[1]
Allcock S, Young EH, Holmes M, et al. Antimicrobial resistance in human populations: challenges and opportunities. Glob Health Epidemiol Genome 2017; 2 e4
[6]
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. J Sci Food Agric 2018; 98: 4014-32.
[7]
Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks. J Basic Microbiol 2017; 57: 728-43.
[8]
Sharma G, Sharma S, Sharma P, et al. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 2016; 121: 309-19.
[10]
Hamilton M. The biofilm laboratory: step-by-step protocols for experimental design, analysis, and data interpretation. Bozeman, Mont: Montana State Univ., Center for Biofilm Engineering 2003.
[13]
Ta C, Arnason J. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules 2015; 21: 29.
[15]
Ciofu O, Mandsberg LF, Wang H, Høiby N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Med Microbiol 2012; 65: 215-25.
[18]
Paharik AE, Horswill AR. The Staphylococcal biofilm: adhesins, regulation, and host response.Kudva IT, Cornick NA, Plummer PJ, Zhang Q, et al. Virulence mechanisms of bacterial pathogens. Fifth Edition. American Society of Microbiology 2016; pp. 529-66.
[19]
Lee K, Yoon SS. Pseudomonas aeruginosa biofilm a programmed bacterial life for fitness. J Microbiol Biotechnol 2017; 27: 1053-64.
[20]
Reda WW, Abdel-Moein K, Hegazi A, Mohamed Y, Abdel-Razik K. Listeria monocytogenes: An emerging food-borne pathogen and its public health implications. C Infect Dev Ctries 2016; 10: 149-54.
[21]
Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol 2013; 36: 79-89.
[22]
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012; 45: 502-31.
[24]
Wood TK. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 2009; 11: 1-15.
[28]
Warnke PH, Becker ST, Podschun R, et al. The battle against
multi-resistant strains: Renaissance of antimicrobial essential oils
as a promising force to fight hospital-acquired infections. J Cranio-Maxillofacial Surg 2009; 37: 392-97-97.
[29]
Fisher K, Phillips CA. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J Appl Microbiol 2006; 101: 1232-40.
[30]
Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 2016; 61: 156-64.
[31]
Bilcu M, Grumezescu A, Oprea A, et al. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains. Molecules 2014; 19: 17943-56.
[32]
Mouwakeh A, Kincses A, Nové M, et al. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother Res 2019; 33: 1010-8.
[33]
Ferreira RJ, Kincses A, Gajdács M, et al. Terpenoids from Euphorbia pedroi as multidrug-resistance reversers. J Nat Prod 2018; 81: 2032-40.
[34]
Kincses A, Varga B, Csonka Á, et al. Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Microorganisms 2018; 32: 1039-46.
[36]
Vasconcelos SECB, Melo HM, Cavalcante TTA, et al. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus. BMC Complement Altern Med 2017; 17: 462.
[38]
Brady A. In vitro activity of tea-tree oil against clinical skin isolates of meticillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci growing planktonically and as biofilms. Evid Based Complement Alternat Med 2006; 55: 1375-80.
[41]
Yadav MK, Chae S-W. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One 2015; 10 e0119564
[42]
Kim E-S, Kang S-Y, Kim Y-H, et al. Chamaecyparis obtusa essential oil inhibits methicillin-resistant Staphylococcus aureus biofilm formation and expression of virulence factors. J Med Food 2015; 18: 810-7.
[43]
Pontes EKU, Melo HM, Nogueira JWA, et al. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Sci Biotechnol 2019; 28: 633-9.
[45]
Farias KS, Kato NN, Boaretto AG, Webe , et al. Nectandra as a renewable source for (+)-α-bisabolol, an antibiofilm and anti-Trichomonas vaginalis compound. Fitoterapia 2019; 136 104179
[47]
Campbell M, Zhao W, Fathi R, Mihreteab M, Gilbert ES. Rhamnus prinoides (gesho): A source of diverse anti-biofilm activity. J Ethnopharmacol 2019; 241 111955
[48]
Quave CL, Estévez-Carmona M, Compadre CM, et al. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One 2012; 7
[49]
Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 2013; 29: 929-37.
[50]
Lin M-H, Chang F-R, Hua M-Y, Wu Y-C, Liu S-T. Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55: 1021-7.
[51]
Wang E, Li Y, Maguy BL, Lou Z, et al. Separation and enrichment of phenolics improved the antibiofilm and antibacterial activity of the fractions from Citrus medica L. var. sarcodactylis in vitro and in tofu. Food Chem 2019; 294: 533-8.
[52]
Chen X, Shang F, Meng Y, et al. Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. J Dairy Sci 2015; 98: 8486-91.
[54]
Ali K, Ahmed B, Ansari SM, et al. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles. Mater Sci Eng C 2019; 100: 747-58.
[55]
Lotha R, Shamprasad BR, Sundaramoorthy NS, Nagarajan S, Sivasubramanian A. Biogenic phytochemicals (cassinopin and isoquercetin)
capped copper nanoparticles (ISQ/CAS@CuNPs) inhibits
MRSA biofilms Microb pathog 2019; 132: 178-87-87.
[56]
Jia P, Xue YJ, Duan XJ, Shao SH. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2011; 53: 409-16.
[58]
Lihua L, Jianhuit W, Jialini Y, Yayin L, Guanxin L. Effects of
allicin on the formation of Pseudomonas aeruginosa biofilm and
the production of quorum-sensing controlled virulence factors. Pol
J Microbiol 2013; 62: 243-51-51.
[61]
Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 2004; 70: 6951-6.
[63]
Annapoorani A, Kalpana B, Musthafa KS, Pandian SK, Veera Ravi A. Antipathogenic potential of Rhizophora spp. against the quorum sensing mediated virulence factors production in drug resistant Pseudomonas aeruginosa. Phytomedicine 2013; 20: 956-63.
[64]
Vandeputte OM, Kiendrebeogo M, Rajaonson S, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa. Appl Environ Microbiol 2010; 76: 243-53.
[65]
Packiavathy IASV, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa. Food Chem 2014; 148: 453-60.
[66]
Stanković J, Gođevac D, Tešević V, et al. Antibacterial and antibiofilm activity of flavonoid and saponin derivatives from atriplex tatarica against Pseudomonas aeruginosa. J Nat Prod 2019; 82: 1487-95.
[68]
Cho HS, Lee J-H, Ryu SY, Joo SW, Cho MH, Lee J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J Agric Food Chem 2013; 61: 7120-6.
[69]
Čabarkapa I, Čolović R, Đuragić O, et al. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 2019; 35: 361-75.
[70]
Klančnik A, Šikić Pogačar M, Trošt K, Tušek Žnidarič M, Mozetič Vodopivec B, Smole Možina S. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. J Appl Microbiol 2017; 122: 65-77.
[71]
Bezek K, Kurinčič M, Knauder E, et al. Attenuation of adhesion, biofilm formation and quorum sensing of Campylobacter jejuni by Euodia ruticarpa. Phytother Res 2016; 30: 1527-32.
[73]
Oliveira MMM, Brugnera DF. Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control 2010; 21: 549-3.
[74]
Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 2013; 8 e53441
[76]
Duarte A, Alves AC, Ferreira S, Silva F, Domingues FC. Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Res Int 2015; 77: 244-50.