Abstract
Mutagenesis has been the foundation of genetics in most model organisms, from prokaryotes to the fruit flies. The simplicity of mutagenizing and propagating these creatures is critical for projects designed to isolate mutations affecting most any imaginable biological process. Not only has mutagenesis been exploited for the identification of phenotypic mutants, but also for the derivation of chromosomal aberrations, such as deletions and inversions, that are powerful genetic tools for many sorts of experiments. The laboratory mouse, which serves as the most important and powerful animal model for human genetics and disease, is only recently being widely exploited by classical phenotype-driven mutagenesis. The limitation has been (and still remains) related to the biology and life cycle of the mouse, which renders large-scale mutagenesis projects rather cumbersome and expensive. Is classical chemical mutagenesis really worthwhile, given the powerful germline manipulation technologies available for mic e Are there new technologies that will render classical mutagenesis obsolete In this review, I shall discuss the tools of mutagenesis that are available for mice, and consider emerging and potential future technologies that will ultimately allow us to investigate, in an unprecedented way, the in vivo function of all mammalian genes.
Keywords: Mutagenesis, CDNA, EST Expressed Sequence Tag
Current Genomics
Title: Mutagenesis in Mice Modern Times
Volume: 1 Issue: 3
Author(s): John C. Schimenti
Affiliation:
Keywords: Mutagenesis, CDNA, EST Expressed Sequence Tag
Abstract: Mutagenesis has been the foundation of genetics in most model organisms, from prokaryotes to the fruit flies. The simplicity of mutagenizing and propagating these creatures is critical for projects designed to isolate mutations affecting most any imaginable biological process. Not only has mutagenesis been exploited for the identification of phenotypic mutants, but also for the derivation of chromosomal aberrations, such as deletions and inversions, that are powerful genetic tools for many sorts of experiments. The laboratory mouse, which serves as the most important and powerful animal model for human genetics and disease, is only recently being widely exploited by classical phenotype-driven mutagenesis. The limitation has been (and still remains) related to the biology and life cycle of the mouse, which renders large-scale mutagenesis projects rather cumbersome and expensive. Is classical chemical mutagenesis really worthwhile, given the powerful germline manipulation technologies available for mic e Are there new technologies that will render classical mutagenesis obsolete In this review, I shall discuss the tools of mutagenesis that are available for mice, and consider emerging and potential future technologies that will ultimately allow us to investigate, in an unprecedented way, the in vivo function of all mammalian genes.
Export Options
About this article
Cite this article as:
Schimenti C. John, Mutagenesis in Mice Modern Times, Current Genomics 2000; 1 (3) . https://dx.doi.org/10.2174/1389202003351409
DOI https://dx.doi.org/10.2174/1389202003351409 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Targeting the Hippo Pathway for Anti-cancer Therapies
Current Medicinal Chemistry Identification of New Drug Targets and Biomarkers Related to Obesity and Eating Disorders: an Approach Based on Reward Deficit and Addiction
Current Pharmaceutical Design Recent Applications of Nanomaterials Based on Electrochemical Drug Analysis
Current Analytical Chemistry In Vivo Electroporation of Gene Sequences for Therapeutic and Vaccination Applications
Recent Patents on DNA & Gene Sequences Status Epilepticus: An Overview
Current Drug Metabolism Natural Resins and Bioactive Natural Products thereof as Potential Anitimicrobial Agents
Current Pharmaceutical Design Phytochemical and Biological Activities of an Anticancer Plant Medicine: Brucea javanica
Anti-Cancer Agents in Medicinal Chemistry Computational Methods for the Prediction of Microbial Essential Genes
Current Bioinformatics How to Measure Exercise Performance
Current Respiratory Medicine Reviews Donkeys and Goats Milk Consumption and Benefits to Human Health with Special Reference to the Inflammatory Status
Current Pharmaceutical Design Melanin-Concentrating Hormone as a Metabolic and Cognitive Regulatory Factor
Current Medicinal Chemistry - Central Nervous System Agents The Misuse of Prescription Opioids: A Threat for Europe?
Current Drug Abuse Reviews Insulin Resistance, Oxidative Stress and Cardiovascular Complications: Role of Sirtuins
Current Pharmaceutical Design Thyroid Hormone Modulation of Immunity: Its Participation in Chronic Stress-Induced Immune Alterations
Current Immunology Reviews (Discontinued) HLA-G Molecule
Current Pharmaceutical Design Mapping Exchangeable Protons to Monitor Protein Alterations in the Brain of an Alzheimer’s Disease Mouse Model by Using MRI
Current Alzheimer Research Neonatal Withdrawal Reactions Following Late in Utero Exposure to Antidepressant Medications
Current Women`s Health Reviews α,β-Acetylenic Amino Thiolester Inhibitors of Aldehyde Dehydrogenases 1&3: Suppressors of Apoptogenic Aldehyde Oxidation and Activators of Apoptosis
Current Medicinal Chemistry Editorial (Thematic Issue: Microglia - A Therapeutic Target in Neurological Diseases and Disorders)
CNS & Neurological Disorders - Drug Targets Microwave-Assisted Multicomponent Synthesis of Heterocycles
Current Organic Chemistry