Review Article

线粒体相关膜(MAMs):一种新型的代谢综合征的治疗靶标。

卷 28, 期 7, 2021

发表于: 12 February, 2020

页: [1347 - 1362] 页: 16

弟呕挨: 10.2174/0929867327666200212100644

价格: $65

摘要

线粒体相关的内质网(ER)膜(MAM)是连接ER和线粒体并介导这两个细胞器之间通讯的细胞结构。 已证明MAMs参与钙信号传导,脂质转移,线粒体动态变化,线粒体和ER应激反应。 此外,MAMs对代谢调节至关重要,据报道其功能障碍与代谢综合征有关,包括胰岛素信号下调和高脂血症,肥胖症和高血压的加速发展。 这篇综述涵盖了MAMs在调节胰岛素敏感性中的作用以及MAMs调控细胞代谢的分子机制,并揭示了MAMs作为治疗代谢综合征的潜在治疗靶点的潜力。

关键词: 线粒体,内质网(ER),线粒体相关膜(MAM),代谢综合征,糖尿病,胰岛素抵抗。

[1]
Johnson, P.; Turner, L.; Carter, M.; Kelly, R.; Ewell, P.J. Metabolic syndrome prevalence and correlates in a worksite wellness program. Workplace Health Saf., 2015, 63(6), 245-252.
[http://dx.doi.org/10.1177/2165079915576920] [PMID: 26002853]
[2]
Wong, S.K.; Chin, K-Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Vitamin E as a potential interventional treatment for metabolic syndrome: evidence from animal and human studies. Front. Pharmacol., 2017, 8, 444.
[http://dx.doi.org/10.3389/fphar.2017.00444] [PMID: 28725195]
[3]
Han, T.S.; Lean, M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis., 2016, 52048004016633371
[http://dx.doi.org/10.1177/2048004016633371] [PMID: 26998259]
[4]
Gallagher, E.J.; Leroith, D.; Karnieli, E. Insulin resistance in obesity as the underlying cause for the metabolic syndrome. Mt. Sinai J. Med., 2010, 77(5), 511-523.
[http://dx.doi.org/10.1002/msj.20212] [PMID: 20960553]
[5]
Chen, C.C.; Lee, T.Y.; Leu, Y.L.; Wang, S.H. Pigment epithelium-derived factor inhibits adipogenesis in 3T3-L1 adipocytes and protects against high-fat diet-induced obesity and metabolic disorders in mice. Transl. Res., 2019, 210, 26-42.
[http://dx.doi.org/10.1016/j.trsl.2019.04.006] [PMID: 31121128]
[6]
Torres, S.; Fabersani, E.; Marquez, A.; Gauffin-Cano, P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur. J. Nutr., 2019, 58(1), 27-43.
[http://dx.doi.org/10.1007/s00394-018-1790-2] [PMID: 30043184]
[7]
Chang, Y.C.; Hua, S.C.; Chang, C.H.; Kao, W.Y.; Lee, H.L.; Chuang, L.M.; Huang, Y.T.; Lai, M.S. High TSH level within normal range is associated with obesity, dyslipidemia, hypertension, inflammation, hypercoagulability, and the metabolic syndrome: a novel cardiometabolic marker. J. Clin. Med., 2019, 8(6)E817
[http://dx.doi.org/10.3390/jcm8060817] [PMID: 31181658]
[8]
Gao, A.W.; Cantó, C.; Houtkooper, R.H. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol. Med., 2014, 6(5), 580-589.
[http://dx.doi.org/10.1002/emmm.201303782] [PMID: 24623376]
[9]
Hetz, C.; Axten, J.M.; Patterson, J.B. Pharmacological targeting of the unfolded protein response for disease intervention. Nat. Chem. Biol., 2019, 15(8), 764-775.
[http://dx.doi.org/10.1038/s41589-019-0326-2] [PMID: 31320759]
[10]
Szymański, J.; Janikiewicz, J.; Michalska, B.; Patalas-Krawczyk, P.; Perrone, M.; Ziółkowski, W.; Duszyński, J.; Pinton, P.; Dobrzyń, A.; Więckowski, M.R. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int. J. Mol. Sci., 2017, 18(7)E1576
[http://dx.doi.org/10.3390/ijms18071576] [PMID: 28726733]
[11]
Rowland, A.A.; Voeltz, G.K. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol., 2012, 13(10), 607-625.
[http://dx.doi.org/10.1038/nrm3440] [PMID: 22992592]
[12]
Park, S.J.; Lee, S.B.; Suh, Y.; Kim, S.J.; Lee, N.; Hong, J.H.; Park, C.; Woo, Y.; Ishizuka, K.; Kim, J.H.; Berggren, P.O.; Sawa, A.; Park, S.K. DISC1 modulates neuronal stress responses by gate-keeping er-mitochondria Ca2+ transfer through the MAM. Cell Rep., 2017, 21(10), 2748-2759.
[http://dx.doi.org/10.1016/j.celrep.2017.11.043] [PMID: 29212023]
[13]
Theurey, P.; Rieusset, J. Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases. Trends Endocrinol. Metab., 2017, 28(1), 32-45.
[http://dx.doi.org/10.1016/j.tem.2016.09.002] [PMID: 27670636]
[14]
Kerkhofs, M.; Giorgi, C.; Marchi, S.; Seitaj, B.; Parys, J.B.; Pinton, P.; Bultynck, G.; Bittremieux, M. Alterations in Ca2+ signalling via ER-mitochondria contact site remodelling in cancer. Adv. Exp. Med. Biol., 2017, 997, 225-254.
[http://dx.doi.org/10.1007/978-981-10-4567-7_17] [PMID: 28815534]
[15]
Elbaz-Alon, Y.; Rosenfeld-Gur, E.; Shinder, V.; Futerman, A.H.; Geiger, T.; Schuldiner, M. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell, 2014, 30(1), 95-102.
[http://dx.doi.org/10.1016/j.devcel.2014.06.007] [PMID: 25026036]
[16]
Gordaliza-Alaguero, I.; Cantó, C.; Zorzano, A. Metabolic implications of organelle-mitochondria communication. EMBO Rep., 2019, 20(9)e47928
[http://dx.doi.org/10.15252/embr.201947928] [PMID: 31418169]
[17]
Copeland, D.E.; Dalton, A.J. An association between mitochondria and the endoplasmic reticulum in cells of the pseudobranch gland of a teleost. J. Biophys. Biochem. Cytol., 1959, 5(3), 393-396.
[http://dx.doi.org/10.1083/jcb.5.3.393] [PMID: 13664679]
[18]
Morré, D.J.; Merritt, W.D.; Lembi, C.A. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma, 1971, 73(1), 43-49.
[http://dx.doi.org/10.1007/BF01286410] [PMID: 5112775]
[19]
Vance, J.E. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem., 1990, 265(13), 7248-7256.
[http://dx.doi.org/10.1016/S0021-9258(19)39106-9] [PMID: 2332429]
[20]
Achleitner, G.; Gaigg, B.; Krasser, A.; Kainersdorfer, E.; Kohlwein, S.D.; Perktold, A.; Zellnig, G.; Daum, G. Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur. J. Biochem., 1999, 264(2), 545-553.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00658.x] [PMID: 10491102]
[21]
Rizzuto, R.; Pinton, P.; Carrington, W.; Fay, F.S.; Fogarty, K.E.; Lifshitz, L.M.; Tuft, R.A.; Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 1998, 280(5370), 1763-1766.
[http://dx.doi.org/10.1126/science.280.5370.1763] [PMID: 9624056]
[22]
D’Eletto, M.; Rossin, F.; Occhigrossi, L.; Farrace, M.G.; Faccenda, D.; Desai, R.; Marchi, S.; Refolo, G.; Falasca, L.; Antonioli, M.; Ciccosanti, F.; Fimia, G.M.; Pinton, P.; Campanella, M.; Piacentini, M. Transglutaminase type 2 regulates ER-mitochondria contact sites by interacting with GRP75. Cell Rep., 2018, 25(13), 3573.e4-3581.e4.
[http://dx.doi.org/10.1016/j.celrep.2018.11.094]] [PMID: 30590033]
[23]
Rusiñol, A.E.; Cui, Z.; Chen, M.H.; Vance, J.E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-golgi secretory proteins including nascent lipoproteins. J. Biol. Chem., 1994, 269(44), 27494-27502.
[http://dx.doi.org/10.1016/S0021-9258(18)47012-3] [PMID: 7961664]
[24]
Gutiérrez, T.; Simmen, T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium, 2018, 70, 64-75.
[http://dx.doi.org/10.1016/j.ceca.2017.05.015] [PMID: 28619231]
[25]
Bernard-Marissal, N.; van Hameren, G.; Juneja, M.; Pellegrino, C.; Louhivuori, L.; Bartesaghi, L.; Rochat, C.; El Mansour, O.; Médard, J.J.; Croisier, M.; Maclachlan, C.; Poirot, O.; Uhlén, P.; Timmerman, V.; Tricaud, N.; Schneider, B.L.; Chrast, R. Altered interplay between endoplasmic reticulum and mitochondria in Charcot-Marie-Tooth type 2A neuropathy. Proc. Natl. Acad. Sci. USA, 2019, 116(6), 2328-2337.
[http://dx.doi.org/10.1073/pnas.1810932116] [PMID: 30659145]
[26]
Hailey, D.W.; Rambold, A.S.; Satpute-Krishnan, P.; Mitra, K.; Sougrat, R.; Kim, P.K.; Lippincott-Schwartz, J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, 141(4), 656-667.
[http://dx.doi.org/10.1016/j.cell.2010.04.009] [PMID: 20478256]
[27]
de Brito, O.M.; Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008, 456(7222), 605-610.
[http://dx.doi.org/10.1038/nature07534] [PMID: 19052620]
[28]
Filadi, R.; Theurey, P.; Pizzo, P. The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium, 2017, 62, 1-15.
[http://dx.doi.org/10.1016/j.ceca.2017.01.003] [PMID: 28108029]
[29]
Danese, A.; Patergnani, S.; Bonora, M.; Wieckowski, M.R.; Previati, M.; Giorgi, C.; Pinton, P. Calcium regulates cell death in cancer: roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim. Biophys. Acta Bioenerg., 2017, 1858(8), 615-627.
[http://dx.doi.org/10.1016/j.bbabio.2017.01.003] [PMID: 28087257]
[30]
Malli, R.; Graier, W.F. The role of mitochondria in the activation/maintenance of SOCE: the contribution of mitochondrial Ca2+ uptake, mitochondrial motility, and location to store-operated Ca2+ entry. Adv. Exp. Med. Biol., 2017, 993, 297-319.
[http://dx.doi.org/10.1007/978-3-319-57732-6_16] [PMID: 28900921]
[31]
Clapham, D.E. Calcium signaling. Cell, 2007, 131(6), 1047-1058.
[http://dx.doi.org/10.1016/j.cell.2007.11.028] [PMID: 18083096]
[32]
Piegari, E.; Villarruel, C.; Dawson, S.P. Changes in Ca2+ removal can mask the effects of geometry during IP3R mediated Ca2+ signals. Front. Physiol., 2019, 10, 964.
[http://dx.doi.org/10.3389/fphys.2019.00964] [PMID: 31417423]
[33]
Parys, J.B.; De Smedt, H. Inositol 1,4,5-trisphosphate and its receptors. Adv. Exp. Med. Biol., 2012, 740, 255-279.
[http://dx.doi.org/10.1007/978-94-007-2888-2_11] [PMID: 22453946]
[34]
Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol., 2010, 2(11)a003996
[http://dx.doi.org/10.1101/cshperspect.a003996] [PMID: 20961976]
[35]
Krabbendam, I.E.; Honrath, B.; Culmsee, C.; Dolga, A.M. Mitochondrial Ca2+-activated K+ channels and their role in cell life and death pathways. Cell Calcium, 2018, 69, 101-111.
[http://dx.doi.org/10.1016/j.ceca.2017.07.005] [PMID: 28818302]
[36]
Denton, R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta, 2009, 1787(11), 1309-1316.
[http://dx.doi.org/10.1016/j.bbabio.2009.01.005] [PMID: 19413950]
[37]
Petrungaro, C.; Zimmermann, K.M.; Küttner, V.; Fischer, M.; Dengjel, J.; Bogeski, I.; Riemer, J. The Ca(2+)-dependent release of the Mia40-induced MICU1-MICU2 dimer from MCU regulates mitochondrial Ca(2+) uptake. Cell Metab., 2015, 22(4), 721-733.
[http://dx.doi.org/10.1016/j.cmet.2015.08.019] [PMID: 26387864]
[38]
Xing, Y.; Wang, M.; Wang, J.; Nie, Z.; Wu, G.; Yang, X.; Shen, Y. Dimerization of MICU proteins controls Ca(2+) influx through the mitochondrial Ca(2+) uniporter. Cell Rep., 2019, 26(5), 1203e4-1212e4.
[http://dx.doi.org/10.1016/j.celrep.2019.01.022] [PMID: 30699349]
[39]
Penna, E.; Espino, J.; De Stefani, D.; Rizzuto, R. The MCU complex in cell death. Cell Calcium, 2018, 69, 73-80.
[http://dx.doi.org/10.1016/j.ceca.2017.08.008] [PMID: 28867646]
[40]
Rizzuto, R.; Brini, M.; Murgia, M.; Pozzan, T. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science, 1993, 262(5134), 744-747.
[http://dx.doi.org/10.1126/science.8235595] [PMID: 8235595]
[41]
Tubbs, E.; Chanon, S.; Robert, M.; Bendridi, N.; Bidaux, G.; Chauvin, M.A.; Ji-Cao, J.; Durand, C.; Gauvrit-Ramette, D.; Vidal, H.; Lefai, E.; Rieusset, J. Disruption of mitochondria-associated endoplasmic reticulum membrane (MAM) integrity contributes to muscle insulin resistance in mice and humans. Diabetes, 2018, 67(4), 636-650.
[http://dx.doi.org/10.2337/db17-0316] [PMID: 29326365]
[42]
Qi, H.; Li, L.; Shuai, J. Optimal microdomain crosstalk between endoplasmic reticulum and mitochondria for Ca2+ oscillations. Sci. Rep., 2015, 5, 7984.
[http://dx.doi.org/10.1038/srep07984] [PMID: 25614067]
[43]
Yuan, L.; Liu, Q.; Wang, Z.; Hou, J.; Xu, P. EI24 tethers endoplasmic reticulum and mitochondria to regulate autophagy flux. Cell. Mol. Life Sci., 2020, 77(8), 1591-1606.
[http://dx.doi.org/10.1007/s00018-019-03236-9] [PMID: 31332481]
[44]
Szabadkai, G.; Bianchi, K.; Várnai, P.; De Stefani, D.; Wieckowski, M.R.; Cavagna, D.; Nagy, A.I.; Balla, T.; Rizzuto, R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol., 2006, 175(6), 901-911.
[http://dx.doi.org/10.1083/jcb.200608073] [PMID: 17178908]
[45]
Csordás, G.; Renken, C.; Várnai, P.; Walter, L.; Weaver, D.; Buttle, K.F.; Balla, T.; Mannella, C.A.; Hajnóczky, G. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol., 2006, 174(7), 915-921.
[http://dx.doi.org/10.1083/jcb.200604016] [PMID: 16982799]
[46]
De Vos, K.J.; Mórotz, G.M.; Stoica, R.; Tudor, E.L.; Lau, K.F.; Ackerley, S.; Warley, A.; Shaw, C.E.; Miller, C.C. VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis. Hum. Mol. Genet., 2012, 21(6), 1299-1311.
[http://dx.doi.org/10.1093/hmg/ddr559] [PMID: 22131369]
[47]
Paillusson, S.; Gomez-Suaga, P.; Stoica, R.; Little, D.; Gissen, P.; Devine, M.J.; Noble, W.; Hanger, D.P.; Miller, C.C.J. α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production. Acta Neuropathol., 2017, 134(1), 129-149.
[http://dx.doi.org/10.1007/s00401-017-1704-z] [PMID: 28337542]
[48]
Hayashi, T. The sigma-1 receptor in cellular stress signaling. Front. Neurosci., 2019, 13, 733.
[http://dx.doi.org/10.3389/fnins.2019.00733] [PMID: 31379486]
[49]
Tagashira, H.; Bhuiyan, M.S.; Shioda, N.; Fukunaga, K. Fluvoxamine rescues mitochondrial Ca2+ transport and ATP production through σ(1)-receptor in hypertrophic cardiomyocytes. Life Sci., 2014, 95(2), 89-100.
[http://dx.doi.org/10.1016/j.lfs.2013.12.019] [PMID: 24373833]
[50]
Hayashi, T.; Su, T.P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell, 2007, 131(3), 596-610.
[http://dx.doi.org/10.1016/j.cell.2007.08.036] [PMID: 17981125]
[51]
Jia, J.; Cheng, J.; Wang, C.; Zhen, X. Sigma-1 receptor-modulated neuroinflammation in neurological diseases. Front. Cell. Neurosci., 2018, 12, 314.
[http://dx.doi.org/10.3389/fncel.2018.00314] [PMID: 30294261]
[52]
Reddish, F.N.; Miller, C.L.; Gorkhali, R.; Yang, J.J. Calcium dynamics mediated by the endoplasmic/sarcoplasmic reticulum and related diseases. Int. J. Mol. Sci., 2017, 18(5)E1024
[http://dx.doi.org/10.3390/ijms18051024] [PMID: 28489021]
[53]
Gottschalk, B.; Klec, C.; Waldeck-Weiermair, M.; Malli, R.; Graier, W.F. Intracellular Ca2+ release decelerates mitochondrial cristae dynamics within the junctions to the endoplasmic reticulum. Pflugers Arch., 2018, 470(8), 1193-1203.
[http://dx.doi.org/10.1007/s00424-018-2133-0] [PMID: 29527615]
[54]
Tanaka, T.; Hosaka, K.; Hoshimaru, M.; Numa, S. Purification and properties of long-chain acyl-coenzyme-A synthetase from rat liver. Eur. J. Biochem., 1979, 98(1), 165-172.
[http://dx.doi.org/10.1111/j.1432-1033.1979.tb13173.x] [PMID: 467438]
[55]
Bell, R.M.; Ballas, L.M.; Coleman, R.A. Lipid topogenesis. J. Lipid Res., 1981, 22(3), 391-403.
[http://dx.doi.org/10.1016/S0022-2275(20)34952-X] [PMID: 7017050]
[56]
Stone, S.J.; Vance, J.E. Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem., 2000, 275(44), 34534-34540.
[http://dx.doi.org/10.1074/jbc.M002865200] [PMID: 10938271]
[57]
Vance, J.E. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. Biochim. Biophys. Acta, 2014, 1841(4), 595-609.
[http://dx.doi.org/10.1016/j.bbalip.2013.11.014] [PMID: 24316057]
[58]
Steenbergen, R.; Nanowski, T.S.; Beigneux, A.; Kulinski, A.; Young, S.G.; Vance, J.E. Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J. Biol. Chem., 2005, 280(48), 40032-40040.
[http://dx.doi.org/10.1074/jbc.M506510200] [PMID: 16192276]
[59]
Nakatsuka, A.; Matsuyama, M.; Yamaguchi, S.; Katayama, A.; Eguchi, J.; Murakami, K.; Teshigawara, S.; Ogawa, D.; Wada, N.; Yasunaka, T.; Ikeda, F.; Takaki, A.; Watanabe, E.; Wada, J. Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis. Sci. Rep., 2016, 6, 21721.
[http://dx.doi.org/10.1038/srep21721] [PMID: 26883167]
[60]
Gao, X.; van der Veen, J.N.; Vance, J.E.; Thiesen, A.; Vance, D.E.; Jacobs, R.L. Lack of phosphatidylethanolamine N-methyltransferase alters hepatic phospholipid composition and induces endoplasmic reticulum stress. Biochim. Biophys. Acta, 2015, 1852(12), 2689-2699.
[http://dx.doi.org/10.1016/j.bbadis.2015.09.006] [PMID: 26391255]
[61]
Elustondo, P.; Martin, L.A.; Karten, B. Mitochondrial cholesterol import. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(1), 90-101.
[http://dx.doi.org/10.1016/j.bbalip.2016.08.012] [PMID: 27565112]
[62]
Prasad, M.; Kaur, J.; Pawlak, K.J.; Bose, M.; Whittal, R.M.; Bose, H.S. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction. J. Biol. Chem., 2015, 290(5), 2604-2616.
[http://dx.doi.org/10.1074/jbc.M114.605808] [PMID: 25505173]
[63]
Duarte, A.; Poderoso, C.; Cooke, M.; Soria, G.; Cornejo Maciel, F.; Gottifredi, V.; Podestá, E.J. Mitochondrial fusion is essential for steroid biosynthesis. PLoS One, 2012, 7(9)e45829
[http://dx.doi.org/10.1371/journal.pone.0045829] [PMID: 23029265]
[64]
Area-Gomez, E. Assessing the function of mitochondria-associated ER membranes. Methods Enzymol., 2014, 547, 181-197.
[http://dx.doi.org/10.1016/B978-0-12-801415-8.00011-4] [PMID: 25416359]
[65]
Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med., 2017, 23(7), 804-814.
[http://dx.doi.org/10.1038/nm.4350] [PMID: 28697184]
[66]
Beale, E.G. Insulin signaling and insulin resistance. J. Investig. Med., 2013, 61(1), 11-14.
[http://dx.doi.org/10.2310/JIM.0b013e3182746f95] [PMID: 23111650]
[67]
Shinjo, S.; Jiang, S.; Nameta, M.; Suzuki, T.; Kanai, M.; Nomura, Y.; Goda, N. Disruption of the mitochondria-associated ER membrane (MAM) plays a central role in palmitic acid-induced insulin resistance. Exp. Cell Res., 2017, 359(1), 86-93.
[http://dx.doi.org/10.1016/j.yexcr.2017.08.006] [PMID: 28827061]
[68]
Sylow, L.; Kleinert, M.; Pehmøller, C.; Prats, C.; Chiu, T.T.; Klip, A.; Richter, E.A.; Jensen, T.E. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cell. Signal., 2014, 26(2), 323-331.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.007] [PMID: 24216610]
[69]
Zhang, Y.; Zhang, Y.; Yu, Y. Global phosphoproteomic analysis of insulin/Akt/mTORC1/S6K signaling in rat hepatocytes. J. Proteome Res., 2017, 16(8), 2825-2835.
[http://dx.doi.org/10.1021/acs.jproteome.7b00140] [PMID: 28689409]
[70]
Xu, Z.H.; Liu, C.H.; Hang, J.B.; Gao, B.L.; Hu, J.A. Rituximab effectively reverses tyrosine kinase inhibitors (TKIs) resistance through inhibiting the accumulation of rictor on mitochondria-associated ER-membrane (MAM). Cancer Biomark., 2017, 20(4), 581-588.
[http://dx.doi.org/10.3233/CBM-170575] [PMID: 28946557]
[71]
Kleinert, M.; Sylow, L.; Fazakerley, D.J.; Krycer, J.R.; Thomas, K.C.; Oxbøll, A.J.; Jordy, A.B.; Jensen, T.E.; Yang, G.; Schjerling, P.; Kiens, B.; James, D.E.; Ruegg, M.A.; Richter, E.A. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol. Metab., 2014, 3(6), 630-641.
[http://dx.doi.org/10.1016/j.molmet.2014.06.004] [PMID: 25161886]
[72]
Jiang, H.; Westerterp, M.; Wang, C.; Zhu, Y.; Ai, D. Macrophage mTORC1 disruption reduces inflammation and insulin resistance in obese mice. Diabetologia, 2014, 57(11), 2393-2404.
[http://dx.doi.org/10.1007/s00125-014-3350-5] [PMID: 25120095]
[73]
Gomez, L.; Thiebaut, P.A.; Paillard, M.; Ducreux, S.; Abrial, M.; Da Silva, C.C.; Durand, A.; Alam, M.R.; Coppenolle, F.V.; Sheu, S-S.; Ovize, M. The SR/ER-mitochondria calcium crosstalk is regulated by GSK3β during reperfusion injury. Cell Death Differ., 2016, 23(2), 313-322.
[http://dx.doi.org/10.1038/cdd.2015.101] [PMID: 26206086]
[74]
Tubbs, E.; Theurey, P.; Vial, G.; Bendridi, N.; Bravard, A.; Chauvin, M.A.; Ji-Cao, J.; Zoulim, F.; Bartosch, B.; Ovize, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes, 2014, 63(10), 3279-3294.
[http://dx.doi.org/10.2337/db13-1751] [PMID: 24947355]
[75]
Tavecchio, M.; Lisanti, S.; Bennett, M.J.; Languino, L.R.; Altieri, D.C. Deletion of cyclophilin D impairs β-oxidation and promotes glucose metabolism. Sci. Rep., 2015, 5, 15981.
[http://dx.doi.org/10.1038/srep15981] [PMID: 26515038]
[76]
Rieusset, J. Role of endoplasmic reticulum-mitochondria communication in type 2 diabetes. Adv. Exp. Med. Biol., 2017, 997, 171-186.
[http://dx.doi.org/10.1007/978-981-10-4567-7_13] [PMID: 28815530]
[77]
Basso, V.; Marchesan, E.; Peggion, C.; Chakraborty, J.; von Stockum, S.; Giacomello, M.; Ottolini, D.; Debattisti, V.; Caicci, F.; Tasca, E.; Pegoraro, V.; Angelini, C.; Antonini, A.; Bertoli, A.; Brini, M.; Ziviani, E. Regulation of ER-mitochondria contacts by Parkin via Mfn2. Pharmacol. Res., 2018, 138, 43-56.
[http://dx.doi.org/10.1016/j.phrs.2018.09.006] [PMID: 30219582]
[78]
Sebastián, D.; Hernández-Alvarez, M.I.; Segalés, J.; Sorianello, E.; Muñoz, J.P.; Sala, D.; Waget, A.; Liesa, M.; Paz, J.C.; Gopalacharyulu, P.; Orešič, M.; Pich, S.; Burcelin, R.; Palacín, M.; Zorzano, A. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. USA, 2012, 109(14), 5523-5528.
[http://dx.doi.org/10.1073/pnas.1108220109] [PMID: 22427360]
[79]
Gan, K.X.; Wang, C.; Chen, J.H.; Zhu, C.J.; Song, G.Y. Mitofusin-2 ameliorates high-fat diet-induced insulin resistance in liver of rats. World J. Gastroenterol., 2013, 19(10), 1572-1581.
[http://dx.doi.org/10.3748/wjg.v19.i10.1572] [PMID: 23538485]
[80]
Nasrallah, C.M.; Horvath, T.L. Mitochondrial dynamics in the central regulation of metabolism. Nat. Rev. Endocrinol., 2014, 10(11), 650-658.
[http://dx.doi.org/10.1038/nrendo.2014.160] [PMID: 25200564]
[81]
Betz, C.; Stracka, D.; Prescianotto-Baschong, C.; Frieden, M.; Demaurex, N.; Hall, M.N. Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl. Acad. Sci. USA, 2013, 110(31), 12526-12534.
[http://dx.doi.org/10.1073/pnas.1302455110] [PMID: 23852728]
[82]
Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab., 2012, 15(5), 725-738.
[http://dx.doi.org/10.1016/j.cmet.2012.03.015] [PMID: 22521878]
[83]
Tubbs, E.; Axelsson, A.S.; Vial, G.; Wollheim, C.B.; Rieusset, J.; Rosengren, A.H. Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Mol. Cell. Endocrinol., 2018, 461, 205-214.
[http://dx.doi.org/10.1016/j.mce.2017.09.016] [PMID: 28923347]
[84]
Guerrero-Hernandez, A.; Verkhratsky, A. Calcium signalling in diabetes. Cell Calcium, 2014, 56(5), 297-301.
[http://dx.doi.org/10.1016/j.ceca.2014.08.009] [PMID: 25217232]
[85]
van Vliet, A.R.; Agostinis, P. Mitochondria-associated mem-branes and ER stress. Curr. Top. Microbiol. Immunol., 2018, 414, 73-102.
[http://dx.doi.org/10.1007/82_2017_2] [PMID: 28349285]
[86]
Ozcan, L.; de Souza, J.C.; Harari, A.A.; Backs, J.; Olson, E.N.; Tabas, I. Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab., 2013, 18(6), 803-815.
[http://dx.doi.org/10.1016/j.cmet.2013.10.011] [PMID: 24268736]
[87]
Mohankumar, S.K.; Taylor, C.G.; Zahradka, P. Domain-dependent modulation of insulin-induced AS160 phosphorylation and glucose uptake by Ca2+/calmodulin-dependent protein kinase II in L6 myotubes. Cell. Signal., 2012, 24(1), 302-308.
[http://dx.doi.org/10.1016/j.cellsig.2011.09.014] [PMID: 21964065]
[88]
Dadi, P.K.; Vierra, N.C.; Ustione, A.; Piston, D.W.; Colbran, R.J.; Jacobson, D.A. Inhibition of pancreatic β-cell Ca2+/calmodulin-dependent protein kinase II reduces glucose-stimulated calcium influx and insulin secretion, impairing glucose tolerance. J. Biol. Chem., 2014, 289(18), 12435-12445.
[http://dx.doi.org/10.1074/jbc.M114.562587] [PMID: 24627477]
[89]
Fu, S.; Yang, L.; Li, P.; Hofmann, O.; Dicker, L.; Hide, W.; Lin, X.; Watkins, S.M.; Ivanov, A.R.; Hotamisligil, G.S. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature, 2011, 473(7348), 528-531.
[http://dx.doi.org/10.1038/nature09968] [PMID: 21532591]
[90]
Rieusset, J.; Fauconnier, J.; Paillard, M.; Belaidi, E.; Tubbs, E.; Chauvin, M.A.; Durand, A.; Bravard, A.; Teixeira, G.; Bartosch, B.; Michelet, M.; Theurey, P.; Vial, G.; Demion, M.; Blond, E.; Zoulim, F.; Gomez, L.; Vidal, H.; Lacampagne, A.; Ovize, M. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia, 2016, 59(3), 614-623.
[http://dx.doi.org/10.1007/s00125-015-3829-8] [PMID: 26660890]
[91]
Arner, P. Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes Metab. Res. Rev., 2002, 18(Suppl. 2), S5-S9.
[http://dx.doi.org/10.1002/dmrr.254] [PMID: 11921432]
[92]
Zhang, X.; Wang, Y.; Ge, H.Y.; Gu, Y.J.; Cao, F.F.; Yang, C.X.; Uzan, G.; Peng, B.; Zhang, D.H. Celastrol reverses palmitic acid (PA)-caused TLR4-MD2 activation-dependent insulin resistance via disrupting MD2-related cellular binding to PA. J. Cell. Physiol., 2018, 233(10), 6814-6824.
[http://dx.doi.org/10.1002/jcp.26547] [PMID: 29667734]
[93]
Horst, K.W.T.; Gilijamse, P.W.; Versteeg, R.I.; Ackermans, M.T.; Nederveen, A.J.; la Fleur, S.E.; Romijn, J.A.; Nieuwdorp, M.; Zhang, D.; Samuel, V.T.; Vatner, D.F.; Petersen, K.F.; Shulman, G.I.; Serlie, M.J. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep., 2017, 19(10), 1997-2004.
[http://dx.doi.org/10.1016/j.celrep.2017.05.035] [PMID: 28591572]
[94]
Rachek, L.I. Free fatty acids and skeletal muscle insulin resistance. Prog. Mol. Biol. Transl. Sci., 2014, 121, 267-292.
[http://dx.doi.org/10.1016/B978-0-12-800101-1.00008-9] [PMID: 24373240]
[95]
Vollenweider, P.; von Eckardstein, A.; Widmann, C. HDLs, diabetes, and metabolic syndrome. Handb. Exp. Pharmacol., 2015, 224, 405-421.
[http://dx.doi.org/10.1007/978-3-319-09665-0_12] [PMID: 25522996]
[96]
von Eckardstein, A.; Schulte, H.; Assmann, G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Münster. J. Clin. Endocrinol. Metab., 2000, 85(9), 3101-3108.
[http://dx.doi.org/10.1210/jcem.85.9.6773] [PMID: 10999793]
[97]
Garofalo, T.; Matarrese, P.; Manganelli, V.; Marconi, M.; Tinari, A.; Gambardella, L.; Faggioni, A.; Misasi, R.; Sorice, M.; Malorni, W. Evidence for the involvement of lipid rafts localized at the ER-mitochondria associated membranes in autophagosome formation. Autophagy, 2016, 12(6), 917-935.
[http://dx.doi.org/10.1080/15548627.2016.1160971] [PMID: 27123544]
[98]
Christian, P.; Su, Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am. J. Physiol. Endocrinol. Metab., 2014, 307(9), E729-E737.
[http://dx.doi.org/10.1152/ajpendo.00194.2014] [PMID: 25184990]
[99]
Naik, R.; Obiang-Obounou, B.W.; Kim, M.; Choi, Y.; Lee, H.S.; Lee, K. Therapeutic strategies for metabolic diseases: small-molecule diacylglycerol acyltransferase (DGAT) inhibitors. ChemMedChem, 2014, 9(11), 2410-2424.
[http://dx.doi.org/10.1002/cmdc.201402069] [PMID: 24954424]
[100]
Stone, S.J.; Myers, H.M.; Watkins, S.M.; Brown, B.E.; Feingold, K.R.; Elias, P.M.; Farese, R.V. Jr. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem., 2004, 279(12), 11767-11776.
[http://dx.doi.org/10.1074/jbc.M311000200] [PMID: 14668353]
[101]
Stone, S.J.; Levin, M.C.; Zhou, P.; Han, J.; Walther, T.C.; Farese, R.V. Jr. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J. Biol. Chem., 2009, 284(8), 5352-5361.
[http://dx.doi.org/10.1074/jbc.M805768200] [PMID: 19049983]
[102]
Faergeman, N.J.; Knudsen, J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J., 1997, 323(Pt 1), 1-12.
[http://dx.doi.org/10.1042/bj3230001] [PMID: 9173866]
[103]
Suzuki, H.; Kawarabayasi, Y.; Kondo, J.; Abe, T.; Nishikawa, K.; Kimura, S.; Hashimoto, T.; Yamamoto, T. Structure and regulation of rat long-chain acyl-CoA synthetase. J. Biol. Chem., 1990, 265(15), 8681-8685.
[http://dx.doi.org/10.1016/S0021-9258(19)38942-2] [PMID: 2341402]
[104]
Shimbara-Matsubayashi, S.; Kuwata, H.; Tanaka, N.; Kato, M.; Hara, S. Analysis on the substrate specificity of recombinant human Acyl-CoA synthetase ACSL4 variants. Biol. Pharm. Bull., 2019, 42(5), 850-855.
[http://dx.doi.org/10.1248/bpb.b19-00085] [PMID: 31061331]
[105]
Teodoro, B.G.; Sampaio, I.H.; Bomfim, L.H.; Queiroz, A.L.; Silveira, L.R.; Souza, A.O.; Fernandes, A.M.; Eberlin, M.N.; Huang, T.Y.; Zheng, D.; Neufer, P.D.; Cortright, R.N.; Alberici, L.C. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle. J. Physiol., 2017, 595(3), 677-693.
[http://dx.doi.org/10.1113/JP272962] [PMID: 27647415]
[106]
Houten, S.M.; Violante, S.; Ventura, F.V.; Wanders, R.J. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol., 2016, 78, 23-44.
[http://dx.doi.org/10.1146/annurev-physiol-021115-105045] [PMID: 26474213]
[107]
Singh, A.B.; Kan, C.F.K.; Kraemer, F.B.; Sobel, R.A.; Liu, J. Liver-specific knockdown of long-chain acyl-CoA synthetase 4 reveals its key role in VLDL-TG metabolism and phospholipid synthesis in mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab., 2019, 316(5), E880-E894.
[http://dx.doi.org/10.1152/ajpendo.00503.2018] [PMID: 30721098]
[108]
Sala-Vila, A.; Navarro-Lérida, I.; Sánchez-Alvarez, M.; Bosch, M.; Calvo, C.; López, J.A.; Calvo, E.; Ferguson, C.; Giacomello, M.; Serafini, A.; Scorrano, L.; Enriquez, J.A.; Balsinde, J.; Parton, R.G.; Vázquez, J.; Pol, A.; Del Pozo, M.A. Interplay between hepatic mitochondria-associated membranes, lipid metabolism and caveolin-1 in mice. Sci. Rep., 2016, 6, 27351.
[http://dx.doi.org/10.1038/srep27351] [PMID: 27272971]
[109]
Kumari, R.; Kumar, S.; Kant, R. An update on metabolic syndrome: metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab. Syndr., 2019, 13(4), 2409-2417.
[http://dx.doi.org/10.1016/j.dsx.2019.06.005] [PMID: 31405652]
[110]
Jaganathan, R.; Ravindran, R.; Dhanasekaran, S. Emerging role of adipocytokines in type 2 diabetes as mediators of insulin resistance and cardiovascular disease. Can. J. Diabetes, 2018, 42(4), 446.e1-456.e1.
[http://dx.doi.org/10.1016/j.jcjd.2017.10.040]] [PMID: 29229313]
[111]
Grundy, S.M. Adipose tissue and metabolic syndrome: too much, too little or neither. Eur. J. Clin. Invest., 2015, 45(11), 1209-1217.
[http://dx.doi.org/10.1111/eci.12519] [PMID: 26291691]
[112]
Chang, J.W.; Chen, H.L.; Su, H.J.; Lee, C.C. Abdominal obesity and insulin resistance in people exposed to moderate-to-high levels of dioxin. PLoS One, 2016, 11(1)e0145818
[http://dx.doi.org/10.1371/journal.pone.0145818] [PMID: 26752053]
[113]
Sargeant, J.A.; Gray, L.J.; Bodicoat, D.H.; Willis, S.A.; Stensel, D.J.; Nimmo, M.A.; Aithal, G.P.; King, J.A. The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. Obes. Rev., 2018, 19(10), 1446-1459.
[http://dx.doi.org/10.1111/obr.12719] [PMID: 30092609]
[114]
Gaggini, M.; Morelli, M.; Buzzigoli, E.; DeFronzo, R.A.; Bugianesi, E.; Gastaldelli, A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients, 2013, 5(5), 1544-1560.
[http://dx.doi.org/10.3390/nu5051544] [PMID: 23666091]
[115]
Theurey, P.; Tubbs, E.; Vial, G.; Jacquemetton, J.; Bendridi, N.; Chauvin, M.A.; Alam, M.R.; Le Romancer, M.; Vidal, H.; Rieusset, J. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol., 2016, 8(2), 129-143.
[http://dx.doi.org/10.1093/jmcb/mjw004] [PMID: 26892023]
[116]
Schneeberger, M.; Dietrich, M.O.; Sebastián, D.; Imbernón, M.; Castaño, C.; Garcia, A.; Esteban, Y.; Gonzalez-Franquesa, A.; Rodríguez, I.C.; Bortolozzi, A.; Garcia-Roves, P.M.; Gomis, R.; Nogueiras, R.; Horvath, T.L.; Zorzano, A.; Claret, M. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell, 2013, 155(1), 172-187.
[http://dx.doi.org/10.1016/j.cell.2013.09.003] [PMID: 24074867]
[117]
Han, J.; Kaufman, R.J. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res., 2016, 57(8), 1329-1338.
[http://dx.doi.org/10.1194/jlr.R067595] [PMID: 27146479]
[118]
Fan, Y.; Simmen, T. Mechanistic connections between endoplasmic reticulum (ER) redox control and mitochondrial metabolism. Cells, 2019, 8(9)E1071
[http://dx.doi.org/10.3390/cells8091071] [PMID: 31547228]
[119]
Lu, K.; Ding, R.; Wang, L.; Wu, S.; Chen, J.; Hu, D. Association between prevalence of hypertension and components of metabolic syndrome: the data from Kailuan community. Clin. Exp. Hypertens., 2015, 37(4), 303-307.
[http://dx.doi.org/10.3109/10641963.2014.960973] [PMID: 25272319]
[120]
Battault, S.; Meziat, C.; Nascimento, A.; Braud, L.; Gayrard, S.; Legros, C.; De Nardi, F.; Drai, J.; Cazorla, O.; Thireau, J.; Meyer, G.; Reboul, C. Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(3), H497-H507.
[http://dx.doi.org/10.1152/ajpheart.00217.2017] [PMID: 29127233]
[121]
Gurgenian, S.V.; Vatinian, S.Kh.; Zelveian, P.A. Arterial hypertension in metabolic syndrome: pathophysiological aspects. Ter. Arkh., 2014, 86(8), 128-132.
[PMID: 25306760]
[122]
Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res. Int., 2014, 2014406960
[http://dx.doi.org/10.1155/2014/406960] [PMID: 25136585]
[123]
Te Riet, L.; van Esch, J.H.M.; Roks, A.J.M.; van den Meiracker, A.H.V.; Danser, A.H. J. Hypertension: renin-angiotensin-aldosterone system alterations. Circ. Res., 2015, 116(6), 960-975.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.303587] [PMID: 25767283]
[124]
Young, C.N.; Cao, X.; Guruju, M.R.; Pierce, J.P.; Morgan, D.A.; Wang, G.; Iadecola, C.; Mark, A.L.; Davisson, R.L. ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension. J. Clin. Invest., 2012, 122(11), 3960-3964.
[http://dx.doi.org/10.1172/JCI64583] [PMID: 23064361]
[125]
Koyama, M.; Furuhashi, M.; Ishimura, S.; Mita, T.; Fuseya, T.; Okazaki, Y.; Yoshida, H.; Tsuchihashi, K.; Miura, T. Reduction of endoplasmic reticulum stress by 4-phenylbutyric acid prevents the development of hypoxia-induced pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol., 2014, 306(9), H1314-H1323.
[http://dx.doi.org/10.1152/ajpheart.00869.2013] [PMID: 24610918]
[126]
Kassan, M.; Galán, M.; Partyka, M.; Saifudeen, Z.; Henrion, D.; Trebak, M.; Matrougui, K. Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler. Thromb. Vasc. Biol., 2012, 32(7), 1652-1661.
[http://dx.doi.org/10.1161/ATVBAHA.112.249318] [PMID: 22539597]
[127]
Carlisle, R.E.; Werner, K.E.; Yum, V.; Lu, C.; Tat, V.; Memon, M.; No, Y.; Ask, K.; Dickhout, J.G. Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function. J. Hypertens., 2016, 34(8), 1556-1569.
[http://dx.doi.org/10.1097/HJH.0000000000000943] [PMID: 27115336]
[128]
Spitler, K.M.; Matsumoto, T.; Webb, R.C. Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat. Am. J. Physiol. Heart Circ. Physiol., 2013, 305(3), H344-H353.
[http://dx.doi.org/10.1152/ajpheart.00952.2012] [PMID: 23709602]
[129]
Verfaillie, T.; Rubio, N.; Garg, A.D.; Bultynck, G.; Rizzuto, R.; Decuypere, J.P.; Piette, J.; Linehan, C.; Gupta, S.; Samali, A.; Agostinis, P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ., 2012, 19(11), 1880-1891.
[http://dx.doi.org/10.1038/cdd.2012.74] [PMID: 22705852]
[130]
Simonenko, V.B.; Goriutskii, V.N.; Dulin, P.A. The role of insulin resistance in pathogenesis of arterial hypertension. Klin. Med. (Mosk.), 2014, 92(9), 27-33.
[PMID: 25790708]
[131]
Cieslik, K.A.; Trial, J.; Carlson, S.; Taffet, G.E.; Entman, M.L. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J., 2013, 27(4), 1761-1771.
[http://dx.doi.org/10.1096/fj.12-220145] [PMID: 23303205]
[132]
Shuang, T.; Fu, M.; Yang, G.; Wu, L.; Wang, R. The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells. Biochem. Pharmacol., 2018, 149, 143-152.
[http://dx.doi.org/10.1016/j.bcp.2017.12.009] [PMID: 29248598]
[133]
Foster, M.C.; Hwang, S.J.; Porter, S.A.; Massaro, J.M.; Hoffmann, U.; Fox, C.S. Fatty kidney, hypertension, and chronic kidney disease: the Framingham heart study. Hypertension, 2011, 58(5), 784-790.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.175315] [PMID: 21931075]
[134]
DeMarco, V.G.; Aroor, A.R.; Sowers, J.R. The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol., 2014, 10(6), 364-376.
[http://dx.doi.org/10.1038/nrendo.2014.44] [PMID: 24732974]
[135]
Sutendra, G.; Dromparis, P.; Wright, P.; Bonnet, S.; Haromy, A.; Hao, Z.; McMurtry, M.S.; Michalak, M.; Vance, J.E.; Sessa, W.C.; Michelakis, E.D. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci. Transl. Med., 2011, 3(88)88ra55
[http://dx.doi.org/10.1126/scitranslmed.3002194] [PMID: 21697531]
[136]
Rämö, O.; Kumar, D.; Gucciardo, E.; Joensuu, M.; Saarekas, M.; Vihinen, H.; Belevich, I.; Smolander, O.P.; Qian, K.; Auvinen, P.; Jokitalo, E. NOGO-A/RTN4A and NOGO-B/RTN4B are simultaneously expressed in epithelial, fibroblast and neuronal cells and maintain ER morphology. Sci. Rep., 2016, 6, 35969.
[http://dx.doi.org/10.1038/srep35969] [PMID: 27786289]
[137]
Meshkani, R.; Zargari, M.; Larijani, B. The relationship between uric acid and metabolic syndrome in normal glucose tolerance and normal fasting glucose subjects. Acta Diabetol., 2011, 48(1), 79-88.
[http://dx.doi.org/10.1007/s00592-010-0231-3] [PMID: 21046418]
[138]
Park, S.M.; Choi, J.; Nam, T.G.; Ku, J.M.; Jeong, K. Anti-diabetic effect of 3-hydroxy-2-naphthoic acid, an endoplasmic reticulum stress-reducing chemical chaperone. Eur. J. Pharmacol., 2016, 779, 157-167.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.023] [PMID: 26983645]
[139]
Ozcan, U.; Yilmaz, E.; Ozcan, L.; Furuhashi, M.; Vaillancourt, E.; Smith, R.O.; Görgün, C.Z.; Hotamisligil, G.S. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science, 2006, 313(5790), 1137-1140.
[http://dx.doi.org/10.1126/science.1128294] [PMID: 16931765]
[140]
Kars, M.; Yang, L.; Gregor, M.F.; Mohammed, B.S.; Pietka, T.A.; Finck, B.N.; Patterson, B.W.; Horton, J.D.; Mittendorfer, B.; Hotamisligil, G.S.; Klein, S. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes, 2010, 59(8), 1899-1905.
[http://dx.doi.org/10.2337/db10-0308] [PMID: 20522594]
[141]
Thoudam, T.; Ha, C.M.; Leem, J.; Chanda, D.; Park, J.S.; Kim, H.J.; Jeon, J.H.; Choi, Y.K.; Liangpunsakul, S.; Huh, Y.H.; Kwon, T.H.; Park, K.G.; Harris, R.A.; Park, K.S.; Rhee, H.W.; Lee, I.K. PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes, 2019, 68(3), 571-586.
[http://dx.doi.org/10.2337/db18-0363] [PMID: 30523025]
[142]
Lynes, E.M.; Bui, M.; Yap, M.C.; Benson, M.D.; Schneider, B.; Ellgaard, L.; Berthiaume, L.G.; Simmen, T. Palmitoylated TMX and calnexin target to the mitochondria-associated membrane. EMBO J., 2012, 31(2), 457-470.
[http://dx.doi.org/10.1038/emboj.2011.384] [PMID: 22045338]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy