Research Article

氨基氧乙酸通过调节效应性和调节性淋巴细胞亚群之间的平衡抑制实验性自身免疫性葡萄膜炎

卷 20, 期 8, 2020

页: [624 - 632] 页: 9

弟呕挨: 10.2174/1566524020666200211112219

价格: $65

conference banner
摘要

目的:一种小分子化合物,氨基氧乙酸(AOA),已被证明可调节实验性自身免疫性脑脊髓炎(EAE)。本研究旨在探讨AOA是否对实验性自身免疫性葡萄膜炎(EAU)的发生有类似作用,并进一步探讨该药物的潜在机制。 方法:用光感受器视黄醛结合蛋白肽651-670 (IRBP 651-670)免疫C57BL/6J小鼠诱导EAU。经水诱导后第10 ~ 14天腹腔注射AOA(500μg或750μg)或对照组。通过临床和组织学评分评估严重程度。用伊文思蓝检测血液视网膜屏障的完整性。流式细胞术检测脾Th1、Th17和Foxp3+ Treg细胞频率。ELISA法检测细胞因子的产生。RT-PCR检测IL-17、IFN-γ、IL-10 mRNA的表达。Western Blotting检测p-Stat1和NF-κB的表达。 结果:临床和组织病理学检查发现,AOA能显著抑制EAU的严重程度。AOA可以缓解血液视网膜屏障(BRB)的渗漏。功能研究发现,与对照组相比,EAU小鼠的Th1和Th17细胞频率下降,Treg细胞频率增加。进一步的研究表明,AOA不仅下调了IFN-γ、IL-17等促炎细胞因子的产生,而且上调了IL-10等抗炎细胞因子的表达,这可能是通过抑制p-Stat1和NF-κB的表达引起的。 结论:本研究表明,AOA通过调节调节性和致病性淋巴细胞亚群之间的平衡,抑制EAU的严重程度和发展。

关键词: 实验自身免疫性葡萄膜炎,氨基氧乙酸(AOA), Th17细胞,Th1细胞,Treg细胞,葡萄膜炎。

[1]
Du L, Kijlstra A, Yang P. Immune response genes in uveitis. Ocul Immunol Inflamm 2009; 17(4): 249-56.
[http://dx.doi.org/10.1080/09273940902999356] [PMID: 19657978]
[2]
Huang Y, He J, Liang H, et al. Aryl Hydrocarbon Receptor Regulates Apoptosis and Inflammation in a Murine Model of Experimental Autoimmune Uveitis. Front Immunol 2018; 9: 1713.
[http://dx.doi.org/10.3389/fimmu.2018.01713] [PMID: 30090104]
[3]
Qiu Y, Tao L, Zheng S, et al. AAV8-Mediated Angiotensin-Converting Enzyme 2 Gene Delivery Prevents Experimental Autoimmune Uveitis by Regulating MAPK, NF-κB and STAT3 Pathways. Sci Rep 2016; 6: 31912.
[http://dx.doi.org/10.1038/srep31912] [PMID: 27558087]
[4]
Miserocchi E, Fogliato G, Modorati G, Bandello F. Review on the worldwide epidemiology of uveitis. Eur J Ophthalmol 2013; 23(5): 705-17.
[http://dx.doi.org/10.5301/ejo.5000278] [PMID: 23661536]
[5]
Hou S, Liao D, Zhang J, et al. Genetic variations of IL17F and IL23A show associations with Behçet’s disease and Vogt-Koyanagi-Harada syndrome. Ophthalmology 2015; 122(3): 518-23.
[http://dx.doi.org/10.1016/j.ophtha.2014.09.025] [PMID: 25439430]
[6]
Rao NA. Uveitis in developing countries. Indian J Ophthalmol 2013; 61(6): 253-4.
[http://dx.doi.org/10.4103/0301-4738.114090] [PMID: 23803475]
[7]
Meng X, Fang S, Zhang Z, et al. Preventive effect of chrysin on experimental autoimmune uveitis triggered by injection of human IRBP peptide 1-20 in mice. Cell Mol Immunol 2017; 14(8): 702-11.
[http://dx.doi.org/10.1038/cmi.2015.107] [PMID: 26996065]
[8]
Selmi C. Diagnosis and classification of autoimmune uveitis. Autoimmun Rev 2014; 13(4-5): 591-4.
[http://dx.doi.org/10.1016/j.autrev.2014.01.006] [PMID: 24424168]
[9]
Chen X, Su W, Wan T, et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway. Biochem Pharmacol 2017; 142: 111-9.
[http://dx.doi.org/10.1016/j.bcp.2017.06.136] [PMID: 28684304]
[10]
Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 2014; 13(6): 668-77.
[http://dx.doi.org/10.1016/j.autrev.2013.12.004] [PMID: 24418308]
[11]
Pineton de Chambrun M, Wechsler B, Geri G, Cacoub P, Saadoun D. New insights into the pathogenesis of Behçet’s disease. Autoimmun Rev 2012; 11(10): 687-98.
[http://dx.doi.org/10.1016/j.autrev.2011.11.026] [PMID: 22197900]
[12]
Agarwal RK, Silver PB, Caspi RR. Rodent models of experimental autoimmune uveitis. Methods Mol Biol 2012; 900: 443-69.
[http://dx.doi.org/10.1007/978-1-60761-720-4_22] [PMID: 22933083]
[13]
Bousquet E, Camelo S, Leroux les, Jardins G, et al. Protective effect of intravitreal administration of tresperimus, an immunosuppressive drug, on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 2011; 52(8): 5414-23.
[http://dx.doi.org/10.1167/iovs.10-6740] [PMID: 21666239]
[14]
Klimova A, Seidler Stangova P, Svozilkova P, Forrester JV, Klaska I, Heissigerova J. The critical points in induction of experimental autoimmune uveitis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160(1): 140-2.
[http://dx.doi.org/10.5507/bp.2015.056] [PMID: 26558361]
[15]
Servat JJ, Mears KA, Black EH, Huang JJ. Biological agents for the treatment of uveitis. Expert Opin Biol Ther 2012; 12(3): 311-28.
[http://dx.doi.org/10.1517/14712598.2012.658366] [PMID: 22339439]
[16]
Gomes Bittencourt M, Sepah YJ, Do DV, et al. New treatment options for noninfectious uveitis. Dev Ophthalmol 2012; 51: 134-61.
[http://dx.doi.org/10.1159/000336338] [PMID: 22517211]
[17]
Xu T, Stewart KM, Wang X, et al. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 2017; 548(7666): 228-33.
[http://dx.doi.org/10.1038/nature23475] [PMID: 28783731]
[18]
Loo TT, Gao Y, Lazarevic V. Transcriptional regulation of CD4+ TH cells that mediate tissue inflammation. J Leukoc Biol 2018; 104(6): 1069-85.
[http://dx.doi.org/10.1002/JLB.1RI0418-152RR] [PMID: 30145844]
[19]
Hirahara K, Onodera A, Villarino AV, et al. Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity 2015; 42(5): 877-89.
[http://dx.doi.org/10.1016/j.immuni.2015.04.014] [PMID: 25992861]
[20]
Hirahara K, Schwartz D, Gadina M, Kanno Y, O’Shea JJ. Targeting cytokine signaling in autoimmunity: back to the future and beyond. Curr Opin Immunol 2016; 43: 89-97.
[http://dx.doi.org/10.1016/j.coi.2016.10.001] [PMID: 27821272]
[21]
Nakamura YK, Janowitz C, Metea C, et al. Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Sci Rep 2017; 7(1): 11745.
[http://dx.doi.org/10.1038/s41598-017-12163-3] [PMID: 28924192]
[22]
Harimoto K, Ito M, Karasawa Y, Sakurai Y, Takeuchi M. Evaluation of mouse experimental autoimmune uveoretinitis by spectral domain optical coherence tomography. Br J Ophthalmol 2014; 98(6): 808-12.
[http://dx.doi.org/10.1136/bjophthalmol-2013-304421] [PMID: 24574437]
[23]
Relvas LJ, Makhoul M, Dewispelaere R, et al. P2Y2R deficiency attenuates experimental autoimmune uveitis development. PLoS One 2015; 10(2)e0116518
[http://dx.doi.org/10.1371/journal.pone.0116518] [PMID: 25692550]
[24]
Copland DA, Liu J, Schewitz-Bowers LP, et al. Therapeutic dosing of fingolimod (FTY720) prevents cell infiltration, rapidly suppresses ocular inflammation, and maintains the blood-ocular barrier. Am J Pathol 2012; 180(2): 672-81.
[http://dx.doi.org/10.1016/j.ajpath.2011.10.008] [PMID: 22119714]
[25]
Chen RY, Fan YM, Zhang Q, et al. Estradiol inhibits Th17 cell differentiation through inhibition of RORγT transcription by recruiting the ERα/REA complex to estrogen response elements of the RORγT promoter. J Immunol 2015; 194(8): 4019-28.
[http://dx.doi.org/10.4049/jimmunol.1400806] [PMID: 25769926]
[26]
McGeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007; 8(12): 1390-7.
[http://dx.doi.org/10.1038/ni1539] [PMID: 17994024]
[27]
Wandu WS, Tan C, Ogbeifun O, et al. Leucine-Rich Repeat Kinase 2 (Lrrk2) Deficiency Diminishes the Development of Experimental Autoimmune Uveitis (EAU) and the Adaptive Immune Response. PLoS One 2015; 10(6)e0128906
[http://dx.doi.org/10.1371/journal.pone.0128906] [PMID: 26067490]
[28]
Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 2016; 28(5): 514-24.
[http://dx.doi.org/10.1016/j.smim.2016.10.009] [PMID: 27825556]
[29]
Patel CH, Powell JD. Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease. Curr Opin Immunol 2017; 46: 82-8.
[http://dx.doi.org/10.1016/j.coi.2017.04.006] [PMID: 28521236]
[30]
Perry TL, Wright JM, Hansen S, Allan BM, Baird PA, MacLeod PM. Failure of aminooxyacetic acid therapy in Huntington disease. Neurology 1980; 30(7 Pt 1): 772-5.
[http://dx.doi.org/10.1212/WNL.30.7.772] [PMID: 6446691]
[31]
Klaska IP, Forrester JV. Mouse models of autoimmune uveitis. Curr Pharm Des 2015; 21(18): 2453-67.
[http://dx.doi.org/10.2174/1381612821666150316122928] [PMID: 25777760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy