Review Article

微/纳米技术在超声给药和肿瘤治疗中的应用

卷 28, 期 3, 2021

发表于: 12 February, 2020

页: [525 - 547] 页: 23

弟呕挨: 10.2174/0929867327666200212100257

价格: $65

conference banner
摘要

超声已广泛应用于生物医学肿瘤的诊断和治疗。近年来微纳米技术的应用促进了基于超声的生物医学的发展,特别是在基于超声的药物传递和肿瘤治疗领域。超声波可以通过不同的机制激活纳米级给药系统,从而触发靶向肿瘤部位的按需释放药物。超声靶向微泡破坏(UTMD)技术不仅可以通过超声操作效应增加血管和细胞膜的通透性,还可以实现微泡原位转化为纳米颗粒,促进细胞吸收和治疗效果。此外,高强度聚焦超声(HIFU),或声动力治疗(SDT),被认为是最有前途和代表性的非侵入性癌症治疗方法之一。然而,由于其关键的处理效率问题,它们在处理过程中的应用仍受到限制。幸运的是,最近发展的微纳米技术为解决这些问题提供了机会,从而提高了癌症的治疗效果。本文综述和讨论了近年来用于超声生物医学的微纳米材料设计的最新进展。

关键词: 微/纳米技术、超声、药物释放、超声靶向微泡破坏(UTMD)、高强度聚焦超声(HIFU)、声动力治疗(SDT)

[1]
Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov., 2005, 4(3), 255-260.
[http://dx.doi.org/10.1038/nrd1662] [PMID: 15738980]
[2]
Cullion, K.; Rwei, A.Y.; Kohane, D.S. Ultrasound-triggered liposomes for on-demand local anesthesia. Ther. Deliv., 2018, 9(1), 5-8.
[http://dx.doi.org/10.4155/tde-2017-0100] [PMID: 29216807]
[3]
Cao, Y.; Chen, Y.; Yu, T.; Guo, Y.; Liu, F.; Yao, Y.; Li, P.; Wang, D.; Wang, Z.; Chen, Y.; Ran, H. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics, 2018, 8(5), 1327-1339.
[http://dx.doi.org/10.7150/thno.21492] [PMID: 29507623]
[4]
Jang, K.W.; Seol, D.; Ding, L.; Lim, T.H.; Frank, J.A.; Martin, J.A. Ultrasound-mediated microbubble destruction suppresses melanoma tumor growth. Ultrasound Med. Biol., 2018, 44(4), 831-839.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2017.12.011] [PMID: 29361373]
[5]
Sun, Y.; Luo, J.; Chen, J.; Xu, F.; Ding, X.; Huang, P. Ultrasound-mediated microbubbles destruction for treatment of rabbit VX2 orthotopic hepatic tumors. Appl. Acoust., 2018, 138, 216-225.
[http://dx.doi.org/10.1016/j.apacoust.2018.04.007]
[6]
Caskey, C.F. Ultrasound molecular imaging and drug delivery. Mol. Imaging Biol., 2017, 19(3), 336-340.
[http://dx.doi.org/10.1007/s11307-017-1058-x] [PMID: 28255842]
[7]
Klibanov, A.L.; Hossack, J.A. Ultrasound in radiology: from anatomic, functional, molecular imaging to drug delivery and image-guided therapy. Invest. Radiol., 2015, 50(9), 657-670.
[http://dx.doi.org/10.1097/RLI.0000000000000188] [PMID: 26200224]
[8]
Khokhlova, T.D.; Hwang, J.H. HIFU for palliative treatment of pancreatic cancer. Adv. Exp. Med. Biol., 2016, 880, 83-95.
[http://dx.doi.org/10.1007/978-3-319-22536-4_5] [PMID: 26486333]
[9]
Williamson, T.; Everitt, S.; Chauhan, S. Automated geometric optimization for robotic HIFU treatment of liver tumors. Comput. Biol. Med., 2018, 96, 1-7.
[http://dx.doi.org/10.1016/j.compbiomed.2018.02.014] [PMID: 29525229]
[10]
Chaussy, C.G.; Thüroff, S. High-intensity focused ultrasound for the treatment of prostate cancer: a review. J. Endourol., 2017, 31(S1), S30-S37.
[http://dx.doi.org/10.1089/end.2016.0548] [PMID: 28355119]
[11]
Rosset, R.; Bratan, F.; Crouzet, S.; Tonoli-Catez, H.; Mège-Lechevallier, F.; Gelet, A.; Rouvière, O. Can pre- and postoperative magnetic resonance imaging predict recurrence-free survival after whole-gland high-intensity focused ablation for prostate cancer? Eur. Radiol., 2017, 27(4), 1768-1775.
[http://dx.doi.org/10.1007/s00330-016-4491-3] [PMID: 27436018]
[12]
Chen, L.; Wang, K.; Chen, Z.; Meng, Z.; Chen, H.; Gao, H.; Wang, P.; Zhu, H.; Lin, J.; Liu, L. High intensity focused ultrasound ablation for patients with inoperable liver cancer. Hepatogastroenterology, 2015, 62(137), 140-143.
[PMID: 25911884]
[13]
Bove, T.; Zawada, T.; Serup, J.; Jessen, A.; Poli, M. High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: preclinical evaluation in skin equivalents. Skin Res. Technol., 2019, 25(2), 217-228.
[http://dx.doi.org/10.1111/srt.12661] [PMID: 30620418]
[14]
Marinova, M.; Rauch, M.; Schild, H.H.; Strunk, H.M. Novel non-invasive treatment with high-intensity focused ultrasound (HIFU). Ultraschall Med., 2016, 37(1), 46-55.
[http://dx.doi.org/10.1055/s-0035-1553318] [PMID: 26251996]
[15]
Knuttel, F.M.; van den Bosch, M.A.A.J. Magnetic resonance-guided high intensity focused ultrasound ablation of breast cancer. Adv. Exp. Med. Biol., 2016, 880, 65-81.
[http://dx.doi.org/10.1007/978-3-319-22536-4_4] [PMID: 26486332]
[16]
de Senneville, B.D.; Moonen, C.; Ries, M. MRI-guided HIFU methods for the ablation of liver and renal cancers. Adv. Exp. Med. Biol., 2016, 880, 43-63.
[http://dx.doi.org/10.1007/978-3-319-22536-4_3] [PMID: 26486331]
[17]
van den Bijgaart, R.J.E.; Eikelenboom, D.C.; Hoogenboom, M.; Fütterer, J.J.; den Brok, M.H.; Adema, G.J. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol. Immunother., 2017, 66(2), 247-258.
[http://dx.doi.org/10.1007/s00262-016-1891-9] [PMID: 27585790]
[18]
Zhang, N.; Cai, X.; Gao, W.; Wang, R.; Xu, C.; Yao, Y.; Hao, L.; Sheng, D.; Chen, H.; Wang, Z.; Zheng, Y. A Multifunctional theranostic nanoagent for dual-mode image-guided HIFU/chemo-synergistic cancer therapy. Theranostics, 2016, 6(3), 404-417.
[http://dx.doi.org/10.7150/thno.13478] [PMID: 26909114]
[19]
Trendowski, M.; Reviews, M. The promise of sonodynamic therapy. Cancer Metastasis Rev., 2014, 33(1), 143-160.
[http://dx.doi.org/10.1007/s10555-013-9461-5] [PMID: 24346159]
[20]
Rengeng, L.; Qianyu, Z.; Yuehong, L.; Zhongzhong, P.; Libo, L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagn. Photodyn. Ther., 2017, 19, 159-166.
[http://dx.doi.org/10.1016/j.pdpdt.2017.06.003] [PMID: 28606724]
[21]
Chen, Y.; Chen, H.; Shi, J. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv. Healthc. Mater., 2015, 4(1), 158-165.
[http://dx.doi.org/10.1002/adhm.201400127] [PMID: 24898413]
[22]
Tang, H.; Guo, Y.; Peng, L.; Fang, H.; Wang, Z.; Zheng, Y.; Ran, H.; Chen, Y. In vivo targeted, responsive, and synergistic cancer nanotheranostics by magnetic resonance imaging-guided synergistic high-intensity focused ultrasound ablation and chemotherapy. ACS Appl. Mater. Interfaces, 2018, 10(18), 15428-15441.
[http://dx.doi.org/10.1021/acsami.8b01967] [PMID: 29652130]
[23]
You, Y.; Wang, Z.; Ran, H.; Zheng, Y.; Wang, D.; Xu, J.; Wang, Z.; Chen, Y.; Li, P. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale, 2016, 8(7), 4324-4339.
[http://dx.doi.org/10.1039/C5NR08292G] [PMID: 26837265]
[24]
Zhou, Y.; Wang, Z.; Chen, Y.; Shen, H.; Luo, Z.; Li, A.; Wang, Q.; Ran, H.; Li, P.; Song, W.; Yang, Z.; Chen, H.; Wang, Z.; Lu, G.; Zheng, Y. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv. Mater., 2013, 25(30), 4123-4130.
[http://dx.doi.org/10.1002/adma.201301655] [PMID: 23788403]
[25]
McHale, A.P.; Callan, J.F.; Nomikou, N.; Fowley, C.; Callan, B. Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv. Exp. Med. Biol., 2016, 880, 429-450.
[http://dx.doi.org/10.1007/978-3-319-22536-4_22] [PMID: 26486350]
[26]
Sazgarnia, A.; Shanei, A.; Meibodi, N.T.; Eshghi, H.; Nassirli, H. A novel nanosonosensitizer for sonodynamic therapy: in vivo study on a colon tumor model. J. Ultrasound Med., 2011, 30(10), 1321-1329.
[http://dx.doi.org/10.7863/jum.2011.30.10.1321] [PMID: 21968482]
[27]
Serpe, L.; Foglietta, F.; Canaparo, R. Nanosonotechnology: the next challenge in cancer sonodynamic therapy. Nanotechnol. Rev., 2012, 1(2), 173-182.
[http://dx.doi.org/10.1515/ntrev-2011-0009]
[28]
Leinenga, G.; Langton, C.; Nisbet, R.; Götz, J. Ultrasound treatment of neurological diseases-current and emerging applications. Nat. Rev. Neurol., 2016, 12(3), 161-174.
[http://dx.doi.org/10.1038/nrneurol.2016.13] [PMID: 26891768]
[29]
Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin. Drug Deliv., 2014, 11(3), 393-407.
[http://dx.doi.org/10.1517/17425247.2014.875528] [PMID: 24392787]
[30]
Oberli, M.A.; Schoellhammer, C.M.; Langer, R.; Blankschtein, D. Ultrasound-enhanced transdermal delivery: recent advances and future challenges. Ther. Deliv., 2014, 5(7), 843-857.
[http://dx.doi.org/10.4155/tde.14.32] [PMID: 25287389]
[31]
Giles, K. Ultrasound and shockwave therapy for acute fractures in adults. Orthop. Nurs., 2015, 34(1), 50.
[http://dx.doi.org/10.1097/NOR.0000000000000118] [PMID: 25607624]
[32]
Fan, C-H.; Lin, W-H.; Ting, C-Y.; Chai, W-Y.; Yen, T-C.; Liu, H-L.; Yeh, C-K. Contrast-enhanced ultrasound imaging for the detection of focused ultrasound-induced blood-brain barrier opening. Theranostics, 2014, 4(10), 1014-1025.
[http://dx.doi.org/10.7150/thno.9575] [PMID: 25161701]
[33]
Liang, X.; Gao, J.; Jiang, L.; Luo, J.; Jing, L.; Li, X.; Jin, Y.; Dai, Z. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano, 2015, 9(2), 1280-1293.
[http://dx.doi.org/10.1021/nn507482w] [PMID: 25599568]
[34]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[35]
Zhang, K.; Xu, H.; Jia, X.; Chen, Y.; Ma, M.; Sun, L.; Chen, H. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano, 2016, 10(12), 10816-10828.
[http://dx.doi.org/10.1021/acsnano.6b04921] [PMID: 28024356]
[36]
Hatakeyama, H. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics. Chem. Pharm. Bull. (Tokyo), 2017, 65(7), 612-617.
[http://dx.doi.org/10.1248/cpb.c17-00068] [PMID: 28674332]
[37]
Xia, H.; Zhao, Y.; Tong, R. Ultrasound-mediated polymeric micelle drug delivery. Adv. Exp. Med. Biol., 2016, 880, 365-384.
[http://dx.doi.org/10.1007/978-3-319-22536-4_20] [PMID: 26486348]
[38]
Gai, M.; Frueh, J.; Tao, T.; Petrov, A.V.; Petrov, V.V.; Shesterikov, E.V.; Tverdokhlebov, S.I.; Sukhorukov, G.B. Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. Nanoscale, 2017, 9(21), 7063-7070.
[http://dx.doi.org/10.1039/C7NR01841J ] [PMID: 28513733]
[39]
Ke, C.J.; Su, T.Y.; Chen, H.L.; Liu, H.L.; Chiang, W.L.; Chu, P.C.; Xia, Y.; Sung, H.W. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew. Chem. Int. Ed. Engl., 2011, 50(35), 8086-8089.
[http://dx.doi.org/10.1002/anie.201102852] [PMID: 21751316]
[40]
Chen, Y.; Ye, D.; Wu, M.; Chen, H.; Zhang, L.; Shi, J.; Wang, L. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater., 2014, 26(41), 7019-7026.
[http://dx.doi.org/10.1002/adma.201402572] [PMID: 25156250]
[41]
Renoux, B.; Raes, F.; Legigan, T.; Péraudeau, E.; Eddhif, B.; Poinot, P.; Tranoy-Opalinski, I.; Alsarraf, J.; Koniev, O.; Kolodych, S.; Lerondel, S.; Le Pape, A.; Clarhaut, J.; Papot, S. Targeting the tumour microenvironment with an enzyme-responsive drug delivery system for the efficient therapy of breast and pancreatic cancers. Chem. Sci. (Camb.), 2017, 8(5), 3427-3433.
[http://dx.doi.org/10.1039/C7SC00472A] [PMID: 28507714]
[42]
Zhou, G.; Li, L.; Xing, J.; Jalde, S.; Li, Y.; Cai, J.; Chen, J.; Liu, P.; Gu, N.; Ji, M.; Biointerfaces, S.B. Redox responsive liposomal nanohybrid cerasomes for intracellular drug delivery. Colloids Surf. B Biointerfaces, 2016, 148, 518-525.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.033] [PMID: 27690240]
[43]
Chen, K-J.; Liang, H-F.; Chen, H-L.; Wang, Y.; Cheng, P-Y.; Liu, H-L.; Xia, Y.; Sung, H-W. A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery. ACS Nano, 2013, 7(1), 438-446.
[http://dx.doi.org/10.1021/nn304474j] [PMID: 23240550]
[44]
Chen, K.J.; Chaung, E.Y.; Wey, S.P.; Lin, K.J.; Cheng, F.; Lin, C.C.; Liu, H.L.; Tseng, H.W.; Liu, C.P.; Wei, M.C.; Liu, C.M.; Sung, H.W. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy. ACS Nano, 2014, 8(5), 5105-5115.
[http://dx.doi.org/10.1021/nn501162x] [PMID: 24742221]
[45]
Wood, A.K.; Sehgal, C.M. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med. Biol., 2015, 41(4), 905-928.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2014.11.019] [PMID: 25728459]
[46]
Sirsi, S.R.; Borden, M.A. State-of-the-art materials for ultrasound-triggered drug delivery. Adv. Drug Deliv. Rev., 2014, 72, 3-14.
[http://dx.doi.org/10.1016/j.addr.2013.12.010] [PMID: 24389162]
[47]
de Leon, A.; Perera, R.; Nittayacharn, P.; Cooley, M.; Jung, O.; Exner, A.A. Ultrasound contrast agents and delivery systems in cancer detection and therapy. Adv. Cancer Res., 2018, 139, 57-84.
[http://dx.doi.org/10.1016/bs.acr.2018.04.002] [PMID: 29941107]
[48]
Ranjan, A.; Jacobs, G.C.; Woods, D.L.; Negussie, A.H.; Partanen, A.; Yarmolenko, P.S.; Gacchina, C.E.; Sharma, K.V.; Frenkel, V.; Wood, B.J.; Dreher, M.R. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J. Control. Release, 2012, 158(3), 487-494.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.011] [PMID: 22210162]
[49]
Gasselhuber, A.; Dreher, M.R.; Partanen, A.; Yarmolenko, P.S.; Woods, D.; Wood, B.J.; Haemmerich, D. Targeted drug delivery by high intensity focused ultrasound mediated hyperthermia combined with temperature-sensitive liposomes: computational modelling and preliminary in vivo validation. Int. J. Hyperthermia, 2012, 28(4), 337-348.
[http://dx.doi.org/10.3109/02656736.2012.677930] [PMID: 22621735]
[50]
Park, S.M.; Kim, M.S.; Park, S.J.; Park, E.S.; Choi, K.S.; Kim, Y.S.; Kim, H.R. Novel temperature-triggered liposome with high stability: formulation, in vitro evaluation and in vivo study combined with high-intensity focused ultrasound (HIFU). J. Control. Release, 2013, 170(3), 373-379.
[http://dx.doi.org/10.1016/j.jconrel.2013.06.003] [PMID: 23770213]
[51]
Chang, H.I.; Yeh, M.K. Clinical development of liposome-based drugs: formulation, characterization and therapeutic efficacy. Int. J. Nanomedicine, 2012, 7, 49-60.
[http://dx.doi.org/10.2147/ijn.s26766] [PMID: 22275822]
[52]
He, M.; Ran, H.; Ma, M.; Jia, X.; Wang, Z. Ultrasound triggered drug delivery by DNA gated hollow mesoporous silica nanoparticles. Chinese J. Med. Imag. Technol., 2015, 31(2), 191-195.
[53]
Qian, X.Q.; Wang, W.P.; Kong, W.T.; Chen, Y. Hollow periodic mesoporous organosilicas for highly efficient HIFU-based synergistic therapy. Rsc Adv., 2014, 4(34), 17950-17958.
[http://dx.doi.org/10.1039/c3ra47654e]
[54]
Ma, M.; Xu, H.; Chen, H.; Jia, X.; Zhang, K.; Wang, Q.; Zheng, S.; Wu, R.; Yao, M.; Cai, X.; Li, F.; Shi, J. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv. Mater., 2014, 26(43), 7378-7385.
[http://dx.doi.org/10.1002/adma.201402969] [PMID: 25228225]
[55]
He, Q.; Gao, Y.; Zhang, L.; Zhang, Z.; Gao, F.; Ji, X.; Li, Y.; Shi, J. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials, 2011, 32(30), 7711-7720.
[http://dx.doi.org/10.1016/j.biomaterials.2011.06.066] [PMID: 21816467]
[56]
Giustetto, P.; Castelli, D.D.; Boffa, C.; Rizzitelli, S.; Durando, D.; Cutrin, J.C.; Aime, S.; Terreno, E. Release of a paramagnetic magnetic resonance imaging agent from liposomes triggered by low intensity non-focused ultrasound. J. Med. Imag. Health In., 2013, 3(3), 356-366.
[http://dx.doi.org/10.1166/jmihi.2013.1183]
[57]
Lin, C.Y.; Javadi, M.; Belnap, D.M.; Barrow, J.R.; Pitt, W.G. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine (Lond.), 2014, 10(1), 67-76.
[http://dx.doi.org/10.1016/j.nano.2013.06.011] [PMID: 23845926]
[58]
Schroeder, A.; Kost, J.; Barenholz, Y. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem. Phys. Lipids, 2009, 162(1-2), 1-16.
[http://dx.doi.org/10.1016/j.chemphyslip.2009.08.003] [PMID: 19703435]
[59]
Lin, H-Y.; Thomas, J.L. PEG-Lipids and oligo(ethylene glycol) surfactants enhance the ultrasonic permeabilizability of liposomes. Langmuir, 2003, 19(4), 1098-1105.
[http://dx.doi.org/10.1021/la026604t]
[60]
Lattin, J.R.; Pitt, W.G.; Belnap, D.M.; Husseini, G.A. Ultrasound-induced calcein release from eLiposomes. Ultrasound Med. Biol., 2012, 38(12), 2163-2173.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2012.08.001] [PMID: 23062373]
[61]
Rizzitelli, S.; Giustetto, P.; Boffa, C.; Delli Castelli, D.; Cutrin, J.C.; Aime, S.; Terreno, E. In vivo MRI visualization of release from liposomes triggered by local application of pulsed low-intensity non-focused ultrasound. Nanomedicine (Lond.), 2014, 10(5), 901-904.
[http://dx.doi.org/10.1016/j.nano.2014.03.012] [PMID: 24657833]
[62]
Rwei, A.Y.; Paris, J.L.; Wang, B.; Wang, W.; Axon, C.D.; Vallet-Regí, M.; Langer, R.; Kohane, D.S. Ultrasound-triggered local anaesthesia. Nat. Biomed. Eng., 2017, 1, 644-653.
[http://dx.doi.org/10.1038/s41551-017-0117-6] [PMID: 29152410]
[63]
Qin, D.; Li, H.; Xie, H. Ultrasoundtargeted microbubble destructionmediated miR205 enhances cisplatin cytotoxicity in prostate cancer cells. Mol. Med. Rep., 2018, 18(3), 3242-3250.
[http://dx.doi.org/10.3892/mmr.2018.9316] [PMID: 30066866]
[64]
Zhang, N.; Yan, F.; Liang, X.; Wu, M.; Shen, Y.; Chen, M.; Xu, Y.; Zou, G.; Jiang, P.; Tang, C.; Zheng, H.; Dai, Z. Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson’s disease therapy. Theranostics, 2018, 8(8), 2264-2277.
[http://dx.doi.org/10.7150/thno.23734] [PMID: 29721078]
[65]
Lin, L.; Fan, Y.; Gao, F.; Jin, L.; Li, D.; Sun, W.; Li, F.; Qin, P.; Shi, Q.; Shi, X.; Du, L. UTMD-promoted co-delivery of gemcitabine and miR-21 inhibitor by dendrimer-entrapped gold nanoparticles for pancreatic cancer therapy. Theranostics, 2018, 8(7), 1923-1939.
[http://dx.doi.org/10.7150/thno.22834] [PMID: 29556365]
[66]
Lentacker, I.; De Cock, I.; Deckers, R.; De Smedt, S.C.; Moonen, C.T. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv. Drug Deliv. Rev., 2014, 72, 49-64.
[http://dx.doi.org/10.1016/j.addr.2013.11.008] [PMID: 24270006]
[67]
Mayer, C.R.; Geis, N.A.; Katus, H.A.; Bekeredjian, R. Ultrasound targeted microbubble destruction for drug and gene delivery. Expert Opin. Drug Deliv., 2008, 5(10), 1121-1138.
[http://dx.doi.org/10.1517/17425247.5.10.1121] [PMID: 18817517]
[68]
Zhao, Y-Z.; Lin, Q.; Wong, H-L.; Shen, X-T.; Yang, W.; Xu, H-L.; Mao, K-L.; Tian, F-R.; Yang, J-J.; Xu, J.; Xiao, J.; Lu, C-T. Glioma-targeted therapy using cilengitide nanoparticles combined with UTMD enhanced delivery. J. Control. Release, 2016, 224, 112-125.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.015] [PMID: 26792571]
[69]
Yan, F.; Li, L.; Deng, Z.; Jin, Q.; Chen, J.; Yang, W.; Yeh, C.K.; Wu, J.; Shandas, R.; Liu, X.; Zheng, H. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J. Control. Release, 2013, 166(3), 246-255.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.025] [PMID: 23306023]
[70]
Yoon, Y.I.; Kwon, Y.S.; Cho, H.S.; Heo, S.H.; Park, K.S.; Park, S.G.; Lee, S.H.; Hwang, S.I.; Kim, Y.I.; Jae, H.J.; Ahn, G.J.; Cho, Y.S.; Lee, H.; Lee, H.J.; Yoon, T.J. Ultrasound-mediated gene and drug delivery using a microbubble-liposome particle system. Theranostics, 2014, 4(11), 1133-1144.
[http://dx.doi.org/10.7150/thno.9945] [PMID: 25250094]
[71]
Garg, A.D.; Nowis, D.; Golab, J.; Agostinis, P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis, 2010, 15(9), 1050-1071.
[http://dx.doi.org/10.1007/s10495-010-0479-7] [PMID: 20221698]
[72]
You, Y.; Liang, X.; Yin, T.; Chen, M.; Qiu, C.; Gao, C.; Wang, X.; Mao, Y.; Qu, E.; Dai, Z.; Zheng, R. Porphyrin-grafted lipid microbubbles for the enhanced efficacy of photodynamic therapy in prostate cancer through ultrasound-controlled in situ accumulation. Theranostics, 2018, 8(6), 1665-1677.
[http://dx.doi.org/10.7150/thno.22469] [PMID: 29556348]
[73]
Klibanov, A.L.; Shevchenko, T.I.; Raju, B.I.; Seip, R.; Chin, C.T. Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J. Control. Release, 2010, 148(1), 13-17.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.115] [PMID: 20691227]
[74]
Liang, X.; Li, X.; Yue, X.; Dai, Z. Conjugation of porphyrin to nanohybrid cerasomes for photodynamic diagnosis and therapy of cancer. Angew. Chem. Int. Ed. Engl., 2011, 50(49), 11622-11627.
[http://dx.doi.org/10.1002/anie.201103557] [PMID: 22002770]
[75]
Jing, L.; Liang, X.; Li, X.; Lin, L.; Yang, Y.; Yue, X.; Dai, Z. Mn-porphyrin conjugated Au nanoshells encapsulating doxorubicin for potential magnetic resonance imaging and light triggered synergistic therapy of cancer. Theranostics, 2014, 4(9), 858-871.
[http://dx.doi.org/10.7150/thno.8818] [PMID: 25057312]
[76]
Chatterjee, D.K.; Diagaradjane, P.; Krishnan, S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv., 2011, 2(8), 1001-1014.
[http://dx.doi.org/10.4155/tde.11.72] [PMID: 22506095]
[77]
Burke, A.R.; Singh, R.N.; Carroll, D.L.; Wood, J.C.S.; D’Agostino, R.B. Jr.; Ajayan, P.M.; Torti, F.M.; Torti, S.V. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials, 2012, 33(10), 2961-2970.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.052] [PMID: 22245557]
[78]
Gollavelli, G.; Ling, Y.C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35(15), 4499-4507.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.011] [PMID: 24602568]
[79]
Kim, Y.K.; Na, H.K.; Kim, S.; Jang, H.; Chang, S.J.; Min, D.H. One-pot synthesis of multifunctional Au@graphene oxide nanocolloid core@shell nanoparticles for Raman bioimaging, photothermal, and photodynamic therapy. Small, 2015, 11(21), 2527-2535.
[http://dx.doi.org/10.1002/smll.201402269] [PMID: 25626859]
[80]
Wang, S.; Riedinger, A.; Li, H.; Fu, C.; Liu, H.; Li, L.; Liu, T.; Tan, L.; Barthel, M.J.; Pugliese, G.; De Donato, F.; Scotto D’Abbusco, M.; Meng, X.; Manna, L.; Meng, H.; Pellegrino, T. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano, 2015, 9(2), 1788-1800.
[http://dx.doi.org/10.1021/nn506687t] [PMID: 25603353]
[81]
Xu, Y.X.; Liang, X.L.; Bhattarai, P.; Sun, Y.; Zhou, Y.M.; Wang, S.M.; Chen, W.; Ge, H.Y.; Wang, J.R.; Cui, L.G.; Dai, Z.F. Enhancing therapeutic efficacy of combined cancer phototherapy by ultrasound-mediated in situ conversion of near-infrared cyanine/porphyrin microbubbles into nanoparticles. Adv. Funct. Mater., 2017, 27(48)1704096
[http://dx.doi.org/10.1002/adfm.201704096]
[82]
Krzykawska-Serda, M.; Dąbrowski, J.M.; Arnaut, L.G.; Szczygieł, M.; Urbańska, K.; Stochel, G.; Elas, M. The role of strong hypoxia in tumors after treatment in the outcome of bacteriochlorin-based photodynamic therapy. Free Radic. Biol. Med., 2014, 73, 239-251.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.003] [PMID: 24835769]
[83]
Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat. Rev. Cancer, 2014, 14(6), 430-439.
[http://dx.doi.org/10.1038/nrc3726] [PMID: 24827502]
[84]
Verreault, M.; Wehbe, M.; Strutt, D.; Masin, D.; Anantha, M.; Walker, D.; Chu, F.; Backstrom, I.; Kalra, J.; Waterhouse, D.; Yapp, D.T.; Bally, M.B. Determination of an optimal dosing schedule for combining irinophore C™ and temozolomide in an orthotopic model of glioblastoma. J. Control. Release, 2015, 220(Pt. A), 348-357.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.053] [PMID: 26528901]
[85]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[86]
Chen, M.; Liang, X.; Gao, C.; Zhao, R.; Zhang, N.; Wang, S.; Chen, W.; Zhao, B.; Wang, J.; Dai, Z. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxy-uridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer. ACS Nano, 2018, 12(7), 7312-7326.
[http://dx.doi.org/10.1021/acsnano.8b03674] [PMID: 29901986]
[87]
Liang, X.; Gao, C.; Cui, L.; Wang, S.; Wang, J.; Dai, Z. Self-assembly of an amphiphilic janus camptothecin-floxuridine conjugate into liposome-like nanocapsules for more efficacious combination chemotherapy in cancer. Adv. Mater., 2017, 29(40)1703135
[http://dx.doi.org/10.1002/adma.201703135] [PMID: 28891273]
[88]
Carson, A.R.; McTiernan, C.F.; Lavery, L.; Grata, M.; Leng, X.; Wang, J.; Chen, X.; Villanueva, F.S. Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy. Cancer Res., 2012, 72(23), 6191-6199.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4079] [PMID: 23010078]
[89]
Fujii, H.; Matkar, P.; Liao, C.; Rudenko, D.; Lee, P.J.; Kuliszewski, M.A.; Prud’homme, G.J.; Leong-Poi, H. Optimization of ultrasound-mediated anti-angiogenic cancer gene therapy. Mol. Ther. Nucleic Acids, 2013, 2(5)e94
[http://dx.doi.org/10.1038/mtna.2013.20] [PMID: 23695537]
[90]
Sun, S.; Xu, Y.; Fu, P.; Chen, M.; Sun, S.; Zhao, R.; Wang, J.; Liang, X.; Wang, S. Ultrasound-targeted photodynamic and gene dual therapy for effectively inhibiting triple negative breast cancer by cationic porphyrin lipid microbubbles loaded with HIF1-siRNA. Nanoscale, 2018, 10(42), 19945-19956.
[http://dx.doi.org/10.1039/C8NR03074J] [PMID: 30346453]
[91]
Zhao, R.; Liang, X.; Zhao, B.; Chen, M.; Liu, R.; Sun, S.; Yue, X.; Wang, S. Ultrasound assisted gene and photodynamic synergistic therapy with multifunctional FOXA1-siRNA loaded porphyrin microbubbles for enhancing therapeutic efficacy for breast cancer. Biomaterials, 2018, 173, 58-70.
[http://dx.doi.org/10.1016/j.biomaterials.2018.04.054] [PMID: 29758547]
[92]
Weld, K.J.; Landman, J. Comparison of cryoablation, radiofrequency ablation and high-intensity focused ultrasound for treating small renal tumours. BJU Int., 2005, 96(9), 1224-1229.
[http://dx.doi.org/10.1111/j.1464-410X.2005.05848.x] [PMID: 16287435]
[93]
Bahreyni Toossi, M.T.; Khademi, S.; Azimian, H.; Mohebbi, S.; Soleymanifard, S. Assessment of the doseresponse relationship of radiation-induced bystander effect in two cell lines exposed to high doses of ionizing radiation (6 and 8 Gy). Cell J., 2017, 19(3), 434-442.
[http://dx.doi.org/10.22074/cellj.2017.4343] [PMID: 28836405]
[94]
Cebulska-Wasilewska, A.; Krzysiek, M.; Krajewska, G.; Stępień, A.; Krajewski, P. Retrospective biological dosimetry at low and high doses of radiation and radioiodine impact on individual susceptibility to ionizing radiation. Genome Integr., 2017, 8, 2-2.
[http://dx.doi.org/10.4103/2041-9414.198906] [PMID: 28250909]
[95]
Nomikou, N.; McHale, A.P. Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy. Cancer Lett., 2010, 296(2), 133-143.
[http://dx.doi.org/10.1016/j.canlet.2010.06.002] [PMID: 20598800]
[96]
Orsi, F.; Arnone, P.; Chen, W.; Zhang, L. High intensity focused ultrasound ablation: a new therapeutic option for solid tumors. J. Cancer Res. Ther., 2010, 6(4), 414-420.
[http://dx.doi.org/10.4103/0973-1482.77064] [PMID: 21358073]
[97]
Peng, S.; Xiong, Y.; Li, K.; He, M.; Deng, Y.; Chen, L.; Zou, M.; Chen, W.; Wang, Z.; He, J.; Zhang, L. Clinical utility of a microbubble-enhancing contrast (“SonoVue”) in treatment of uterine fibroids with high intensity focused ultrasound: a retrospective study. Eur. J. Radiol., 2012, 81(12), 3832-3838.
[http://dx.doi.org/10.1016/j.ejrad.2012.04.030] [PMID: 22613505]
[98]
O’Brien, W.D. Jr. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol., 2007, 93(1-3), 212-255.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.07.010] [PMID: 16934858]
[99]
Huang, J.; Xu, J.S.; Xu, R.X. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials, 2010, 31(6), 1278-1286.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.008] [PMID: 19942283]
[100]
Luo, W.; Zhou, X.; Tian, X.; Ren, X.; Zheng, M.; Gu, K.; He, G. Enhancement of ultrasound contrast agent in high-intensity focused ultrasound ablation. Adv. Ther., 2006, 23(6), 861-868.
[http://dx.doi.org/10.1007/BF02850207] [PMID: 17276954]
[101]
Kim, J.; Chung, D.J.; Jung, S.E.; Cho, S.H.; Hahn, S.T.; Lee, J.M. Therapeutic effect of high-intensity focused ultrasound combined with transarterial chemoembolisation for hepatocellular carcinoma <5 cm: comparison with transarterial chemoembolisation monotherapy-preliminary observations. Br. J. Radiol., 2012, 85(1018), e940-e946.
[http://dx.doi.org/10.1259/bjr/32750755] [PMID: 22553305]
[102]
Zhang, X.; Zheng, Y.; Wang, Z.; Huang, S.; Chen, Y.; Jiang, W.; Zhang, H.; Ding, M.; Li, Q.; Xiao, X.; Luo, X.; Wang, Z.; Qi, H. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials, 2014, 35(19), 5148-5161.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.036] [PMID: 24680663]
[103]
Schutt, E.G.; Klein, D.H.; Mattrey, R.M.; Riess, J.G. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew. Chem. Int. Ed. Engl., 2003, 42(28), 3218-3235.
[http://dx.doi.org/10.1002/anie.200200550] [PMID: 12876730]
[104]
Meng, H.; Wang, M.; Liu, H.; Liu, X.; Situ, A.; Wu, B.; Ji, Z.; Chang, C.H.; Nel, A.E. Use of a lipid-coated mesoporous silica nanoparticle platform for synergistic gemcitabine and paclitaxel delivery to human pancreatic cancer in mice. ACS Nano, 2015, 9(4), 3540-3557.
[http://dx.doi.org/10.1021/acsnano.5b00510] [PMID: 25776964]
[105]
Xiao, D.; Jia, H.Z.; Zhang, J.; Liu, C.W.; Zhuo, R.X.; Zhang, X.Z. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small, 2014, 10(3), 591-598.
[http://dx.doi.org/10.1002/smll.201301926] [PMID: 24106109]
[106]
Tarn, D.; Ashley, C.E.; Xue, M.; Carnes, E.C.; Zink, J.I.; Brinker, C.J. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res., 2013, 46(3), 792-801.
[http://dx.doi.org/10.1021/ar3000986] [PMID: 23387478]
[107]
Zhou, S.; Wu, D.; Yin, X.; Jin, X.; Zhang, X.; Zheng, S.; Wang, C.; Liu, Y.; Cr, C.C.R. Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J. Exp. Clin. Cancer Res., 2017, 36(1), 24.
[http://dx.doi.org/10.1186/s13046-017-0492-6] [PMID: 28166836]
[108]
Chao, C.; Wen, S.; Yao, W.; Wang, Y.; Ying, H.; Ping, W.J.R.A. Functional polymeric dialdehyde dextrin network capped mesoporous silica nanoparticles for pH/GSH dual-controlled drug release. RSC Advances, 2018, 8(37), 20862-20871.
[http://dx.doi.org/10.1039/C8RA03163K]
[109]
Gao, W.; Hu, Y.; Long, X.; Liu, M.; Wu, H.; He, B.J.C.C.L. Dual pH and glucose sensitive gel gated mesoporous silica nanoparticles for drug delivery. Chin. Chem. Lett., 2018, (12), 1795-1798.
[http://dx.doi.org/10.1016/j.cclet.2018.05.022]
[110]
Wang, X.; Chen, H.; Chen, Y.; Ma, M.; Zhang, K.; Li, F.; Zheng, Y.; Zeng, D.; Wang, Q.; Shi, J. Perfluorohexane-encapsulated mesoporous silica nanocapsules as enhancement agents for highly efficient high intensity focused ultrasound (HIFU). Adv. Mater., 2012, 24(6), 785-791.
[http://dx.doi.org/10.1002/adma.201104033] [PMID: 22223403]
[111]
Na, H.B.; Song, I.C.; Hyeon, T.J.A.M. Inorganic nanoparticles for MRI contrast agents. Adv. Mater., 2009, 21(21), 2133-2148.
[http://dx.doi.org/10.1002/adma.200802366]
[112]
Niu, D.; Wang, X.; Li, Y.; Zheng, Y.; Li, F.; Chen, H.; Gu, J.; Zhao, W.; Shi, J. Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv. Mater., 2013, 25(19), 2686-2692.
[http://dx.doi.org/10.1002/adma.201204316] [PMID: 23447424]
[113]
Zhang, K.; Chen, H.; Li, F.; Wang, Q.; Zheng, S.; Xu, H.; Ma, M.; Jia, X.; Chen, Y.; Mou, J.; Wang, X.; Shi, J. A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials, 2014, 35(22), 5875-5885.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.043] [PMID: 24746229]
[114]
Liu, T.; Zhang, N.; Wang, Z.; Wu, M.; Chen, Y.; Ma, M.; Chen, H.; Shi, J. Endogenous catalytic generation of O2 bubbles for in situ ultrasound-guided high intensity focused ultrasound ablation. ACS Nano, 2017, 11(9), 9093-9102.
[http://dx.doi.org/10.1021/acsnano.7b03772] [PMID: 28796487]
[115]
Meidani, A.R.N.; Hasan, M. Mathematical and physical modelling of bubble growth due to ultrasound. Appl. Math. Model., 2004, 28(4), 333-351.
[http://dx.doi.org/10.1016/j.apm.2003.10.001]
[116]
Pan, X.; Wang, H.; Wang, S.; Sun, X.; Wang, L.; Wang, W.; Shen, H.; Liu, H. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci. China Life Sci., 2018, 61(4), 415-426.
[http://dx.doi.org/10.1007/s11427-017-9262-x] [PMID: 29666990]
[117]
Celli, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.; Hasan, T. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev., 2010, 110(5), 2795-2838.
[http://dx.doi.org/10.1021/cr900300p] [PMID: 20353192]
[118]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 2008, 23(3), 217-228.
[http://dx.doi.org/10.1007/s10103-007-0470-x] [PMID: 17674122]
[119]
Vargas, A.; Pegaz, B.; Debefve, E.; Konan-Kouakou, Y.; Lange, N.; Ballini, J.P.; van den Bergh, H.; Gurny, R.; Delie, F. Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int. J. Pharm., 2004, 286(1-2), 131-145.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.029] [PMID: 15501010]
[120]
Konan, Y.N.; Gurny, R.; Allémann, E. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B, 2002, 66(2), 89-106.
[http://dx.doi.org/10.1016/S1011-1344(01)00267-6] [PMID: 11897509]
[121]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53(46), 12320-12364.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[122]
Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle-assisted ultrasound: a special focus on sonodynamic therapy against cancer. Chem. Eng. J., 2018, 340, 155-172.
[http://dx.doi.org/10.1016/j.cej.2018.01.060] [PMID: 30881202]
[123]
Brazzale, C.; Canaparo, R.; Racca, L.; Foglietta, F.; Durando, G.; Fantozzi, R.; Caliceti, P.; Salmaso, S.; Serpe, L. Enhanced selective sonosensitizing efficacy of ultrasound-based anticancer treatment by targeted gold nanoparticles. Nanomedicine (Lond.), 2016, 11(23), 3053-3070.
[http://dx.doi.org/10.2217/nnm-2016-0293] [PMID: 27627904]
[124]
Harada, Y.; Ogawa, K.; Irie, Y.; Endo, H.; Feril, L.B. Jr.; Uemura, T.; Tachibana, K. Ultrasound activation of TiO2 in melanoma tumors. J. Control. Release, 2011, 149(2), 190-195.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.012] [PMID: 20951750]
[125]
Ninomiya, K.; Noda, K.; Ogino, C.; Kuroda, S.; Shimizu, N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: its application to targeted sonodynamic therapy. Ultrason. Sonochem., 2014, 21(1), 289-294.
[http://dx.doi.org/10.1016/j.ultsonch.2013.05.005] [PMID: 23746399]
[126]
Harada, A.; Ono, M.; Yuba, E.; Kono, K. Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater. Sci., 2013, 1(1), 65-73.
[http://dx.doi.org/10.1039/C2BM00066K] [PMID: 32481997]
[127]
Bogdan, J.; Pławińska-Czarnak, J.; Zarzyńska, J. Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: a review. Nanoscale Res. Lett., 2017, 12(1), 225.
[http://dx.doi.org/10.1186/s11671-017-2007-y] [PMID: 28351128]
[128]
Qian, X.; Zheng, Y.; Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): breaking the depth shallow of photoactivation. Adv. Mater., 2016, 28(37), 8097-8129.
[http://dx.doi.org/10.1002/adma.201602012] [PMID: 27384408]
[129]
Ao, M.; Wang, Z.; Ran, H.; Guo, D.; Yu, J.; Li, A.; Chen, W.; Wu, W.; Zheng, Y. Gd-DTPA-loaded PLGA microbubbles as both ultrasound contrast agent and MRI contrast agent-a feasibility research. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 93(2), 551-556.
[http://dx.doi.org/10.1002/jbm.b.31614] [PMID: 20225249]
[130]
Jia, Q.; Ge, J.; Liu, W.; Liu, S.; Niu, G.; Guo, L.; Zhang, H.; Wang, P. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale, 2016, 8(26), 13067-13077.
[http://dx.doi.org/10.1039/C6NR03459D] [PMID: 27326673]
[131]
Chen, M.J.; Xu, A.R.; He, W.Y.; Ma, W.C.; Shen, S. Ultrasound triggered drug delivery for mitochondria targeted sonodynamic therapy. J. Drug Deliv. Sci. Technol., 2017, 39, 501-507.
[http://dx.doi.org/10.1016/j.jddst.2017.05.009]
[132]
Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release, 2012, 161(2), 505-522.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]
[133]
Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.F.; Zhao, Y.; Zhang, H.; Wang, H.; Chu, P.K. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun., 2016, 7, 12967.
[http://dx.doi.org/10.1038/ncomms12967] [PMID: 27686999]
[134]
Huang, J.; Liu, F.; Han, X.; Zhang, L.; Hu, Z.; Jiang, Q.; Wang, Z.; Ran, H.; Wang, D.; Li, P. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics. Theranostics, 2018, 8(22), 6178-6194.
[http://dx.doi.org/10.7150/thno.29569] [PMID: 30613291]
[135]
Huang, P.; Qian, X.; Chen, Y.; Yu, L.; Lin, H.; Wang, L.; Zhu, Y.; Shi, J. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J. Am. Chem. Soc., 2017, 139(3), 1275-1284.
[http://dx.doi.org/10.1021/jacs.6b11846] [PMID: 28024395]
[136]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[137]
Shanei, A.; Sazgarnia, A.; Meibodi, T.A.; Eshghi, H.; Hassanzadeh-Khayyat, M.; Esmaily, H.; Kakhki, N.A. Sonodynamic therapy using protoporphyrin ix conjugated to gold nanoparticles: an in vivo study on a colon tumor model. Iran. J. Basic Med. Sci., 2012, 15(2), 759-767.
[PMID: 23493546]
[138]
McEwan, C.; Owen, J.; Stride, E.; Fowley, C.; Nesbitt, H.; Cochrane, D.; Coussios, C.C.; Borden, M.; Nomikou, N.; McHale, A.P.; Callan, J.F. Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J. Control. Release, 2015, 203(3), 51-56.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.004] [PMID: 25660073]
[139]
McEwan, C.; Kamila, S.; Owen, J.; Nesbitt, H.; Callan, B.; Borden, M.; Nomikou, N.; Hamoudi, R.A.; Taylor, M.A.; Stride, E.; McHale, A.P.; Callan, J.F. Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. Biomaterials, 2016, 80, 20-32.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.033] [PMID: 26702983]
[140]
Fard, A.E.; Zarepour, A.; Zarrabi, A.; Shanei, A.; Salehi, H. Synergistic effect of the combination of triethylene-glycol modified Fe3O4 nanoparticles and ultrasound wave on MCF-7 cells. J. Magn. Magn. Mater., 2015, 394, 44-49.
[http://dx.doi.org/10.1016/j.jmmm.2015.06.040]
[141]
Sindrilaru, A.; Peters, T.; Wieschalka, S.; Baican, C.; Baican, A.; Peter, H.; Hainzl, A.; Schatz, S.; Qi, Y.; Schlecht, A.; Weiss, J.M.; Wlaschek, M.; Sunderkötter, C.; Scharffetter-Kochanek, K. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest., 2011, 121(3), 985-997.
[http://dx.doi.org/10.1172/JCI44490] [PMID: 21317534]
[142]
Yamaguchi, S.; Kobayashi, H.; Narita, T.; Kanehira, K.; Sonezaki, S.; Kubota, Y.; Terasaka, S.; Iwasaki, Y. Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol compound: evaluation of antitumor effect on glioma cells and spheroids in vitro. Photochem. Photobiol., 2010, 86(4), 964-971.
[http://dx.doi.org/10.1111/j.1751-1097.2010.00742.x] [PMID: 20492566]
[143]
Zeng, L.; Ren, W.; Xiang, L.; Zheng, J.; Chen, B.; Wu, A. Multifunctional Fe3O4-TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nanoscale, 2013, 5(5), 2107-2113.
[http://dx.doi.org/10.1039/c3nr33978e] [PMID: 23381832]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy