Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Inhibition of Bacterial Biofilm Formation by Phytotherapeutics with Focus on Overcoming Antimicrobial Resistance

Author(s): Yun Su Jang and Tímea Mosolygó*

Volume 26, Issue 24, 2020

Page: [2807 - 2816] Pages: 10

DOI: 10.2174/1381612826666200212121710

Price: $65

Abstract

Bacteria within biofilms are more resistant to antibiotics and chemical agents than planktonic bacteria in suspension. Treatment of biofilm-associated infections inevitably involves high dosages and prolonged courses of antimicrobial agents; therefore, there is a potential risk of the development of antimicrobial resistance (AMR). Due to the high prevalence of AMR and its association with biofilm formation, investigation of more effective anti-biofilm agents is required.

From ancient times, herbs and spices have been used to preserve foods, and their antimicrobial, anti-biofilm and anti-quorum sensing properties are well known. Moreover, phytochemicals exert their anti-biofilm properties at sub-inhibitory concentrations without providing the opportunity for the emergence of resistant bacteria or harming the host microbiota.

With increasing scientific attention to natural phytotherapeutic agents, numerous experimental investigations have been conducted in recent years. The present paper aims to review the articles published in the last decade in order to summarize a) our current understanding of AMR in correlation with biofilm formation and b) the evidence of phytotherapeutic agents against bacterial biofilms and their mechanisms of action. The main focus has been put on herbal anti-biofilm compounds tested to date in association with Staphylococcus aureus, Pseudomonas aeruginosa and food-borne pathogens (Salmonella spp., Campylobacter spp., Listeria monocytogenes and Escherichia coli).

Keywords: Phytotherapy, anti-biofilm, anti-quorum sensing, Staphylococcus aureus, Pseudomonas aeruginosa, essential oil.

[1]
Allcock S, Young EH, Holmes M, et al. Antimicrobial resistance in human populations: challenges and opportunities. Glob Health Epidemiol Genome 2017; 2 e4
[2]
Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Scientific American 1978; 238: 86-95.
[http://dx.doi.org/10.1038/scientificamerican0178-86]
[3]
Girish VM, Liang H, Aguilan JT, Nosanchuk JD, Friedman JM, Nacharaju P. Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine 2019; 20 102009
[http://dx.doi.org/10.1016/j.nano.2019.04.012]
[4]
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015; 7: 493-512.
[http://dx.doi.org/10.4155/fmc.15.6]
[5]
Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther 2018; 16: 51-65.
[http://dx.doi.org/10.1080/14787210.2018.1417036]
[6]
Lamas A, Regal P, Vázquez B, Miranda JM, Cepeda A, Franco CM. Salmonella and Campylobacter biofilm formation: a comparative assessment from farm to fork. J Sci Food Agric 2018; 98: 4014-32.
[7]
Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks. J Basic Microbiol 2017; 57: 728-43.
[8]
Sharma G, Sharma S, Sharma P, et al. Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 2016; 121: 309-19.
[9]
Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. LWT- Food Sci Technol 2010; 43: 573-83.
[http://dx.doi.org/10.1016/j.lwt.2009.12.008]
[10]
Hamilton M. The biofilm laboratory: step-by-step protocols for experimental design, analysis, and data interpretation. Bozeman, Mont: Montana State Univ., Center for Biofilm Engineering 2003.
[11]
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9: 522-54.
[http://dx.doi.org/10.1080/21505594.2017.1313372]
[12]
Wu H, Moser C, Wang H-Z, Høiby N, Song Z-J. Strategies for combating bacterial biofilm infections. Int J Oral Sci 2015; 7: 1-7.
[http://dx.doi.org/10.1038/ijos.2014.65]
[13]
Ta C, Arnason J. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules 2015; 21: 29.
[14]
Venkatesan N, Perumal G, Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol 2015; 10: 1743-50.
[http://dx.doi.org/10.2217/fmb.15.69]
[15]
Ciofu O, Mandsberg LF, Wang H, Høiby N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Med Microbiol 2012; 65: 215-25.
[16]
Ma H, Bryers JD. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl Microbiol Biotechnol 2013; 97: 317-28.
[http://dx.doi.org/10.1007/s00253-012-4179-9]
[17]
Moormeier DE, Bose JL, Horswill AR, Bayles KW. Temporal and stochastic control of Staphylococcus aureus biofilm development. mBio 2014; 5: e01341-01314.
[http://dx.doi.org/10.1128/mBio.01341-14]
[18]
Paharik AE, Horswill AR. The Staphylococcal biofilm: adhesins, regulation, and host response.Kudva IT, Cornick NA, Plummer PJ, Zhang Q, et al. Virulence mechanisms of bacterial pathogens. Fifth Edition. American Society of Microbiology 2016; pp. 529-66.
[19]
Lee K, Yoon SS. Pseudomonas aeruginosa biofilm a programmed bacterial life for fitness. J Microbiol Biotechnol 2017; 27: 1053-64.
[20]
Reda WW, Abdel-Moein K, Hegazi A, Mohamed Y, Abdel-Razik K. Listeria monocytogenes: An emerging food-borne pathogen and its public health implications. C Infect Dev Ctries 2016; 10: 149-54.
[21]
Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol 2013; 36: 79-89.
[22]
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012; 45: 502-31.
[23]
Bae J, Jeon B. Increased emergence of fluoroquinolone-resistant Campylobacter jejuni in biofilm. Antimicrob Agents Chemother 2013; 57: 5195-6.
[http://dx.doi.org/10.1128/AAC.00995-13]
[24]
Wood TK. Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 2009; 11: 1-15.
[25]
Ciuman RR. Phytotherapeutic and naturopathic adjuvant therapies in otorhinolaryngology. Eur Arch Otorhinolaryngol 2012; 269: 389-97.
[http://dx.doi.org/10.1007/s00405-011-1755-z]
[26]
Quave CL. Wound healing with botanicals: A review and future perspectives. Curr Dermatol Rep 2018; 7: 287-95.
[http://dx.doi.org/10.1007/s13671-018-0247-4]
[27]
Dorman HJD, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000; 88: 308-16.
[http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x]
[28]
Warnke PH, Becker ST, Podschun R, et al. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Cranio-Maxillofacial Surg 2009; 37: 392-97-97.
[29]
Fisher K, Phillips CA. The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J Appl Microbiol 2006; 101: 1232-40.
[30]
Bazargani MM, Rohloff J. Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 2016; 61: 156-64.
[31]
Bilcu M, Grumezescu A, Oprea A, et al. Efficiency of vanilla, patchouli and ylang ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains. Molecules 2014; 19: 17943-56.
[32]
Mouwakeh A, Kincses A, Nové M, et al. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother Res 2019; 33: 1010-8.
[33]
Ferreira RJ, Kincses A, Gajdács M, et al. Terpenoids from Euphorbia pedroi as multidrug-resistance reversers. J Nat Prod 2018; 81: 2032-40.
[34]
Kincses A, Varga B, Csonka Á, et al. Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Microorganisms 2018; 32: 1039-46.
[35]
Guskey MT, Tsuji BT. A comparative review of the lipoglycopeptides: oritavancin, dalbavancin, and telavancin. Pharmacotherapy 2010; 30(1): 80-94.
[http://dx.doi.org/10.1592/phco.30.1.80] [PMID: 20030476]
[36]
Vasconcelos SECB, Melo HM, Cavalcante TTA, et al. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus. BMC Complement Altern Med 2017; 17: 462.
[37]
Kavanaugh NL, Ribbeck K. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 2012; 78(11): 4057-61.
[http://dx.doi.org/10.1128/AEM.07499-11] [PMID: 22467497]
[38]
Brady A. In vitro activity of tea-tree oil against clinical skin isolates of meticillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci growing planktonically and as biofilms. Evid Based Complement Alternat Med 2006; 55: 1375-80.
[39]
Espina L, Pagán R, López D, García-Gonzalo D. Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus. Molecules 2015; 20: 11357-72.
[http://dx.doi.org/10.3390/molecules200611357]
[40]
Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 2014; 9 e93414
[http://dx.doi.org/10.1371/journal.pone.0093414]
[41]
Yadav MK, Chae S-W. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One 2015; 10 e0119564
[42]
Kim E-S, Kang S-Y, Kim Y-H, et al. Chamaecyparis obtusa essential oil inhibits methicillin-resistant Staphylococcus aureus biofilm formation and expression of virulence factors. J Med Food 2015; 18: 810-7.
[43]
Pontes EKU, Melo HM, Nogueira JWA, et al. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Sci Biotechnol 2019; 28: 633-9.
[44]
Vale JPC, Ribeiro LH de F, et al. Chemical composition, antioxidant, antimicrobial and antibiofilm activities of Vitex gardneriana schauer leaves’s essential oil. Microb Pathog 2019; 135 103608
[http://dx.doi.org/10.1016/j.micpath.2019.103608]
[45]
Farias KS, Kato NN, Boaretto AG, Webe , et al. Nectandra as a renewable source for (+)-α-bisabolol, an antibiofilm and anti-Trichomonas vaginalis compound. Fitoterapia 2019; 136 104179
[46]
Lee K, Lee J-H, Kim S-I, Cho MH, Lee J. Anti-biofilm, anti-hemolysis, and anti-virulence activities of black pepper, cananga, myrrh oils, and nerolidol against Staphylococcus aureus. Appl Microbiol Technol 2014; 98: 9447-57.
[http://dx.doi.org/10.1007/s00253-014-5903-4]
[47]
Campbell M, Zhao W, Fathi R, Mihreteab M, Gilbert ES. Rhamnus prinoides (gesho): A source of diverse anti-biofilm activity. J Ethnopharmacol 2019; 241 111955
[48]
Quave CL, Estévez-Carmona M, Compadre CM, et al. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One 2012; 7
[49]
Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 2013; 29: 929-37.
[50]
Lin M-H, Chang F-R, Hua M-Y, Wu Y-C, Liu S-T. Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob Agents Chemother 2011; 55: 1021-7.
[51]
Wang E, Li Y, Maguy BL, Lou Z, et al. Separation and enrichment of phenolics improved the antibiofilm and antibacterial activity of the fractions from Citrus medica L. var. sarcodactylis in vitro and in tofu. Food Chem 2019; 294: 533-8.
[52]
Chen X, Shang F, Meng Y, et al. Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. J Dairy Sci 2015; 98: 8486-91.
[53]
Woo S-G, Lee S-M, Lee S-Y, et al. The effectiveness of antibiofilm and anti-virulence properties of dihydrocelastrol and dihydrocelastryl diacetate in fighting against methicillin-resistant Staphylococcus aureus. Arch Microbiol 2017; 199: 1151-63-63.
[http://dx.doi.org/10.1007/s00203-017-1386-x]
[54]
Ali K, Ahmed B, Ansari SM, et al. Comparative in situ ROS mediated killing of bacteria with bulk analogue, Eucalyptus leaf extract (ELE)-capped and bare surface copper oxide nanoparticles. Mater Sci Eng C 2019; 100: 747-58.
[55]
Lotha R, Shamprasad BR, Sundaramoorthy NS, Nagarajan S, Sivasubramanian A. Biogenic phytochemicals (cassinopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@CuNPs) inhibits MRSA biofilms Microb pathog 2019; 132: 178-87-87.
[56]
Jia P, Xue YJ, Duan XJ, Shao SH. Effect of cinnamaldehyde on biofilm formation and sarA expression by methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 2011; 53: 409-16.
[57]
Cruz-Villalón G, Pérez-Giraldo C. Effect of allicin on the production of polysaccharide intercellular adhesin in Staphylococcus epidermidis. J Appl Microbiol 2011; 110: 723-28-28.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04929.x]
[58]
Lihua L, Jianhuit W, Jialini Y, Yayin L, Guanxin L. Effects of allicin on the formation of Pseudomonas aeruginosa biofilm and the production of quorum-sensing controlled virulence factors. Pol J Microbiol 2013; 62: 243-51-51.
[59]
Ranjbar-Omid M, Arzanlou M, Amani M, Shokri Al-Hashem SK, Amir Mozafari N, Peeri Doghaheh H. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro. FEMS Microbiol Lett 2015; 362
[http://dx.doi.org/10.1093/femsle/fnv049]
[60]
Jakobsen TH, van Gennip M, Phipps RK, et al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother 2012; 56: 2314-25.
[http://dx.doi.org/10.1128/AAC.05919-11]
[61]
Niu C, Gilbert ES. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl Environ Microbiol 2004; 70: 6951-6.
[62]
Zhou L, Zheng H, Tang Y, Yu W, Gong Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 2013; 35: 631-7.
[http://dx.doi.org/10.1007/s10529-012-1126-x]
[63]
Annapoorani A, Kalpana B, Musthafa KS, Pandian SK, Veera Ravi A. Antipathogenic potential of Rhizophora spp. against the quorum sensing mediated virulence factors production in drug resistant Pseudomonas aeruginosa. Phytomedicine 2013; 20: 956-63.
[64]
Vandeputte OM, Kiendrebeogo M, Rajaonson S, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa. Appl Environ Microbiol 2010; 76: 243-53.
[65]
Packiavathy IASV, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa. Food Chem 2014; 148: 453-60.
[66]
Stanković J, Gođevac D, Tešević V, et al. Antibacterial and antibiofilm activity of flavonoid and saponin derivatives from atriplex tatarica against Pseudomonas aeruginosa. J Nat Prod 2019; 82: 1487-95.
[67]
Ganin H, Rayo J, Amara N, Levy N, Krief P, Meijler MM. Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. MedChemComm 2013; 4: 175-9.
[http://dx.doi.org/10.1039/C2MD20196H]
[68]
Cho HS, Lee J-H, Ryu SY, Joo SW, Cho MH, Lee J. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin. J Agric Food Chem 2013; 61: 7120-6.
[69]
Čabarkapa I, Čolović R, Đuragić O, et al. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling 2019; 35: 361-75.
[70]
Klančnik A, Šikić Pogačar M, Trošt K, Tušek Žnidarič M, Mozetič Vodopivec B, Smole Možina S. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. J Appl Microbiol 2017; 122: 65-77.
[71]
Bezek K, Kurinčič M, Knauder E, et al. Attenuation of adhesion, biofilm formation and quorum sensing of Campylobacter jejuni by Euodia ruticarpa. Phytother Res 2016; 30: 1527-32.
[72]
Jadhav S, Shah R, Bhave M, Palombo EA. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control 2013.
[http://dx.doi.org/10.1016/j.foodcont.2012.05.071]
[73]
Oliveira MMM, Brugnera DF. Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control 2010; 21: 549-3.
[74]
Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 2013; 8 e53441
[75]
Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 2010; 109(2): 515-27.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04677.x]
[76]
Duarte A, Alves AC, Ferreira S, Silva F, Domingues FC. Resveratrol inclusion complexes: Antibacterial and anti-biofilm activity against Campylobacter spp. and Arcobacter butzleri. Food Res Int 2015; 77: 244-50.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy