Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

The Development of Pemetrexed Diacid-Loaded Gelatin-Cloisite 30B (MMT) Nanocomposite for Improved Oral Efficacy Against Cancer: Characterization, In-Vitro and Ex-Vivo Assessment

Author(s): Kriti Soni, Ali Mujtaba, Md. Habban Akhter and Kanchan Kohli*

Volume 17, Issue 3, 2020

Page: [246 - 256] Pages: 11

DOI: 10.2174/1567201817666200210120231

Price: $65

conference banner
Abstract

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment.

Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution.

Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde.

Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type.

Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.

Keywords: Nanocomposites, gelatin, pemetrexed diacid, cloisite 30B, drug release, SEM.

Graphical Abstract

[1]
Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer (Guildf.), 2008, 49, 3187-3204.
[http://dx.doi.org/10.1016/j.polymer.2008.04.017]
[2]
Hussain, F.; Hojjati, M.; Okamoto, M.; Gorgar, R.E. Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater., 2006, 40, 1511-1575.
[http://dx.doi.org/10.1177/0021998306067321]
[3]
Mohanty, D.P.; Palve, Y.P.; Sahoo, D.; Nayak, P.L. Synthesis and characterization of chitosan/cloisite 30B (MMT) nanocomposite for controlled release of anticancer drug curcumin. Int. J. Pharm. Res. All. Sci., 2012, 1, 52-62.
[4]
DeLeon, V.H.; Nguyen, T.D.; Nar, M.; D’Souza, N.A.; Golden, T.D. Polymer nanocomposites for improved drug delivery efficiency. Mater. Chem. Phys., 2012, 132, 409-415.
[http://dx.doi.org/10.1016/j.matchemphys.2011.11.046]
[5]
Sahoo, S.; Behera, A.; Nanda, R.M.; Sahoo, R.; Nayak, P.L. Gelatin blended with Cloisite 30B (MMT) for control release of Ofloxacin. Am. J. Sci. Ind. Res., 2011, 2, 363-368.
[http://dx.doi.org/10.5251/ajsir.2011.2.3.363.368]
[6]
Novak, K.M. Drug facts and comparisons; Wolters Kluwer Health: St. Louis, MO, USA, 2005.
[7]
Cohen, M.H.; Justice, R.; Pazdur, R. Approval summary: pemetrexed in the initial treatment of advanced/metastatic non-small cell lung cancer. Oncologist, 2009, 14(9), 930-935.
[http://dx.doi.org/10.1634/theoncologist.2009-0092] [PMID: 19737998]
[8]
Hazarika, M.; White, R.M.; Johnson, J.R.; Pazdur, R. FDA drug approval summaries: pemetrexed (Alimta). Oncologist, 2004, 9(5), 482-488.
[http://dx.doi.org/10.1634/theoncologist.9-5-482] [PMID: 15477632]
[9]
Hanauske, A.R.; Chen, V.; Paoletti, P.; Niyikiza, C. Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist, 2001, 6(4), 363-373.
[http://dx.doi.org/10.1634/theoncologist.6-4-363] [PMID: 11524555]
[10]
Javed, S.; Kohli, K.; Ali, M. Microwave-assisted extraction of fulvic acid from a solid dosage form: A statistical approach. J. Pharm. Innov., 2013, 8, 175-186.
[http://dx.doi.org/10.1007/s12247-013-9157-y]
[11]
Neupane, Y.R.; Sabir, M.D.; Ahmad, N.; Ali, M.; Kohli, K. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology, 2013, 24(41)415102
[http://dx.doi.org/10.1088/0957-4484/24/41/415102] [PMID: 24061410]
[12]
Mujtaba, M.A.; Hassan, K.A.M. Nanotechnology based approach to enhance the potential of chemopreventive agent berberine hydrochloride in cancer therapy. Int. J. Biology Pharm. Allied Sci., 2017, 6, 953-975.
[13]
Parija, B.; Biswal, C.R.; Sahoo, P.K.; Dash, P.; Adhikary, M.C.; Nayak, P.L. Synthesis and charaterization of poly (flouroaniline)/Mwcnt composites. Int. J. Eng. Sci., 2013, 2, 133-140.
[14]
Mujtaba, A.; Ali, M.; Kohli, K. Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box-Behnken design. Chem. Eng. Res. Des., 2014, 92, 156-165.
[http://dx.doi.org/10.1016/j.cherd.2013.05.032]
[15]
Parida, U.K.; Nayak, A.K.; Binhani, B.K.; Nayak, P.L. Synthesis and characterization of chitosan-polyvinyl alcohol blended with Cloisite 30B for controlled release of the anticancer drug curcumin. J. Biomater. Nanobiotechnol., 2011, 2, 414-425.
[http://dx.doi.org/10.4236/jbnb.2011.24051]
[16]
Mujtaba, A.; Kohli, K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int. J. Biol. Macromol., 2016, 89, 434-441.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.010] [PMID: 27155235]
[17]
Soni, K.; Mujtaba, A.; Kohli, K. Lipid drug conjugate nanoparticle as a potential nanocarrier for the oral delivery of pemetrexed diacid: Formulation design, characterization, ex vivo, and in vivo assessment. Int. J. Biol. Macromol., 2017, 103, 139-151.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.015] [PMID: 28499946]
[18]
Cinova, J.; De Palma, G.; Stepankova, R.; Kofronova, O.; Kverka, M.; Sanz, Y.; Tuckova, L. Role of intestinal bacteria in gliadin-induced changes in intestinal mucosa: study in germ-free rats. PLoS One, 2011, 6(1)e16169
[http://dx.doi.org/10.1371/journal.pone.0016169] [PMID: 21249146]
[19]
Kausar, H.; Mujeeb, M.; Ahad, A.; Moolakkadath, T.; Aqil, M.; Ahmad, A.; Akhter, M.H. Optimization of ethosomes for topical Thymoquinone delivery for the treatment of skin acne. J. Drug Deliv. Sci. Technol., 2019, 49, 177-187.
[http://dx.doi.org/10.1016/j.jddst.2018.11.016]
[20]
Lee, S.G.; Jeong, J.H.; Lee, K.M.; Jeong, K.H.; Yang, H.; Kim, M.; Jung, H.; Lee, S.; Choi, Y.W. Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule. Int. J. Nanomedicine, 2014, 9, 289-299.
[PMID: 24403833]
[21]
Park, J.K.; Choy, Y.B.; Oh, J.M.; Kim, J.Y.; Hwang, S.J.; Choy, J.H. Controlled release of donepezil intercalated in smectite clays. Int. J. Pharm., 2008, 359(1-2), 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.012] [PMID: 18502063]
[22]
Pradhan, N.K.; Das, M.; Palve, Y.P.; Nayak, P.L. Synthesis and characterization of soya protein isolate/Cloisite 30B (MMT) nanocomposite for controlled release of anticancer drug curcumin. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 1513-1522.
[23]
Malesu, V.; Sahoo, D.; Nayak, P. Chitosan-sodium alginate nanocomposites blended with Cloisite 30B as a novel drug delivery system for anticancer drug curcumin. Int. J. Appl. Biol. Pharm. Technol., 2011, 2, 402-411.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy