Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition

Author(s): Abedin Abdallah, Evera Elemba, Qingzhen Zhong* and Zewei Sun*

Volume 21, Issue 8, 2020

Page: [785 - 798] Pages: 14

DOI: 10.2174/1389203721666200212095503

Price: $65

Abstract

The gastrointestinal tract (GIT) of humans and animals is host to a complex community of different microorganisms whose activities significantly influence host nutrition and health through enhanced metabolic capabilities, protection against pathogens, and regulation of the gastrointestinal development and immune system. New molecular technologies and concepts have revealed distinct interactions between the gut microbiota and dietary amino acids (AAs) especially in relation to AA metabolism and utilization in resident bacteria in the digestive tract, and these interactions may play significant roles in host nutrition and health as well as the efficiency of dietary AA supplementation. After the protein is digested and AAs and peptides are absorbed in the small intestine, significant levels of endogenous and exogenous nitrogenous compounds enter the large intestine through the ileocaecal junction. Once they move in the colonic lumen, these compounds are not markedly absorbed by the large intestinal mucosa, but undergo intense proteolysis by colonic microbiota leading to the release of peptides and AAs and result in the production of numerous bacterial metabolites such as ammonia, amines, short-chain fatty acids (SCFAs), branched-chain fatty acids (BCFAs), hydrogen sulfide, organic acids, and phenols. These metabolites influence various signaling pathways in epithelial cells, regulate the mucosal immune system in the host, and modulate gene expression of bacteria which results in the synthesis of enzymes associated with AA metabolism. This review aims to summarize the current literature relating to how the interactions between dietary amino acids and gut microbiota may promote host nutrition and health.

Keywords: Amino acid fermenting bacteria, amino acid metabolism, gut microbiota, host health, host nutrition.

Graphical Abstract

[1]
De Filippo, C.; Cavalieri, D.; Di Paola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA, 2010, 107(33), 14691-14696.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[2]
Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R.S. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[3]
Neis, E.P.; Dejong, C.H.; Rensen, S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients, 2015, 7(4), 2930-2946.
[http://dx.doi.org/10.3390/nu7042930] [PMID: 25894657]
[4]
Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13780-13785.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[5]
Ling, Z.; Xiang, C. Infectogenomics: aspect of host responses to microbes in digestive tract; Metagenomics; Hum. Body, 2011, pp. 217-230.
[6]
Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; Egholm, M.; Henrissat, B.; Heath, A.C.; Knight, R.; Gordon, J.I. A core gut microbiome in obese and lean twins. Nature, 2009, 457(7228), 480-484.
[http://dx.doi.org/10.1038/nature07540] [PMID: 19043404]
[7]
Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444(7122), 1022-1023.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[8]
Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414] [PMID: 17183312]
[9]
Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; Krajmalnik-Brown, R. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA, 2009, 106(7), 2365-2370.
[http://dx.doi.org/10.1073/pnas.0812600106] [PMID: 19164560]
[10]
Vannucci, L.; Stepankova, R.; Kozakova, H.; Fiserova, A.; Rossmann, P.; Tlaskalova-Hogenova, H. Colorectal carcinogenesis in germ-free and conventionally reared rats: different intestinal environments affect the systemic immunity. Int. J. Oncol., 2008, 32(3), 609-617.
[http://dx.doi.org/10.3892/ijo.32.3.609] [PMID: 18292938]
[11]
Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; Rhodes, J.M.; Stintzi, A.; Simpson, K.W.; Hansen, J.J.; Keku, T.O.; Fodor, A.A.; Jobin, C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 2012, 338(6103), 120-123.
[http://dx.doi.org/10.1126/science.1224820] [PMID: 22903521]
[12]
Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.W.M.; Dallinga–Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 2012, 143(4), 913-916.
[http://dx.doi.org/10.1053/j.gastro.2012.06.031]
[13]
Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; Peng, Y.; Zhang, D.; Jie, Z.; Wu, W.; Qin, Y.; Xue, W.; Li, J.; Han, L.; Lu, D.; Wu, P.; Dai, Y.; Sun, X.; Li, Z.; Tang, A.; Zhong, S.; Li, X.; Chen, W.; Xu, R.; Wang, M.; Feng, Q.; Gong, M.; Yu, J.; Zhang, Y.; Zhang, M.; Hansen, T.; Sanchez, G.; Raes, J.; Falony, G.; Okuda, S.; Almeida, M.; LeChatelier, E.; Renault, P.; Pons, N.; Batto, J.M.; Zhang, Z.; Chen, H.; Yang, R.; Zheng, W.; Li, S.; Yang, H.; Wang, J.; Ehrlich, S.D.; Nielsen, R.; Pedersen, O.; Kristiansen, K.; Wang, J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418), 55-60.
[http://dx.doi.org/10.1038/nature11450] [PMID: 23023125]
[14]
McVey Neufeld, K.A.; Luczynski, P.; Seira Oriach, C.; Dinan, T.G.; Cryan, J.F. What’s bugging your teen?-The microbiota and adolescent mental health. Neurosci. Biobehav. Rev., 2016, 70, 300-312.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.005] [PMID: 27287940]
[15]
Sridharan, G.V.; Choi, K.; Klemashevich, C.; Wu, C.; Prabakaran, D.; Pan, L.B.; Steinmeyer, S.; Mueller, C.; Yousofshahi, M.; Alaniz, R.C.; Lee, K.; Jayaraman, A. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nat. Commun., 2014, 5, 5492.
[http://dx.doi.org/10.1038/ncomms6492] [PMID: 25411059]
[16]
Kimura, I.; Inoue, D.; Hirano, K.; Tsujimoto, G. The SCFA receptor GPR43 and energy metabolism. Front. Endocrinol. (Lausanne), 2014, 5, 85.
[http://dx.doi.org/10.3389/fendo.2014.00085] [PMID: 24926285]
[17]
Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; Takahashi, T.; Miyauchi, S.; Shioi, G.; Inoue, H.; Tsujimoto, G. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun., 2013, 4, 1829.
[http://dx.doi.org/10.1038/ncomms2852] [PMID: 23652017]
[18]
Wu, G. Amino acids: metabolism, functions, and nutrition. Amino Acids, 2009, 37(1), 1-17.
[http://dx.doi.org/10.1007/s00726-009-0269-0] [PMID: 19301095]
[19]
Wu, G.; Bazer, F.W.; Davis, T.A.; Kim, S.W.; Li, P.; Marc Rhoads, J.; Carey Satterfield, M.; Smith, S.B.; Spencer, T.E.; Yin, Y. Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 2009, 37(1), 153-168.
[http://dx.doi.org/10.1007/s00726-008-0210-y] [PMID: 19030957]
[20]
Dai, Z.L.; Wu, G.; Zhu, W.Y. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci., 2011, 16(1), 1768-1786.
[http://dx.doi.org/10.2741/3820] [PMID: 21196263]
[21]
Cummings, J.H.; Macfarlane, G.T. Colonic microflora: nutrition and health. Nutrition, 1997, 13(5), 476-478.
[http://dx.doi.org/10.1016/S0899-9007(97)00114-7] [PMID: 9225346]
[22]
Fuller, M.F.; Reeds, P.J. Nitrogen cycling in the gut. Annu. Rev. Nutr., 1998, 18, 385-411.
[http://dx.doi.org/10.1146/annurev.nutr.18.1.385] [PMID: 9706230]
[23]
Metges, C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr., 2000, 130(7), 1857S-1864S.
[http://dx.doi.org/10.1093/jn/130.7.1857S] [PMID: 10867063]
[24]
Bergen, W.G.; Wu, G. Intestinal nitrogen recycling and utilization in health and disease. J. Nutr., 2009, 139(5), 821-825.
[http://dx.doi.org/10.3945/jn.109.104497] [PMID: 19282369]
[25]
Mardinoglu, A.; Shoaie, S.; Bergentall, M.; Ghaffari, P.; Zhang, C.; Larsson, E.; Bäckhed, F.; Nielsen, J. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol., 2015, 11(10), 834.
[http://dx.doi.org/10.15252/msb.20156487] [PMID: 26475342]
[26]
Lin, R.; Liu, W.; Piao, M.; Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids, 2017, 49(12), 2083-2090.
[http://dx.doi.org/10.1007/s00726-017-2493-3] [PMID: 28932911]
[27]
El Idrissi, A. Taurine increases mitochondrial buffering of calcium: role in neuroprotection. Amino Acids, 2008, 34(2), 321-328.
[http://dx.doi.org/10.1007/s00726-006-0396-9] [PMID: 16955229]
[28]
Lupi, A.; Tenni, R.; Rossi, A.; Cetta, G.; Forlino, A. Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations. Amino Acids, 2008, 35(4), 739-752.
[http://dx.doi.org/10.1007/s00726-008-0055-4] [PMID: 18340504]
[29]
Novelli, A.; Tasker, R.A.R. Excitatory amino acids in epilepsy: from the clinics to the laboratory. Amino Acids, 2007, 32(3), 295-297.
[http://dx.doi.org/10.1007/s00726-006-0413-z] [PMID: 17393261]
[30]
Phang, J.M.; Donald, S.P.; Pandhare, J.; Liu, Y. The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids, 2008, 35(4), 681-690.
[http://dx.doi.org/10.1007/s00726-008-0063-4] [PMID: 18401543]
[31]
Suenaga, R.; Tomonaga, S.; Yamane, H.; Kurauchi, I.; Tsuneyoshi, Y.; Sato, H.; Denbow, D.M.; Furuse, M. Intracerebroventricular injection of L-arginine induces sedative and hypnotic effects under an acute stress in neonatal chicks. Amino Acids, 2008, 35(1), 139-146.
[http://dx.doi.org/10.1007/s00726-007-0610-4] [PMID: 18163184]
[32]
Wu, G.; Bazer, F.W.; Davis, T.A.; Jaeger, L.A.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Meininger, C.J.; Spencer, T.E.; Yin, Y.L. Important roles for the arginine family of amino acids in swine nutrition and production. Livest. Sci., 2007, 112(1-2), 8-22.
[http://dx.doi.org/10.1016/j.livsci.2007.07.003]
[33]
Ravindran, V.; Hew, L.I.; Ravindran, G.; Bryden, W.L. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci., 2005, 81(01), 85-97.
[http://dx.doi.org/10.1079/ASC42240085]
[34]
Chung, T.K.; Baker, D.H. Ideal amino acid pattern for 10-kilogram pigs. J. Anim. Sci., 1992, 70(10), 3102-3111.
[http://dx.doi.org/10.2527/1992.70103102x] [PMID: 1429287]
[35]
Wang, T.C.; Fuller, M.F. The optimum dietary amino acid pattern for growing pigs. 1. Experiments by amino acid deletion. Br. J. Nutr., 1989, 62(1), 77-89.
[http://dx.doi.org/10.1079/BJN19890009] [PMID: 2789991]
[36]
Stein, H.H.; Sève, B.; Fuller, M.F.; Moughan, P.J.; de Lange, C.F. Committee on Terminology to Report AA Bioavailability and Digestibility. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J. Anim. Sci., 2007, 85(1), 172-180.
[http://dx.doi.org/10.2527/jas.2005-742] [PMID: 17179553]
[37]
Suryawan, A.; O’Connor, P.M.J.; Bush, J.A.; Nguyen, H.V.; Davis, T.A. Differential regulation of protein synthesis by amino acids and insulin in peripheral and visceral tissues of neonatal pigs. Amino Acids, 2009, 37(1), 97-104.
[http://dx.doi.org/10.1007/s00726-008-0149-z] [PMID: 18683020]
[38]
Elango, R.; Ball, R.O.; Pencharz, P.B. Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids, 2009, 37(1), 19-27.
[http://dx.doi.org/10.1007/s00726-009-0234-y] [PMID: 19156481]
[39]
Wang, W.W.; Qiao, S.Y.; Li, D.F. Amino acids and gut function. Amino Acids, 2009, 37(1), 105-110.
[http://dx.doi.org/10.1007/s00726-008-0152-4] [PMID: 18670730]
[40]
Flynn, N.E.; Bird, J.G.; Guthrie, A.S. Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids, 2009, 37(1), 123-129.
[http://dx.doi.org/10.1007/s00726-008-0206-7] [PMID: 19034608]
[41]
Marc Rhoads, J.; Wu, G. Glutamine, arginine, and leucine signaling in the intestine. Amino Acids, 2009, 37(1), 111-122.
[http://dx.doi.org/10.1007/s00726-008-0225-4] [PMID: 19130170]
[42]
Palii, S.S.; Kays, C.E.; Deval, C.; Bruhat, A.; Fafournoux, P.; Kilberg, M.S. Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation. Amino Acids, 2009, 37(1), 79-88.
[http://dx.doi.org/10.1007/s00726-008-0199-2] [PMID: 19009228]
[43]
Kim, B.G.; Lindemann, M.D.; Rademacher, M.; Brennan, J.J.; Cromwell, G.L. Efficacy of DL-methionine hydroxy analog free acid and DL-methionine as methionine sources for pigs. J. Anim. Sci., 2006, 84(1), 104-111.
[http://dx.doi.org/10.2527/2006.841104x] [PMID: 16361496]
[44]
Kong, C.; Adeola, O. Evaluation of amino Acid and energy utilization in feedstuff for Swine and poultry diets. Asian-Australas. J. Anim. Sci., 2014, 27(7), 917-925.
[http://dx.doi.org/10.5713/ajas.2014.r.02] [PMID: 25050031]
[45]
Moehn, S.; Bertolo, R.F.P.; Pencharz, P.B.; Ball, R.O. Development of the indicator amino acid oxidation technique to determine the availability of amino acids from dietary protein in pigs. J. Nutr., 2005, 135(12), 2866-2870.
[http://dx.doi.org/10.1093/jn/135.12.2866] [PMID: 16317134]
[46]
Batterham, E.S. Availability and utilization of amino acids for growing pigs. Nutr. Res. Rev., 1992, 5(1), 1-18.
[http://dx.doi.org/10.1079/NRR19920004] [PMID: 19094310]
[47]
Gabert, V.M.; Jørgensen, H.; Nyachoti, C.M. Bioavailability of Amino Acids in Feedstuffs for Swine. In: Swine Nutrition, Second Edition; Lewis, A.J.; Southern, L.L., Eds.; CRC Press:: Wageningen, 2001; pp. 148-184.
[48]
Fuller, M. In AA Bioavailability-A Brief History, Digestive Physiology in Pigs. Proc. 9th Int. Symp, 2003, pp. 183-198.
[49]
Sauer, W.C.; Ozimek, L. Digestibility of amino acids in swine: results and their practical applications. A review. Livest. Prod. Sci., 1986, 15(4), 367-388.
[http://dx.doi.org/10.1016/0301-6226(86)90076-X]
[50]
Stein, H.H.; Gibson, M.L.; Pedersen, C.; Boersma, M.G. Amino acid and energy digestibility in ten samples of distillers dried grain with solubles fed to growing pigs. J. Anim. Sci., 2006, 84(4), 853-860.
[http://dx.doi.org/10.2527/2006.844853x] [PMID: 16543562]
[51]
Frias, J.; Song, Y.S.; Martínez-Villaluenga, C.; González de Mejia, E.; Vidal-Valverde, C. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem., 2008, 56(1), 99-105.
[http://dx.doi.org/10.1021/jf072177j] [PMID: 18072744]
[52]
Cervantes-Pahm, S.K.; Stein, H.H. Ileal digestibility of amino acids in conventional, fermented, and enzyme-treated soybean meal and in soy protein isolate, fish meal, and casein fed to weanling pigs. J. Anim. Sci., 2010, 88(8), 2674-2683.
[http://dx.doi.org/10.2527/jas.2009-2677] [PMID: 20407072]
[53]
Boisen, S.; Fernhndez, J.A. Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses. Anim. Feed Sci. Technol., 1995, 51, 29-43.
[http://dx.doi.org/10.1016/0377-8401(94)00686-4]
[54]
Titgemeyer, E.C.; Merchen, N.R.; Berger, L.L. Evaluation of soybean meal, corn gluten meal, blood meal and fish meal as sources of nitrogen and amino acids disappearing from the small intestine of steers. J. Anim. Sci., 1989, 67(1), 262-275.
[http://dx.doi.org/10.2527/jas1989.671262x] [PMID: 2925547]
[55]
Goldberg, A.; Guggenheim, K. The digestive release of amino acids and their concentrations in the portal plasma of rats after protein feeding. Biochem. J., 1962, 83, 129-135.
[http://dx.doi.org/10.1042/bj0830129] [PMID: 13899682]
[56]
Singh, B.K. Amino acids and nutritional quality of plant products. Amino Acids, 2002, 22(3), 215-216.
[http://dx.doi.org/10.1007/s007260200009]
[57]
Young, V.R.; Pellett, P.L. Plant proteins in relation to human protein and amino acid nutrition. Am. J. Clin. Nutr., 1994, 59(5)(Suppl.), 1203S-1212S.
[http://dx.doi.org/10.1093/ajcn/59.5.1203S] [PMID: 8172124]
[58]
Baker, D.H. Advances in protein-amino acid nutrition of poultry. Amino Acids, 2009, 37(1), 29-41.
[http://dx.doi.org/10.1007/s00726-008-0198-3] [PMID: 19009229]
[59]
Stipanuk, M.H.; Ueki, I.; Dominy, J.E., Jr; Simmons, C.R.; Hirschberger, L.L. Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids, 2009, 37(1), 55-63.
[http://dx.doi.org/10.1007/s00726-008-0202-y] [PMID: 19011731]
[60]
Goodman, B.E. Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ., 2010, 34(2), 44-53.
[http://dx.doi.org/10.1152/advan.00094.2009] [PMID: 20522896]
[61]
San Gabriel, A.; Uneyama, H. Amino acid sensing in the gastrointestinal tract. Amino Acids, 2013, 45(3), 451-461.
[http://dx.doi.org/10.1007/s00726-012-1371-2] [PMID: 22865248]
[62]
Taylor, I.L.; Byrne, W.J.; Christie, D.L.; Ament, M.E.; Walsh, J.H. Effect of individual l-amino acids on gastric acid secretion and serum gastrin and pancreatic polypeptide release in humans. Gastroenterology, 1982, 83(1 Pt 2), 273-278.
[PMID: 6806140]
[63]
Voynick, I.M.; Fruton, J.S. The comparative specificity of acid proteinases. Proc. Natl. Acad. Sci. USA, 1971, 68(2), 257-259.
[http://dx.doi.org/10.1073/pnas.68.2.257] [PMID: 5277065]
[64]
Caspary, W.F. Physiology and pathophysiology of intestinal absorption. Am. J. Clin. Nutr., 1992, 55(1)(Suppl.), 299S-308S.
[http://dx.doi.org/10.1093/ajcn/55.1.299s] [PMID: 1728844]
[65]
Silk, D.B.A. Digestion and absorption of dietary protein in man. Proc. Nutr. Soc., 1980, 39(1), 61-70.
[http://dx.doi.org/10.1079/PNS19800009] [PMID: 6768068]
[66]
Adibi, S.A.; Mercer, D.W. Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J. Clin. Invest., 1973, 52(7), 1586-1594.
[http://dx.doi.org/10.1172/JCI107335] [PMID: 4718954]
[67]
San Gabriel, A.M.; Maekawa, T.; Uneyama, H.; Yoshie, S.; Torii, K. mGluR1 in the fundic glands of rat stomach. FEBS Lett., 2007, 581(6), 1119-1123.
[http://dx.doi.org/10.1016/j.febslet.2007.02.016] [PMID: 17331504]
[68]
Strunz, U.T.; Walsh, J.H.; Grossman, M.I. Stimulation of gastrin release in dogs by individual amino acids. Proc. Soc. Exp. Biol. Med., 1978, 157(3), 440-441.
[http://dx.doi.org/10.3181/00379727-157-40072] [PMID: 634985]
[69]
Haid, D.C.; Jordan-Biegger, C.; Widmayer, P.; Breer, H. Receptors responsive to protein breakdown products in g-cells and d-cells of mouse, swine and human. Front. Physiol., 2012, 3, 65.
[http://dx.doi.org/10.3389/fphys.2012.00065] [PMID: 22514536]
[70]
Haid, D.; Widmayer, P.; Breer, H. Nutrient sensing receptors in gastric endocrine cells. J. Mol. Histol., 2011, 42(4), 355-364.
[http://dx.doi.org/10.1007/s10735-011-9339-1] [PMID: 21750971]
[71]
Feng, J.; Petersen, C.D.; Coy, D.H.; Jiang, J.K.; Thomas, C.J.; Pollak, M.R.; Wank, S.A. Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc. Natl. Acad. Sci. USA, 2010, 107(41), 17791-17796.
[http://dx.doi.org/10.1073/pnas.1009078107] [PMID: 20876097]
[72]
Geibel, J.P.; Hebert, S.C. The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu. Rev. Physiol., 2009, 71, 205-217.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163128] [PMID: 19575679]
[73]
Ray, J.M.; Squires, P.E.; Curtis, S.B.; Meloche, M.R.; Buchan, A.M.J. Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J. Clin. Invest., 1997, 99(10), 2328-2333.
[http://dx.doi.org/10.1172/JCI119413] [PMID: 9153273]
[74]
Kirchhoff, P.; Dave, M.H.; Remy, C.; Kosiek, O.; Busque, S.M.; Dufner, M.; Geibel, J.P.; Verrey, F.; Wagner, C.A. An amino acid transporter involved in gastric acid secretion. Pflugers Arch., 2006, 451(6), 738-748.
[http://dx.doi.org/10.1007/s00424-005-1507-2] [PMID: 16308696]
[75]
Busque, S.M.; Kerstetter, J.E.; Geibel, J.P.; Insogna, K. L-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 289(4), G664-G669.
[http://dx.doi.org/10.1152/ajpgi.00096.2005] [PMID: 15961860]
[76]
Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids, 2007, 33(4), 547-562.
[http://dx.doi.org/10.1007/s00726-006-0477-9] [PMID: 17146590]
[77]
Blachier, F.; Wu, G.; Yin, Y. Nutritional and Physiological Functions of Amino Acids in Pigs; Springer: Vienna, 2013.
[http://dx.doi.org/10.1007/978-3-7091-1328-8]
[78]
Macfarlane, G.T. The colonic flora, fermentation and large bowel digestive function. Large Intest. Physiol. Pathophysiol. Dis., 1991, 51-92.
[79]
Macfarlane, G.T.; Allison, C.; Gibson, S.A.W.; Cummings, J.H. Contribution of the microflora to proteolysis in the human large intestine. J. Appl. Bacteriol., 1988, 64(1), 37-46.
[http://dx.doi.org/10.1111/j.1365-2672.1988.tb02427.x] [PMID: 3127369]
[80]
Schaible, U.E.; Kaufmann, S.H.E. A nutritive view on the host-pathogen interplay. Trends Microbiol., 2005, 13(8), 373-380.
[http://dx.doi.org/10.1016/j.tim.2005.06.009] [PMID: 15993074]
[81]
Bron, P.A.; Grangette, C.; Mercenier, A.; de Vos, W.M.; Kleerebezem, M. Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J. Bacteriol., 2004, 186(17), 5721-5729.
[http://dx.doi.org/10.1128/JB.186.17.5721-5729.2004] [PMID: 15317777]
[82]
Booijink, C.C.G.M.; Zoetendal, E.G.; Kleerebezem, M.; de Vos, W.M. Microbial communities in the human small intestine: coupling diversity to metagenomics. Future Microbiol., 2007, 2(3), 285-295.
[http://dx.doi.org/10.2217/17460913.2.3.285] [PMID: 17661703]
[83]
Kararli, T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos., 1995, 16(5), 351-380.
[http://dx.doi.org/10.1002/bdd.2510160502] [PMID: 8527686]
[84]
Smith, E.A.; Macfarlane, G.T. Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol. Ecol., 1998, 25(4), 355-368.
[http://dx.doi.org/10.1111/j.1574-6941.1998.tb00487.x]
[85]
Wallace, R.J. Ruminal microbial metabolism of peptides and amino acids. J. Nutr. 1996, 126(_4), 1326S-1334S.
[86]
Ma, N.; Ma, X. Dietary amino acids and the gut‐microbiome‐immune axis: physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf., 2019, 18(1), 221-242.
[http://dx.doi.org/10.1111/1541-4337.12401]
[87]
Duncan, M.J. Genomics of oral bacteria. Crit. Rev. Oral Biol. Med., 2003, 14(3), 175-187.
[http://dx.doi.org/10.1177/154411130301400303] [PMID: 12799321]
[88]
Wang, X.; Heazlewood, S.P.; Krause, D.O.; Florin, T.H.J. Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J. Appl. Microbiol., 2003, 95(3), 508-520.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02005.x] [PMID: 12911699]
[89]
Hayashi, H.; Takahashi, R.; Nishi, T.; Sakamoto, M.; Benno, Y. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol., 2005, 54(Pt 11), 1093-1101.
[http://dx.doi.org/10.1099/jmm.0.45935-0] [PMID: 16192442]
[90]
Wang, M.; Ahrné, S.; Jeppsson, B.; Molin, G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol. Ecol., 2005, 54(2), 219-231.
[http://dx.doi.org/10.1016/j.femsec.2005.03.012] [PMID: 16332321]
[91]
Konstantinov, S.R.; Awati, A.A.; Williams, B.A.; Miller, B.G.; Jones, P.; Stokes, C.R.; Akkermans, A.D.L.; Smidt, H.; de Vos, W.M. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol., 2006, 8(7), 1191-1199.
[http://dx.doi.org/10.1111/j.1462-2920.2006.01009.x] [PMID: 16817927]
[92]
Dai, Z.L.; Zhang, J.; Wu, G.; Zhu, W.Y. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids, 2010, 39(5), 1201-1215.
[http://dx.doi.org/10.1007/s00726-010-0556-9] [PMID: 20300787]
[93]
Booijink, C.C.G.M. Analysis of diversity and function of the human small intestinal microbiota. PhD; Wageningen University: Wageningen, Netherlands, 2009.
[94]
Bento, C.B.P.; de Azevedo, A.C.; Detmann, E.; Mantovani, H.C. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. BMC Microbiol., 2015, 15(1), 28.
[http://dx.doi.org/10.1186/s12866-015-0369-9] [PMID: 25888186]
[95]
Rist, V.T.S.; Weiss, E.; Eklund, M.; Mosenthin, R. Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health: a review. Animal, 2013, 7(7), 1067-1078.
[http://dx.doi.org/10.1017/S1751731113000062] [PMID: 23410993]
[96]
Shen, Q.; Chen, Y.A.; Tuohy, K.M. A comparative in vitro investigation into the effects of cooked meats on the human faecal microbiota. Anaerobe, 2010, 16(6), 572-577.
[http://dx.doi.org/10.1016/j.anaerobe.2010.09.007] [PMID: 20934523]
[97]
Vital, M.; Howe, A.C.; Tiedje, J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio, 2014, 5(2), e00889-e14.
[http://dx.doi.org/10.1128/mBio.00889-14] [PMID: 24757212]
[98]
Brinkworth, G.D.; Noakes, M.; Clifton, P.M.; Bird, A.R. Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr., 2009, 101(10), 1493-1502.
[http://dx.doi.org/10.1017/S0007114508094658] [PMID: 19224658]
[99]
Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol., 2007, 73(4), 1073-1078.
[http://dx.doi.org/10.1128/AEM.02340-06] [PMID: 17189447]
[100]
Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol., 1977, 31(1), 107-133.
[http://dx.doi.org/10.1146/annurev.mi.31.100177.000543] [PMID: 334036]
[101]
Libao-Mercado, A.J.O.; Zhu, C.L.; Cant, J.P.; Lapierre, H.; Thibault, J.N.; Sève, B.; Fuller, M.F.; de Lange, C.F.M. Dietary and endogenous amino acids are the main contributors to microbial protein in the upper gut of normally nourished pigs. J. Nutr., 2009, 139(6), 1088-1094.
[http://dx.doi.org/10.3945/jn.108.103267] [PMID: 19403708]
[102]
Ling, J.R.; Armstead, I.P. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. J. Appl. Bacteriol., 1995, 78(2), 116-124.
[http://dx.doi.org/10.1111/j.1365-2672.1995.tb02831.x] [PMID: 7698948]
[103]
Jocken, J.W.E.; González Hernández, M.A.; Hoebers, N.T.H.; van der Beek, C.M.; Essers, Y.P.G.; Blaak, E.E.; Canfora, E.E. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front. Endocrinol. (Lausanne), 2018, 8, 372.
[http://dx.doi.org/10.3389/fendo.2017.00372] [PMID: 29375478]
[104]
Hijova, E.; Chmelarova, A. Short chain fatty acids and colonic health. Bratisl. Lek Listy, 2007, 108(8), 354-358.
[PMID: 18203540]
[105]
Wong, J.M.W.; de Souza, R.; Kendall, C.W.C.; Emam, A.; Jenkins, D.J.A. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol., 2006, 40(3), 235-243.
[http://dx.doi.org/10.1097/00004836-200603000-00015] [PMID: 16633129]
[106]
Ciarlo, E.; Heinonen, T.; Herderschee, J.; Fenwick, C.; Mombelli, M.; Le Roy, D.; Roger, T. Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and fungal infections in vivo. Sci. Rep., 2016, 6, 37944.
[http://dx.doi.org/10.1038/srep37944] [PMID: 27897220]
[107]
Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int., 2012, 95(1), 50-60.
[http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane] [PMID: 22468341]
[108]
Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Re-print of “Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host”. Pharmacol. Res., 2013, 69(1), 114-126.
[http://dx.doi.org/10.1016/j.phrs.2013.01.003] [PMID: 23318949]
[109]
Dai, Z.; Wu, Z.; Hang, S.; Zhu, W.; Wu, G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol. Hum. Reprod., 2015, 21(5), 389-409.
[http://dx.doi.org/10.1093/molehr/gav003] [PMID: 25609213]
[110]
Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[111]
Hullar, M.A.J.; Fu, B.C. Diet, the gut microbiome, and epigenetics. Cancer J., 2014, 20(3), 170-175.
[http://dx.doi.org/10.1097/PPO.0000000000000053] [PMID: 24855003]
[112]
Metges, C.C.; El-Khoury, A.E.; Henneman, L.; Petzke, K.J.; Grant, I.; Bedri, S.; Pereira, P.P.; Ajami, A.M.; Fuller, M.F.; Young, V.R. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am. J. Physiol., 1999, 277(4), E597-E607.
[PMID: 10516118]
[113]
USDA/ARS, Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 19. U.S. Department of Agriculture: Agricultural Research Service, Beltsville, Maryland, 2006, 20705,
[114]
Takahashi, N. Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol. Immunol., 2003, 18(2), 109-113.
[http://dx.doi.org/10.1034/j.1399-302X.2003.00054.x] [PMID: 12654101]
[115]
Loesche, W.J.; Gibbons, R.J. Amino acid fermentation by Fusobacterium nucleatum. Arch. Oral Biol., 1968, 13(2), 191-202.
[http://dx.doi.org/10.1016/0003-9969(68)90051-4] [PMID: 5238887]
[116]
Bouhnik, Y.; Alain, S.; Attar, A.; Flourié, B.; Raskine, L.; Sanson-Le Pors, M.J.; Rambaud, J.C. Bacterial populations contaminating the upper gut in patients with small intestinal bacterial overgrowth syndrome. Am. J. Gastroenterol., 1999, 94(5), 1327-1331.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01016.x] [PMID: 10235214]
[117]
Boiangiu, C.D.; Jayamani, E.; Brügel, D.; Herrmann, G.; Kim, J.; Forzi, L.; Hedderich, R.; Vgenopoulou, I.; Pierik, A.J.; Steuber, J.; Buckel, W. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J. Mol. Microbiol. Biotechnol., 2005, 10(2-4), 105-119.
[http://dx.doi.org/10.1159/000091558] [PMID: 16645308]
[118]
George, W.L.; Kirby, B.D.; Sutter, V.L.; Citron, D.M.; Finegold, S.M. Gram-negative anaerobic bacilli: Their role in infection and patterns of susceptibility to antimicrobial agents. II. Little-known Fusobacterium species and miscellaneous genera. Rev. Infect. Dis., 1981, 3(3), 599-626.
[http://dx.doi.org/10.1093/clinids/3.3.599] [PMID: 7025153]
[119]
Potrykus, J.; White, R.L.; Bearne, S.L. Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium. Proteomics, 2008, 8(13), 2691-2703.
[http://dx.doi.org/10.1002/pmic.200700437] [PMID: 18546150]
[120]
Moreau, P.L. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J. Bacteriol., 2007, 189(6), 2249-2261.
[http://dx.doi.org/10.1128/JB.01306-06] [PMID: 17209032]
[121]
Campbell, H.A.; Mashburn, L.T.; Boyse, E.A.; Old, L.J. Two L-asparaginases from Escherichia coli B. Their separation, purification, and antitumor activity. Biochemistry, 1967, 6(3), 721-730.
[http://dx.doi.org/10.1021/bi00855a011] [PMID: 5337885]
[122]
Heller, J.S.; Rostomily, R.; Kyriakidis, D.A.; Canellakis, E.S. Regulation of polyamine biosynthesis in Escherichia coli by basic proteins. Proc. Natl. Acad. Sci. USA, 1983, 80(17), 5181-5184.
[http://dx.doi.org/10.1073/pnas.80.17.5181] [PMID: 6351053]
[123]
Gewolb, I.H.; Schwalbe, R.S.; Taciak, V.L.; Harrison, T.S.; Panigrahi, P. Stool microflora in extremely low birthweight infants. Arch. Dis. Child. Fetal Neonatal Ed., 1999, 80(3), F167-F173.
[http://dx.doi.org/10.1136/fn.80.3.F167] [PMID: 10212075]
[124]
Richard, H.; Foster, J.W. Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol., 2004, 186(18), 6032-6041.
[http://dx.doi.org/10.1128/JB.186.18.6032-6041.2004] [PMID: 15342572]
[125]
Schierack, P.; Walk, N.; Reiter, K.; Weyrauch, K.D.; Wieler, L.H. Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs. Microbiology, 2007, 153(Pt 11), 3830-3837.
[http://dx.doi.org/10.1099/mic.0.2007/010173-0] [PMID: 17975092]
[126]
Guccione, E. Leon-Kempis, Mdel.R.; Pearson, B.M.; Hitchin, E.; Mulholland, F.; van Diemen, P.M.; Stevens, M.P.; Kelly, D.J. Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol. Microbiol., 2008, 69(1), 77-93.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06263.x] [PMID: 18433445]
[127]
Konstantinov, S.R.; Awati, A.A.; Williams, B.A.; Miller, B.G.; Jones, P.; Stokes, C.R.; Akkermans, A.D.L.; Smidt, H.; de Vos, W.M. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol., 2006, 8(7), 1191-1199.
[http://dx.doi.org/10.1111/j.1462-2920.2006.01009.x] [PMID: 16817927]
[128]
Chen, G.J.; Russell, J.B. Transport of glutamine by Streptococcus bovis and conversion of glutamine to pyroglutamic acid and ammonia. J. Bacteriol., 1989, 171(6), 2981-2985.
[http://dx.doi.org/10.1128/jb.171.6.2981-2985.1989] [PMID: 2722740]
[129]
Paster, B.J.; Russell, J.B.; Yang, C.M.J.; Chow, J.M.; Woese, C.R.; Tanner, R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int. J. Syst. Bacteriol., 1993, 43(1), 107-110.
[http://dx.doi.org/10.1099/00207713-43-1-107] [PMID: 8427801]
[130]
Salyers, A.A.; West, S.E.; Vercellotti, J.R.; Wilkins, T.D. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Environ. Microbiol., 1977, 34(5), 529-533.
[PMID: 563214]
[131]
Robinson, I.M.; Allison, M.J.; Bucklin, J.A. Characterization of the cecal bacteria of normal pigs. Appl. Environ. Microbiol., 1981, 41(4), 950-955.
[PMID: 7235711]
[132]
Chen, G.J.; Russell, J.B. Fermentation of peptides and amino acids by a monensin-sensitive ruminal Peptostreptococcus. Appl. Environ. Microbiol., 1988, 54(11), 2742-2749.
[PMID: 2975156]
[133]
Barker, H.A. Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem., 1981, 50(1), 23-40.
[http://dx.doi.org/10.1146/annurev.bi.50.070181.000323] [PMID: 6791576]
[134]
Elsden, S.R.; Hilton, M.G. Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch. Microbiol., 1978, 117(2), 165-172.
[http://dx.doi.org/10.1007/BF00402304] [PMID: 678022]
[135]
Britz, M.L.; Wilkinson, R.G. Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Stickland reaction revisited. Can. J. Microbiol., 1982, 28(3), 291-300.
[http://dx.doi.org/10.1139/m82-043] [PMID: 6805929]
[136]
Stickland, L.H. Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy. Biochem. J., 1934, 28(5), 1746-1759.
[http://dx.doi.org/10.1042/bj0281746] [PMID: 16745572]
[137]
Poston, J.M. Leucine 2,3-aminomutase, an enzyme of leucine catabolism. J. Biol. Chem., 1976, 251(7), 1859-1863.
[PMID: 1270414]
[138]
Attwood, G.; Li, D.; Pacheco, D.; Tavendale, M. Production of indolic compounds by rumen bacteria isolated from grazing ruminants. J. Appl. Microbiol., 2006, 100(6), 1261-1271.
[http://dx.doi.org/10.1111/j.1365-2672.2006.02896.x] [PMID: 16696673]
[139]
Martin, S.A. Nutrient transport by ruminal bacteria: a review. J. Anim. Sci., 1994, 72(11), 3019-3031.
[http://dx.doi.org/10.2527/1994.72113019x] [PMID: 7730197]
[140]
Kenklies, J.; Ziehn, R.; Fritsche, K.; Pich, A.; Andreesen, J.R. Proline biosynthesis from L-ornithine in Clostridium sticklandii: purification of delta1-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC. Microbiology, 1999, 145(Pt 4), 819-826.
[http://dx.doi.org/10.1099/13500872-145-4-819] [PMID: 10220161]
[141]
Van Kessel, J.S.; Russell, J.B. Energetics of arginine and lysine transport by whole cells and membrane vesicles of strain SR, a monensin-sensitive ruminal bacterium. Appl. Environ. Microbiol., 1992, 58(3), 969-975.
[PMID: 1315500]
[142]
Perkins, S.E.; Fox, J.G.; Taylor, N.S.; Green, D.L.; Lipman, N.S. Detection of Clostridium difficile toxins from the small intestine and cecum of rabbits with naturally acquired enterotoxemia. Lab. Anim. Sci., 1995, 45(4), 379-384.
[PMID: 7474876]
[143]
Arroyo, L.G.; Kruth, S.A.; Willey, B.M.; Staempfli, H.R.; Low, D.E.; Weese, J.S. PCR ribotyping of Clostridium difficile isolates originating from human and animal sources. J. Med. Microbiol., 2005, 54(Pt 2), 163-166.
[http://dx.doi.org/10.1099/jmm.0.45805-0] [PMID: 15673511]
[144]
Zidaric, V.; Zemljic, M.; Janezic, S.; Kocuvan, A.; Rupnik, M. High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe, 2008, 14(6), 325-327.
[http://dx.doi.org/10.1016/j.anaerobe.2008.10.001] [PMID: 19022388]
[145]
Avbersek, J.; Janezic, S.; Pate, M.; Rupnik, M.; Zidaric, V.; Logar, K.; Vengust, M.; Zemljic, M.; Pirs, T.; Ocepek, M. Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe, 2009, 15(6), 252-255.
[http://dx.doi.org/10.1016/j.anaerobe.2009.07.004] [PMID: 19632350]
[146]
Cotter, P.D.; Hill, C. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev., 2003, 67(3), 429-453.
[http://dx.doi.org/10.1128/MMBR.67.3.429-453.2003] [PMID: 12966143]
[147]
Allison, C.; Macfarlane, G.T. Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens. Appl. Environ. Microbiol., 1989, 55(11), 2894-2898.
[PMID: 2560361]
[148]
Attwood, G.T.; Klieve, A.V.; Ouwerkerk, D.; Patel, B.K.C. Ammonia-hyperproducing bacteria from New Zealand ruminants. Appl. Environ. Microbiol., 1998, 64(5), 1796-1804.
[PMID: 9572953]
[149]
Rychlik, J.L.; Russell, J.B. The adaptation and resistance of Clostridium aminophilum F to the butyrivibriocin-like substance of Butyrivibrio fibrisolvens JL5 and monensin. FEMS Microbiol. Lett., 2002, 209(1), 93-98.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11115.x] [PMID: 12007660]
[150]
Whitehead, T.R.; Cotta, M.A. Isolation and identification of hyper-ammonia producing bacteria from swine manure storage pits. Curr. Microbiol., 2004, 48(1), 20-26.
[http://dx.doi.org/10.1007/s00284-003-4084-7] [PMID: 15018098]
[151]
Anderson, R.C.; Flythe, M.D.; Krueger, N.A.; Callaway, T.R.; Edrington, T.S.; Harvey, R.B.; Nisbet, D.J. Decreased competiveness of the foodborne pathogen Campylobacter jejuni during Co-culture with the hyper-ammonia producing anaerobe Clostridium aminophilum. Folia Microbiol. (Praha), 2010, 55(4), 309-311.
[http://dx.doi.org/10.1007/s12223-010-0046-1] [PMID: 20680559]
[152]
Wallace, R.J. Catabolism of amino acids by Megasphaera elsdenii LC1. Appl. Environ. Microbiol., 1986, 51(5), 1141-1143.
[PMID: 16347061]
[153]
Werner, H. [Megasphaera elsdenii--a normal inhabitant of human large intestine]. Zentralbl. Bakteriol. Orig. A, 1973, 223(2), 343-347.
[PMID: 4145841]
[154]
Sugihara, P.T.; Sutter, V.L.; Attebery, H.R.; Bricknell, K.S.; Finegold, S.M. Isolation of Acidaminococcus fermentans and Megasphaera elsdenii from normal human feces. Appl. Microbiol., 1974, 27(1), 274-275.
[PMID: 4589136]
[155]
Rogosa, M. Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic gram-negative diplococci using amino acids as the sole energy source for growth. J. Bacteriol., 1969, 98(2), 756-766.
[PMID: 5784223]
[156]
Smith, C.J.; Bryant, M.P. Introduction to metabolic activities of intestinal bacteria. Am. J. Clin. Nutr., 1979, 32(1), 149-157.
[http://dx.doi.org/10.1093/ajcn/32.1.149] [PMID: 367142]
[157]
Kamio, Y.; Terawaki, Y. Purification and properties of Selenomonas ruminantium lysine decarboxylase. J. Bacteriol., 1983, 153(2), 658-664.
[PMID: 6401702]
[158]
Liao, S.; Poonpairoj, P.; Ko, K.C.; Takatuska, Y.; Yamaguchi, Y.; Abe, N.; Kaneko, J.; Kamio, Y. Occurrence of agmatine pathway for putrescine synthesis in Selenomonas ruminatium. Biosci. Biotechnol. Biochem., 2008, 72(2), 445-455.
[http://dx.doi.org/10.1271/bbb.70550] [PMID: 18256468]
[159]
Lopes, J.N.; Cruz, F.S. Chemically defined media for growing anaerobic bacteria of the genus Veillonella. Antonie van Leeuwenhoek, 1976, 42(4), 411-420.
[http://dx.doi.org/10.1007/BF00410172] [PMID: 1087858]
[160]
Kraatz, M.; Taras, D. Veillonella magna sp. nov., isolated from the jejunal mucosa of a healthy pig, and emended description of Veillonella ratti. Int. J. Syst. Evol. Microbiol., 2008, 58(Pt 12), 2755-2761.
[http://dx.doi.org/10.1099/ijs.0.2008/001032-0] [PMID: 19060053]
[161]
Smith, E.A.; Macfarlane, G.T. Studies on amine production in the human colon: enumeration of amine forming bacteria and physiological effects of carbohydrate and pH. Anaerobe, 1996, 2(5), 285-297.
[http://dx.doi.org/10.1006/anae.1996.0037]
[162]
Myers, L.L.; Shoop, D.S. Association of enterotoxigenic Bacteroides fragilis with diarrheal disease in young pigs. Am. J. Vet. Res., 1987, 48(5), 774-775.
[PMID: 3592377]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy