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin &alpha;1 and discoidin domain receptor 2: a protein kinase C-dependent pathway. Rheumatology (Oxford) 2011; 50(3): 463-72.
[http://dx.doi.org/10.1093/rheumatology/keq305] [PMID: 21075784]
[62]
Poole CA, Flint MH, Beaumont BW. Chondrons extracted from canine tibial cartilage: preliminary report on their isolation and structure. J Orthop Res 1988; 6(3): 408-19.
[http://dx.doi.org/10.1002/jor.1100060312] [PMID: 3357089]
[63]
Poole CA. Articular cartilage chondrons: form, function and failure. J Anat 1997; 191(Pt 1): 1-13.
[http://dx.doi.org/10.1046/j.1469-7580.1997.19110001.x] [PMID: 9279653]
[64]
Poole CA, Matsuoka A, Schofield JR. Chondrons from articular cartilage. III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthritis Rheum 1991; 34(1): 22-35.
[http://dx.doi.org/10.1002/art.1780340105] [PMID: 1984777]
[65]
Tang X, Muhammad H, McLean C. Miotla-ZarebskaJ, Fleming J, Didangelos A, Önnerfjord P, Leask A, Saklatvala J, Vincent TL: Connectivetissue growth factor contributes to joint homeostasis and osteoarthritisseverity by controlling the matrix sequestration and activation of latent TGF? Ann Rheum Dis 2018; 77(9): 1372-80.
[http://dx.doi.org/10.1136/annrheumdis-2018-212964] [PMID: 29925506]
[66]
Wilusz RE, Zauscher S, Guilak F. Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage. Osteoarthritis Cartilage 2013; 21(12): 1895-903.
[http://dx.doi.org/10.1016/j.joca.2013.08.026] [PMID: 24025318]
[67]
Felka T, Rothdiener M, Bast S, et al. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Osteoarthritis Cartilage 2016; 24(7): 1200-9.
[http://dx.doi.org/10.1016/j.joca.2016.02.001] [PMID: 26879798]
[68]
Tang X, Muhammad H, McLean C, et al. Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ. Ann Rheum Dis 2018; 77(9): 1372-80.
[http://dx.doi.org/10.1136/annrheumdis-2018-212964] [PMID: 29925506]
[69]
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014; 39: 25-32.
[http://dx.doi.org/10.1016/j.matbio.2014.08.009] [PMID: 25172825]
[70]
Pullig O, Weseloh G, Swoboda B. Expression of type VI collagen in normal and osteoarthritic human cartilage. Osteoarthritis Cartilage 1999; 7(2): 191-202.
[http://dx.doi.org/10.1053/joca.1998.0208] [PMID: 10222218]
[71]
Murray DH, Bush PG, Brenkel IJ, Hall AC. Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1β and disruption to pericellular collagen type VI. J Orthop Res 2010; 28(11): 1507-14.
[http://dx.doi.org/10.1002/jor.21155] [PMID: 20872589]
[72]
Hambach L, Neureiter D, Zeiler G, Kirchner T, Aigner T. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum 1998; 41(6): 986-96.
[http://dx.doi.org/10.1002/1529-0131(199806)41:6<986:AID-ART5>3.0.CO;2-N] [PMID: 9627008]
[73]
Polur I, Lee PL, Servais JM, Xu L, Li Y. Role of HTRA1, a serine protease, in the progression of articular cartilage degeneration. Histol Histopathol 2010; 25(5): 599-608.
[PMID: 20238298]
[74]
Lee GM, Loeser RF. Interactions of the chondrocyte with its pericellular matrix. Cell Mater 1998; 8: 135-49.
[75]
Hu SI, Carozza M, Klein M, Nantermet P, Luk D, Crowl RM. Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem 1998; 273(51): 34406-12.
[http://dx.doi.org/10.1074/jbc.273.51.34406] [PMID: 9852107]
[76]
Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 2002; 10(3): 443-55.
[http://dx.doi.org/10.1016/S1097-2765(02)00658-5] [PMID: 12408815]
[77]
Chamberland A, Wang E, Jones AR, et al. Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo. J Biol Chem 2009; 284(40): 27352-9.
[http://dx.doi.org/10.1074/jbc.M109.037051] [PMID: 19657146]
[78]
Tsuchiya A, Yano M, Tocharus J, et al. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 2005; 37(3): 323-36.
[http://dx.doi.org/10.1016/j.bone.2005.03.015] [PMID: 15993670]
[79]
Wu J, Liu W, Bemis A, et al. Comparative proteomic characterization of articular cartilage tissue from normal donors and patients with osteoarthritis. Arthritis Rheum 2007; 56(11): 3675-84.
[http://dx.doi.org/10.1002/art.22876] [PMID: 17968891]
[80]
Grau S, Richards PJ, Kerr B, et al. The role of human HtrA1 in arthritic disease. J Biol Chem 2006; 281(10): 6124-9.
[http://dx.doi.org/10.1074/jbc.M500361200] [PMID: 16377621]
[81]
Muragaki Y, Mariman EC, van Beersum SE, et al. A mutation in the gene encoding the alpha 2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nat Genet 1996; 12(1): 103-5.
[http://dx.doi.org/10.1038/ng0196-103] [PMID: 8528240]
[82]
Czarny-Ratajczak M, Lohiniva J, Rogala P, et al. A mutation in COL9A1 causes multiple epiphyseal dysplasia: further evidence for locus heterogeneity. Am J Hum Genet 2001; 69(5): 969-80.
[http://dx.doi.org/10.1086/324023] [PMID: 11565064]
[83]
Hecht JT, Nelson LD, Crowder E, et al. Mutations in exon 17B of cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia. Nat Genet 1995; 10(3): 325-9.
[http://dx.doi.org/10.1038/ng0795-325] [PMID: 7670471]
[84]
Borochowitz ZU, Scheffer D, Adir V, Dagoneau N, Munnich A, Cormier-Daire V. Spondylo-epi-metaphyseal dysplasia (SEMD) matrilin 3 type: homozygote matrilin 3 mutation in a novel form of SEMD. J Med Genet 2004; 41(5): 366-72.
[http://dx.doi.org/10.1136/jmg.2003.013342] [PMID: 15121775]
[85]
Alexopoulos LG, Youn I, Bonaldo P, Guilak F. Developmental and osteoarthritic changes in Col6a1-knockout mice: biomechanics of type VI collagen in the cartilage pericellular matrix. Arthritis Rheum 2009; 60(3): 771-9.
[http://dx.doi.org/10.1002/art.24293] [PMID: 19248115]
[86]
Wadhwa S, Embree MC, Kilts T, Young MF, Ameye LG. Accelerated osteoarthritis in the temporomandibular joint of biglycan/fibromodulin double-deficient mice. Osteoarthritis Cartilage 2005; 13(9): 817-27.
[http://dx.doi.org/10.1016/j.joca.2005.04.016] [PMID: 16006154]
[87]
van der Weyden L, Wei L, Luo J, et al. Functional Knockout of the Matrilin-3 Gene Causes Premature Chondrocyte Maturation to Hypertrophy and Increases Bone Mineral Density and Osteoarthritis Amer J Pathol 2006; 169(2): 515-27.
[http://dx.doi.org/10.2353/ajpath.2006.050981]
[88]
Chen PH, Tang T, Liu C, et al. High temperature requirement A1 protease as a rate-limiting factor in the development of osteoarthritis. Am J Pathol 2019; 189(7): 1423-34.
[http://dx.doi.org/10.1016/j.ajpath.2019.03.013] [PMID: 31051168]
[89]
Urano T, Narusawa K, Kobayashi S, et al. Association of HTRA1 promoter polymorphism with spinal disc degeneration in Japanese women. J Bone Miner Metab 2010; 28(2): 220-6.
[http://dx.doi.org/10.1007/s00774-009-0124-0] [PMID: 19798546]
[90]
Xu L, Golshirazian I, Asbury BJ, Li Y. Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. Histol Histopathol 2014; 29(5): 609-18.
[PMID: 24135912]
[91]
Galéra P, Vivien D, Pronost S, et al. Transforming growth factor-beta 1 (TGF-beta 1) up-regulation of collagen type II in primary cultures of rabbit articular chondrocytes (RAC) involves increased mRNA levels without affecting mRNA stability and procollagen processing. J Cell Physiol 1992; 153(3): 596-606.
[http://dx.doi.org/10.1002/jcp.1041530322] [PMID: 1447320]
[92]
van Beuningen HM, van der Kraan PM, Arntz OJ, van den Berg WB. Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint. Lab Invest 1994; 71(2): 279-90.
[PMID: 8078307]
[93]
Shen J, Li J, Wang B, et al. Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice. Arthritis Rheum 2013; 65(12): 3107-19.
[http://dx.doi.org/10.1002/art.38122] [PMID: 23982761]
[94]
van de Laar IM, Oldenburg RA, Pals G, et al. 2011 Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43(2): 121-6.
[http://dx.doi.org/10.1038/ng.744]
[95]
Schlaak JF, Pfers I, Meyer Zum Büschenfelde KH, Märker-Hermann E. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol 1996; 14(2): 155-62.
[PMID: 8737721]
[96]
Kawamura I, Maeda S, Imamura K, et al. SnoN suppresses maturation of chondrocytes by mediating signal cross-talk between transforming growth factor-β and bone morphogenetic protein pathways. J Biol Chem 2012; 287(34): 29101-13.
[http://dx.doi.org/10.1074/jbc.M112.349415] [PMID: 22767605]
[97]
Itayem R. Mengarelli-WidholmI S, Reinholt F: The lone-term effect of a short course of transforming growth factorβ1 on rat articular cartilage. APMIS 1999; 107(2): 183-92.
[http://dx.doi.org/10.1111/j.1699-0463.1999.tb01543.x] [PMID: 10225316]
[98]
Bakker AC, van de Loo FA, van Beuningen HM, et al. Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation. Osteoarthritis Cartilage 2001; 9(2): 128-36.
[http://dx.doi.org/10.1053/joca.2000.0368] [PMID: 11237660]
[99]
Chen R, Mian M, Fu M, et al. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis. Am J Pathol 2015; 185(11): 2875-85.
[http://dx.doi.org/10.1016/j.ajpath.2015.07.003] [PMID: 26355014]
[100]
Wang YJ, Shen M, Wang S, et al. Inhibition of the TGF-β1/Smad signaling pathway protects against cartilage injury and osteoarthritis in a rat model. Life Sci 2017; 189: 106-13.
[http://dx.doi.org/10.1016/j.lfs.2017.09.022] [PMID: 28939526]
[101]
Chen R, Mian M, Fu M, et al. Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis. Am J Pathol 2015; 185(11): 2875-85.
[http://dx.doi.org/10.1016/j.ajpath.2015.07.003] [PMID: 26355014]
[102]
Albro MB, Cigan AD, Nims RJ, et al. Shearing of synovial fluid activates latent TGF-β. Osteoarthritis Cartilage 2012; 20(11): 1374-82.
[http://dx.doi.org/10.1016/j.joca.2012.07.006] [PMID: 22858668]
[103]
Albro MB, Nims RJ, Cigan AD, et al. Accumulation of exogenous activated TGF-β in the superficial zone of articular cartilage. Biophys J 2013; 104(8): 1794-804.
[http://dx.doi.org/10.1016/j.bpj.2013.02.052] [PMID: 23601326]
[104]
Zhang RK, Li GW, Zeng C, et al. Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res 2018; 7(11): 587-94.
[http://dx.doi.org/10.1302/2046-3758.711.BJR-2018-0057.R1] [PMID: 30581556]
[105]
Lee JH, Fitzgerald JB, Dimicco MA, Grodzinsky AJ. Mechanical injury of cartilage explants causes specific time-dependent changes in chondrocyte gene expression. Arthritis Rheum 2005; 52(8): 2386-95.
[http://dx.doi.org/10.1002/art.21215] [PMID: 16052587]
[106]
Hermann W, Lambova S, Muller-Ladner U. Current Treatment Options for Osteoarthritis. Curr Rheumatol Rev 2018; 14(2): 108-16.
[http://dx.doi.org/10.2174/1573397113666170829155149] [PMID: 28875826]
[107]
Lomonte ABV, Mendonça JA, de Castro Brandão G, Castro ML. Multicenter, randomized, double-blind clinical trial to evaluate efficacy and safety of combined glucosamine sulfate and chondroitin sulfate capsules for treating knee osteoarthritis. Adv Rheumatol 2018; 58(1): 41.
[http://dx.doi.org/10.1186/s42358-018-0041-9] [PMID: 30657100]
[108]
Simental-Mendía M, Sánchez-García A, Vilchez-Cavazos F, Acosta-Olivo CA, Peña-Martínez VM, Simental-Mendía LE. Effect of glucosamine and chondroitin sulfate in symptomatic knee osteoarthritis: a systematic review and meta-analysis of randomized placebo-controlled trials. Rheumatol Int 2018; 38(8): 1413-28.
[http://dx.doi.org/10.1007/s00296-018-4077-2] [PMID: 29947998]
[109]
Sawitzke AD, Shi H, Finco MF, et al. Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT. Ann Rheum Dis 2010; 69(8): 1459-64.
[http://dx.doi.org/10.1136/ard.2009.120469] [PMID: 20525840]
[110]
Fichter M, Körner U, Schömburg J, Jennings L, Cole AA, Mollenhauer J. Collagen degradation products modulate matrix metalloproteinase expression in cultured articular chondrocytes. J Orthop Res 2006; 24(1): 63-70.
[http://dx.doi.org/10.1002/jor.20001] [PMID: 16419970]
[111]
Thomas M, Fronk Z, Gross A, et al. Losartan attenuates progression of osteoarthritis in the synovial temporomandibular and knee joints of a chondrodysplasia mouse model through inhibition of TGF-β1 signaling pathway. Osteoarthritis Cartilage 2019; 27(4): 676-86.
[http://dx.doi.org/10.1016/j.joca.2018.12.016] [PMID: 30610922]
[112]
Ciferri C, Lipari MT, Liang WC, et al. The trimeric serine protease HtrA1 forms a cage-like inhibition complex with an anti-HtrA1 antibody. Biochem J 2015; 472(2): 169-81.
[http://dx.doi.org/10.1042/BJ20150601] [PMID: 26385991]
[113]
Grither WR, Longmore GD. Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc Natl Acad Sci USA 2018; 115(33): E7786-94.
[http://dx.doi.org/10.1073/pnas.1805020115] [PMID: 30061414]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy