Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

通过语音声学分析自动检测认知障碍

卷 17, 期 1, 2020

页: [60 - 68] 页: 9

弟呕挨: 10.2174/1567205017666200213094513

open access plus

摘要

背景:早期发现轻度认知障碍对于预防阿尔茨海默氏病至关重要。本研究的目的是确定声学特征是否可以帮助区分年龄较大,独立的社区认知障碍者和健康对照者。 方法:共有8779名参与者(平均年龄74.2±5.7,在65-96岁之间,男性3907名,女性4872名),具有不同的认知特征,即健康对照,轻度认知障碍,整体认知障碍(定义为“迷你精神状态”)在短句阅读任务中评估了考试分数20-23)以及轻度认知障碍与整体认知障碍(轻度认知障碍和整体认知障碍的合并状态)及其声音特征,包括时态特征(例如话语的持续时间,停顿的次数和长度)以及频谱特征(F0,F1和F2)被用来建立机器学习模型来预测他们的认知障碍。 结果:通过接受者操作特征曲线下的区域评估了健康对照组的分类指标,发现轻度认知障碍,整体认知障碍和轻度认知障碍与整体认知障碍的分别为0.61、0.67和0.77 。 结论:我们的机器学习模型表明,个人的听觉特征可用于区分健康对照和轻度认知障碍伴有整体认知障碍的人,这是与轻度认知障碍或整体认知障碍相比更严重的认知障碍形式。建议语言障碍的严重程度随着认知障碍的增加而增加。

关键词: 轻度认知障碍,整体认知障碍,声学分析,语音,句子阅读,机器学习

[1]
Cabinet Office. Annual Report on the Aging Society 2017. Summary 2018.
[2]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3): 189-98. (1975).
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[3]
Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, WHitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 53(4): 695-9. (2005).
[http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x] [PMID: 15817019]
[4]
Morris RG. The Cognitive Neuropsychology of Alzheimer-Type Dementia. New York: Oxford University Press. 1996.
[5]
Biassou N, Grossman M, Onishi K, Mickanin J, Hughes E, Robinson KM, et al. Phonologic processing deficits in Alzheimer’s disease. Neurology 45(12): 2165-9. (1995).
[http://dx.doi.org/10.1212/WNL.45.12.2165] [PMID: 8848186]
[6]
Hoffmann I, Németh D, Dye CD, Pákáski M, Irinyi T, Kálmán J. Temporal parameters of spontaneous speech in Alzheimer’s disease. Int J Speech Lang Pathol 12(1): 29-34. (2010).
[http://dx.doi.org/10.3109/17549500903137256] [PMID: 20380247]
[7]
Martínez-Sánchez F, Meilán JJG, García-Sevilla J, Carro J, Arana JM. Oral reading fluency analysis in patients with Alzheimer disease and asymptomatic control subjects. Neurologia 28(6): 325-31. (2013).
[http://dx.doi.org/10.1016/j.nrleng.2012.07.017] [PMID: 23046975]
[8]
König A, Satt A, Sorin A, Hoary R, Toledo-Ronen O, Derreumaux A, et al. Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease. Alzheimers Dement (Amst) 1(1): 112-24. (2015).
[http://dx.doi.org/10.1016/j.dadm.2014.11.012] [PMID: 27239498]
[9]
Themistocleous C, Eckerström M, Kokkinakis D. Identification of mild cognitive impairment from speech in Swedish using deep sequential neural networks. Front Neurol 9: 975. (2018).
[http://dx.doi.org/10.3389/fneur.2018.00975] [PMID: 30498472]
[10]
Cera ML, Ortiz KZ, Bertolucci PHF, Minett TSC. Speech and orofacial apraxias in Alzheimer’s disease. Int Psychogeriatr 25(10): 1679-85. (2013).
[http://dx.doi.org/10.1017/S1041610213000781] [PMID: 23742823]
[11]
Östberg P, Bogdanović N, Wahlund LO. Articulatory agility in cognitive decline. Folia Phoniatr Logop 61(5): 269-74. (2009).
[http://dx.doi.org/10.1159/000235649] [PMID: 19696488]
[12]
Watanabe Y, Arai H, Hirano H, Morishita S, Ohara Y, Edahiro A, et al. Oral function as an indexing parameter for mild cognitive impairment in older adults. Geriatr Gerontol Int 18(5): 790-8. (2018).
[http://dx.doi.org/10.1111/ggi.13259] [PMID: 29380503]
[13]
Shimada H, Tsutsumimoto K, Lee S, Doi T, Makizako H, Lee S, et al. Driving continuity in cognitively impaired older drivers. Geriatr Gerontol Int 16(4): 508-14. (2016).
[http://dx.doi.org/10.1111/ggi.12504] [PMID: 25953032]
[14]
Shimada H, Doi T, Lee S, Makizako H. Reversible predictors of reversion from mild cognitive impairment to normal cognition: a 4-year longitudinal study. Alzheimers Res Ther 11(1): 24. (2019).
[http://dx.doi.org/10.1186/s13195-019-0480-5] [PMID: 30867057]
[15]
National Institute for Health and Care Excellence. Alzheimer’s disease - donepezil, galantamine, rivastigmine and memantine (TA217) NICE technology appraisal guidance 2011
[16]
Shimada H, Makizako H, Tsutsumimoto K, Doi T, Lee S, Suzuki T. Cognitive frailty and incidence of dementia in older persons. J Prev Alzheimers Dis 5(1): 42-8. (2018).
[PMID: 29405232]
[17]
Teng EL, Chui HC. The modified mini-mental state. (3MS) examination. J Clin Psychiatry 48(8): 314-8. (1987).
[PMID: 3611032]
[18]
Makizako H, Shimada H, Park H, Doi T, Yoshida D, Uemura K, et al. Evaluation of multidimensional neurocognitive function using a tablet personal computer: test-retest reliability and validity in community-dwelling older adults. Geriatr Gerontol Int 13(4): 860-6. (2013).
[http://dx.doi.org/10.1111/ggi.12014] [PMID: 23230988]
[19]
O’Bryant SE, Humphreys JD, Smith GE, Ivnik RZJ, Graff-Radford NR, Petersen RC, et al. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch Neurol 65(7): 963-7. (2008).
[http://dx.doi.org/10.1001/archneur.65.7.963] [PMID: 18625866]
[20]
Shimada H, Makizako H, Doi T, Tsutsumimoto K, Lee S, Suzuki T. Cognitive impairment and disability in older Japanese adults. PLoS One 11(7) e0158720 (2016).
[http://dx.doi.org/10.1371/journal.pone.0158720] [PMID: 27415430]
[21]
Noble K, Glosser G, Grossman M. Oral reading in dementia. Brain Lang 74(1): 48-69. (2000).
[http://dx.doi.org/10.1006/brln.2000.2330] [PMID: 10924216]
[22]
Pattamadilok C, Chanoine V, Pallier C, Anton J-L, Nazarian B, Belin P, et al. Automaticity of phonological and semantic processing during visual word recognition. Neuroimage 1149: 244-55. (2017).
[http://dx.doi.org/10.1016/j.neuroimage.2017.02.003]
[23]
Boersma P, Weenink D. Praat: doing phonetics by computer Available at:. www.fon.hum.uva.nl/praat
[24]
Skodda S, Grönheit W, Schlegel U. Impairment of vowel articulation as a possible marker of disease progression in Parkinson’s disease. PLoS One 7(2) e32132 (2012).
[http://dx.doi.org/10.1371/journal.pone.0032132] [PMID: 22389682]
[25]
Wutzler A, Becker R, Lämmler G, Haverkamp W, Steinhagen-Thiessen E. The anticipatory proportion as an indicator of language impairment in early-stage cognitive disorder in the elderly. Dement Geriatr Cogn Disord 36(5-6): 300-9. (2013).
[http://dx.doi.org/10.1159/000350808] [PMID: 24022211]
[26]
Lowit A, Brendel B, Dobinson C, Howell P. An investigation into the influences of age, pathology and cognition on speech production. J Med Speech-Lang Pathol 14: 253-62. (2006).
[PMID: 19330040]
[27]
Bishop C. Pattern Recognition and Machine Learning. Springer 2006.
[28]
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 27: 861-74. (2006).
[http://dx.doi.org/10.1016/j.patrec.2005.10.010]
[29]
Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA 99(10): 6562-6. (2002).
[http://dx.doi.org/10.1073/pnas.102102699] [PMID: 11983868]
[30]
Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 11: 2079-107. (2010).
[31]
Alegret M, Peretó M, Pérez A, Valero S, Espinosa A, Ortega G, et al. The role of verb fluency in the detection of early cognitive impairment in Alzheimer’s disease. J Alzheimers Dis 62(2): 611-9. (2018).
[http://dx.doi.org/10.3233/JAD-170826] [PMID: 29480180]
[32]
Wingfield A, Poon LW, Lombardi L, Lowe D. Speed of processing in normal aging: effects of speech rate, linguistic structure, and processing time. J Gerontol 40(5): 579-85. (1985).
[http://dx.doi.org/10.1093/geronj/40.5.579] [PMID: 4031406]
[33]
Salthouse TA, Coon VE. Influence of task-specific processing speed on age differences in memory. J Gerontol 48(5): 245-55. (1993).
[http://dx.doi.org/10.1093/geronj/48.5.P245] [PMID: 8366270]
[34]
Beck LH, Bransome ED Jr, Mirsky AF, Rosvold HE, Sarason I. A continuous performance test of brain damage. J Consult Psychol 1956.; 20(5): 343-50.
[http://dx.doi.org/10.1037/h0043220] [PMID: 13367264]
[35]
Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol 58(12): 1985-92. (2001).
[http://dx.doi.org/10.1001/archneur.58.12.1985] [PMID: 11735772]
[36]
Mueller KD, Koscik RL, Hermann BP, Johnson SC, Turkstra LS. Declines in connected language are associated with very early mild cognitive impairment: results from the Wisconsin Registry for Alzheimer’s prevention. Front Aging Neurosci 9: 437. (2018).
[http://dx.doi.org/10.3389/fnagi.2017.00437] [PMID: 29375365]
[37]
Swets JA. Measuring the accuracy of diagnostic systems. Science 240(4857): 1285-93. (1988).
[http://dx.doi.org/10.1126/science.3287615] [PMID: 3287615]
[38]
Tóth L, Hoffmann I, Gosztolya G, Vincze V, Szatloczki G, Banreti Z, et al. A speech recognition-based solution for the automatic detection of mild cognitive impairment from spontaneous speech. Curr Alzheimer Res 15(2): 130-8. (2018).
[http://dx.doi.org/10.2174/1567205014666171121114930] [PMID: 29165085]

© 2024 Bentham Science Publishers | Privacy Policy