Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Oral Administration of the Food-Derived Hydrophilic Antioxidant Ergothioneine Enhances Object Recognition Memory in Mice

Author(s): Noritaka Nakamichi, Shunsuke Nakao, Misa Nishiyama, Yuka Takeda, Takahiro Ishimoto, Yusuke Masuo, Satoshi Matsumoto, Makoto Suzuki and Yukio Kato*

Volume 14, Issue 2, 2021

Published on: 12 February, 2020

Page: [220 - 233] Pages: 14

DOI: 10.2174/1874467213666200212102710

Price: $65

Abstract

Background: The enhancement of learning and memory through food-derived ingredients is of great interest to healthy individuals as well as those with diseases. Ergothioneine (ERGO) is a hydrophilic antioxidant highly contained in edible golden oyster mushrooms (Pleurotus cornucopiae var. citrinopileatus), and systemically absorbed by its specific transporter, carnitine/organic cation transporter OCTN1/SLC22A4.

Objective: This study aims to examine the possible enhancement of object recognition memory by oral administration of ERGO in normal mice.

Methods: Novel object recognition test, spatial recognition test, LC-MS/MS, Golgi staining, neuronal culture, western blotting, immunocytochemistry, and quantitative RT-PCR were utilized.

Result: After oral administration of ERGO (at a dose of 1–50 mg/kg) three times per week for two weeks in ICR mice, the novel object recognition test revealed a longer exploration time for the novel object than for the familiar object. After oral administration of ERGO, the spatial recognition test also revealed a longer exploration time for the spatially moved object than the unmoved one in mice fed ERGO-free diet. The discrimination index was significantly higher in the ERGO-treated group than the control in both behavioral tests. ERGO administration led to an increase in its concentration in the plasma and hippocampus. The systemic concentration reached was relevant to those found in humans after oral ERGO administration. Golgi staining revealed that ERGO administration increased the number of matured spines in the hippocampus. Exposure of cultured hippocampal neurons to ERGO elevated the expression of the synapse formation marker, synapsin I. This elevation of synapsin I was inhibited by the tropomyosin receptor kinase inhibitor, K252a. Treatment with ERGO also increased the expression of neurotrophin-3 and -5, and phosphorylated mammalian target of rapamycin in hippocampal neurons.

Conclusion: Oral intake of ERGO may enhance object recognition memory at its plasma concentration achievable in humans, and this enhancement effect could occur, at least in part, through the promotion of neuronal maturation in the hippocampus.

Keywords: Ergothioneine, object recognition memory, neuronal maturation, hippocampus, neurotrophin, organic cation transporter.

Graphical Abstract

[1]
World Health Organization. Dementia: Key facts., https://www.who.int/news-room/fact-sheets/detail/dementia
[2]
Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. (Lond.), 2016, 16(3), 247-253.
[http://dx.doi.org/10.7861/clinmedicine.16-3-247] [PMID: 27251914]
[3]
Weller, J.; Budson, A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res, 2018, 7 F1000 Faculty Rev-1161
[http://dx.doi.org/10.12688/f1000research.14506.1]
[4]
Venäläinen, O.; Bell, J.S.; Kirkpatrick, C.M.; Nishtala, P.S.; Liew, D.; Ilomäki, J. Adverse Drug Reactions Associated With Cholinesterase Inhibitors-Sequence Symmetry Analyses Using Prescription Claims Data. J. Am. Med. Dir. Assoc., 2017, 18(2), 186-189.
[http://dx.doi.org/10.1016/j.jamda.2016.11.002] [PMID: 28043802]
[5]
Li, Q.; Zhao, H.F.; Zhang, Z.F.; Liu, Z.G.; Pei, X.R.; Wang, J.B.; Cai, M.Y.; Li, Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience, 2009, 159(4), 1208-1215.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.008] [PMID: 19409206]
[6]
Kodali, M.; Parihar, V.K.; Hattiangady, B.; Mishra, V.; Shuai, B.; Shetty, A.K. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation. Sci. Rep., 2015, 5, 8075.
[http://dx.doi.org/10.1038/srep08075] [PMID: 25627672]
[7]
Yook, J.S.; Okamoto, M.; Rakwal, R.; Shibato, J.; Lee, M.C.; Matsui, T.; Chang, H.; Cho, J.Y.; Soya, H. Astaxanthin supplementation enhances adult hippocampal neurogenesis and spatial memory in mice. Mol. Nutr. Food Res., 2016, 60(3), 589-599.
[http://dx.doi.org/10.1002/mnfr.201500634] [PMID: 26643409]
[8]
Park, H.R.; Kong, K.H.; Yu, B.P.; Mattson, M.P.; Lee, J. Resveratrol inhibits the proliferation of neural progenitor cells and hippocampal neurogenesis. J. Biol. Chem., 2012, 287(51), 42588-42600.
[http://dx.doi.org/10.1074/jbc.M112.406413] [PMID: 23105098]
[9]
Edwards, J.A.; Bellion, P.; Beilstein, P.; Rümbeli, R.; Schierle, J. Review of genotoxicity and rat carcinogenicity investigations with astaxanthin. Regul. Toxicol. Pharmacol., 2016, 75, 5-19.
[http://dx.doi.org/10.1016/j.yrtph.2015.12.009] [PMID: 26713891]
[10]
Kato, Y.; Kubo, Y.; Iwata, D.; Kato, S.; Sudo, T.; Sugiura, T.; Kagaya, T.; Wakayama, T.; Hirayama, A.; Sugimoto, M.; Sugihara, K.; Kaneko, S.; Soga, T.; Asano, M.; Tomita, M.; Matsui, T.; Wada, M.; Tsuji, A. Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm. Res., 2010, 27(5), 832-840.
[http://dx.doi.org/10.1007/s11095-010-0076-z] [PMID: 20224991]
[11]
Halliwell, B.; Cheah, I.K.; Tang, R.M.Y. Ergothioneine - a diet-derived antioxidant with therapeutic potential. FEBS Lett., 2018, 592(20), 3357-3366.
[http://dx.doi.org/10.1002/1873-3468.13123] [PMID: 29851075]
[12]
Gründemann, D.; Harlfinger, S.; Golz, S.; Geerts, A.; Lazar, A.; Berkels, R.; Jung, N.; Rubbert, A.; Schömig, E. Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. USA, 2005, 102(14), 5256-5261.
[http://dx.doi.org/10.1073/pnas.0408624102] [PMID: 15795384]
[13]
Sugiura, T.; Kato, S.; Shimizu, T.; Wakayama, T.; Nakamichi, N.; Kubo, Y.; Iwata, D.; Suzuki, K.; Soga, T.; Asano, M.; Iseki, S.; Tamai, I.; Tsuji, A.; Kato, Y. Functional expression of carnitine/organic cation transporter OCTN1/SLC22A4 in mouse small intestine and liver. Drug Metab. Dispos., 2010, 38(10), 1665-1672.
[http://dx.doi.org/10.1124/dmd.110.032763] [PMID: 20601551]
[14]
Nakamichi, N.; Nakayama, K.; Ishimoto, T.; Masuo, Y.; Wakayama, T.; Sekiguchi, H.; Sutoh, K.; Usumi, K.; Iseki, S.; Kato, Y. Food-derived hydrophilic antioxidant ergothioneine is distributed to the brain and exerts antidepressant effect in mice. Brain Behav., 2016, 6(6)e00477
[http://dx.doi.org/10.1002/brb3.477] [PMID: 27134772]
[15]
Aruoma, O.I.; Spencer, J.P.; Mahmood, N. Protection against oxidative damage and cell death by the natural antioxidant ergothioneine. Food Chem. Toxicol., 1999, 37(11), 1043-1053.
[http://dx.doi.org/10.1016/S0278-6915(99)00098-8] [PMID: 10566875]
[16]
Song, T.Y.; Chen, C.L.; Liao, J.W.; Ou, H.C.; Tsai, M.S. Ergothioneine protects against neuronal injury induced by cisplatin both in vitro and in vivo. Food Chem. Toxicol., 2010, 48(12), 3492-3499.
[http://dx.doi.org/10.1016/j.fct.2010.09.030] [PMID: 20932872]
[17]
Yang, N.C.; Lin, H.C.; Wu, J.H.; Ou, H.C.; Chai, Y.C.; Tseng, C.Y.; Liao, J.W.; Song, T.Y. Ergothioneine protects against neuronal injury induced by β-amyloid in mice. Food Chem. Toxicol., 2012, 50(11), 3902-3911.
[http://dx.doi.org/10.1016/j.fct.2012.08.021] [PMID: 22921351]
[18]
Ishimoto, T.; Nakamichi, N.; Hosotani, H.; Masuo, Y.; Sugiura, T.; Kato, Y. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. PLoS One, 2014, 9(2)e89434
[http://dx.doi.org/10.1371/journal.pone.0089434] [PMID: 24586778]
[19]
Sotgia, S.; Zinellu, A.; Mangoni, A.A.; Pintus, G.; Attia, J.; Carru, C.; McEvoy, M. Clinical and biochemical correlates of serum L-ergothioneine concentrations in community-dwelling middle-aged and older adults. PLoS One, 2014, 9(1)e84918
[http://dx.doi.org/10.1371/journal.pone.0084918] [PMID: 24392160]
[20]
Hatano, T.; Saiki, S.; Okuzumi, A.; Mohney, R.P.; Hattori, N. Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J. Neurol. Neurosurg. Psychiatry, 2016, 87(3), 295-301.
[http://dx.doi.org/10.1136/jnnp-2014-309676] [PMID: 25795009]
[21]
Cheah, I.K.; Feng, L.; Tang, R.M.Y.; Lim, K.H.C.; Halliwell, B. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration? Biochem. Biophys. Res. Commun., 2016, 478(1), 162-167.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.074] [PMID: 27444382]
[22]
Song, T.Y.; Lin, H.C.; Chen, C.L.; Wu, J.H.; Liao, J.W.; Hu, M.L. Ergothioneine and melatonin attenuate oxidative stress and protect against learning and memory deficits in C57BL/6J mice treated with D-galactose. Free Radic. Res., 2014, 48(9), 1049-1060.
[http://dx.doi.org/10.3109/10715762.2014.920954] [PMID: 24797165]
[23]
Tang, Y.; Masuo, Y.; Sakai, Y.; Wakayama, T.; Sugiura, T.; Harada, R.; Futatsugi, A.; Komura, T.; Nakamichi, N.; Sekiguchi, H.; Sutoh, K.; Usumi, K.; Iseki, S.; Kaneko, S.; Kato, Y. Localization of xenobiotic transporter OCTN1/SLC22A4 in hepatic stellate cells and its protective role in liver fibrosis. J. Pharm. Sci., 2016, 105(5), 1779-1789.
[http://dx.doi.org/10.1016/j.xphs.2016.02.023] [PMID: 27020986]
[24]
Nakamichi, N.; Taguchi, T.; Hosotani, H.; Wakayama, T.; Shimizu, T.; Sugiura, T.; Iseki, S.; Kato, Y. Functional expression of carnitine/organic cation transporter OCTN1 in mouse brain neurons: possible involvement in neuronal differentiation. Neurochem. Int., 2012, 61(7), 1121-1132.
[http://dx.doi.org/10.1016/j.neuint.2012.08.004] [PMID: 22944603]
[25]
Nakamichi, N.; Kambe, Y.; Oikawa, H.; Ogura, M.; Takano, K.; Tamaki, K.; Inoue, M.; Hinoi, E.; Yoneda, Y. Protection by exogenous pyruvate through a mechanism related to monocarboxylate transporters against cell death induced by hydrogen peroxide in cultured rat cortical neurons. J. Neurochem., 2005, 93(1), 84-93.
[http://dx.doi.org/10.1111/j.1471-4159.2005.02999.x] [PMID: 15773908]
[26]
Ishimoto, T.; Masuo, Y.; Kato, Y.; Nakamichi, N. Ergothioneine-induced neuronal differentiation is mediated through activation of S6K1 and neurotrophin 4/5-TrkB signaling in murine neural stem cells. Cell. Signal., 2019, 53, 269-280.
[http://dx.doi.org/10.1016/j.cellsig.2018.10.012] [PMID: 30359715]
[27]
Longair, M.H.; Baker, D.A.; Armstrong, J.D. Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics, 2011, 27(17), 2453-2454.
[http://dx.doi.org/10.1093/bioinformatics/btr390] [PMID: 21727141]
[28]
Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.Y.; White, D.J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 2012, 9(7), 676-682.
[http://dx.doi.org/10.1038/nmeth.2019] [PMID: 22743772]
[29]
Lin, T.A.; Kong, X.; Saltiel, A.R.; Blackshear, P.J.; Lawrence, J.C., Jr Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. J. Biol. Chem., 1995, 270(31), 18531-18538.
[http://dx.doi.org/10.1074/jbc.270.31.18531] [PMID: 7629182]
[30]
Bruel-Jungerman, E.; Laroche, S.; Rampon, C. New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur. J. Neurosci., 2005, 21(2), 513-521.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03875.x] [PMID: 15673450]
[31]
Winocur, G.; Wojtowicz, J.M.; Sekeres, M.; Snyder, J.S.; Wang, S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus, 2006, 16(3), 296-304.
[http://dx.doi.org/10.1002/hipo.20163] [PMID: 16411241]
[32]
Goo, M.J.; Choi, S.M.; Kim, S.H.; Ahn, B.O. Protective effects of acetyl-L-carnitine on neurodegenarative changes in chronic cerebral ischemia models and learning-memory impairment in aged rats. Arch. Pharm. Res., 2012, 35(1), 145-154.
[http://dx.doi.org/10.1007/s12272-012-0116-9] [PMID: 22297753]
[33]
Yu, S.Y.; Zhang, M.; Luo, J.; Zhang, L.; Shao, Y.; Li, G. Curcumin ameliorates memory deficits via neuronal nitric oxide synthase in aged mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 47-53.
[http://dx.doi.org/10.1016/j.pnpbp.2013.05.001] [PMID: 23665290]
[34]
Batty, G.D.; Deary, I.J. Early life intelligence and adult health. BMJ, 2004, 329(7466), 585-586.
[http://dx.doi.org/10.1136/bmj.329.7466.585] [PMID: 15361422]
[35]
Gottfredson, L.S. Life, Death, and Intelligence. J. Cogn. Educ. Psychol., 2004, 4(1), 23-46.
[http://dx.doi.org/10.1891/194589504787382839]
[36]
Sato, N.; Murakami, Y.; Nakano, T.; Sugawara, M.; Kawakami, H.; Idota, T.; Nakajima, I. Effects of dietary nucleotides on lipid metabolism and learning ability of rats. Biosci. Biotechnol. Biochem., 1995, 59(7), 1267-1271.
[http://dx.doi.org/10.1271/bbb.59.1267] [PMID: 7670187]
[37]
Lee, B.; Sur, B.J.; Han, J.J.; Shim, I.; Her, S.; Lee, H.J.; Hahm, D.H. Krill phosphatidylserine improves learning and memory in Morris water maze in aged rats. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2010, 34(6), 1085-1093.
[http://dx.doi.org/10.1016/j.pnpbp.2010.05.031] [PMID: 20677367]
[38]
Marcussen, A.B.; Flagstad, P.; Kristjansen, P.E.; Johansen, F.F.; Englund, U. Increase in neurogenesis and behavioural benefit after chronic fluoxetine treatment in Wistar rats. Acta Neurol. Scand., 2008, 117(2), 94-100.
[PMID: 18184344]
[39]
Rainer, Q.; Xia, L.; Guilloux, J.P.; Gabriel, C.; Mocaër, E.; Hen, R.; Enhamre, E.; Gardier, A.M.; David, D.J. Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int. J. Neuropsychopharmacol., 2012, 15(3), 321-335.
[http://dx.doi.org/10.1017/S1461145711000356] [PMID: 21473810]
[40]
Rabacchi, S.A.; Kruk, B.; Hamilton, J.; Carney, C.; Hoffman, J.R.; Meyer, S.L.; Springer, J.E.; Baird, D.H. BDNF and NT4/5 promote survival and neurite outgrowth of pontocerebellar mossy fiber neurons. J. Neurobiol., 1999, 40(2), 254-269.
[http://dx.doi.org/10.1002/(SICI)1097-4695(199908)40:2<254::AID-NEU11>3.0.CO;2-4] [PMID: 10413455]
[41]
Hechler, D.; Boato, F.; Nitsch, R.; Hendrix, S. Differential regulation of axon outgrowth and reinnervation by neurotrophin-3 and neurotrophin-4 in the hippocampal formation. Exp. Brain Res., 2010, 205(2), 215-221.
[http://dx.doi.org/10.1007/s00221-010-2355-7] [PMID: 20640412]
[42]
Lee, Y.S.; Danandeh, A.; Baratta, J.; Lin, C.Y.; Yu, J.; Robertson, R.T. Neurotrophic factors rescue basal forebrain cholinergic neurons and improve performance on a spatial learning test. Exp. Neurol., 2013, 249, 178-186.
[http://dx.doi.org/10.1016/j.expneurol.2013.08.012] [PMID: 24017996]
[43]
Fischer, W.; Sirevaag, A.; Wiegand, S.J.; Lindsay, R.M.; Björklund, A. Reversal of spatial memory impairments in aged rats by nerve growth factor and neurotrophins 3 and 4/5 but not by brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA, 1994, 91(18), 8607-8611.
[http://dx.doi.org/10.1073/pnas.91.18.8607] [PMID: 8078930]
[44]
Arduini, A.; Eddy, L.; Hochstein, P. The reduction of ferryl myoglobin by ergothioneine: a novel function for ergothioneine. Arch. Biochem. Biophys., 1990, 281(1), 41-43.
[http://dx.doi.org/10.1016/0003-9861(90)90410-Z] [PMID: 2383023]
[45]
Bedirli, A.; Sakrak, O.; Muhtaroglu, S.; Soyuer, I.; Guler, I.; Riza Erdogan, A.; Sozuer, E.M. Ergothioneine pretreatment protects the liver from ischemia-reperfusion injury caused by increasing hepatic heat shock protein 70. J. Surg. Res., 2004, 122(1), 96-102.
[http://dx.doi.org/10.1016/j.jss.2004.06.016] [PMID: 15522321]
[46]
Sakrak, O.; Kerem, M.; Bedirli, A.; Pasaoglu, H.; Akyurek, N.; Ofluoglu, E.; Gültekin, F.A. Ergothioneine modulates proinflammatory cytokines and heat shock protein 70 in mesenteric ischemia and reperfusion injury. J. Surg. Res., 2008, 144(1), 36-42.
[http://dx.doi.org/10.1016/j.jss.2007.04.020] [PMID: 17603080]
[47]
Repine, J.E.; Elkins, N.D. Effect of ergothioneine on acute lung injury and inflammation in cytokine insufflated rats. Prev. Med., 2012, 54(Suppl.), S79-S82.
[http://dx.doi.org/10.1016/j.ypmed.2011.12.006] [PMID: 22197759]
[48]
Obayashi, K.; Kurihara, K.; Okano, Y.; Masaki, H.; Yarosh, D.B. L-Ergothioneine scavenges superoxide and singlet oxygen and suppresses TNF-alpha and MMP-1 expression in UV-irradiated human dermal fibroblasts. J. Cosmet. Sci., 2005, 56(1), 17-27.
[http://dx.doi.org/10.1111/j.0142-5463.2005.00265_2.x] [PMID: 15744438]
[49]
Yoshida, S.; Shime, H.; Funami, K.; Takaki, H.; Matsumoto, M.; Kasahara, M.; Seya, T. The anti-oxidant ergothioneine augments the immunomodulatory function of TLR agonists by direct action on macrophages. PLoS One, 2017, 12(1)e0169360
[http://dx.doi.org/10.1371/journal.pone.0169360] [PMID: 28114402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy