Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

The Brief Analysis of Peptide-combined Nanoparticle: Nanomedicine’s Unique Value

Author(s): Jiemin Wang, Junyong Wu, Yongjiang Li, Jing Wen, Jiaxin Cai, Tiantian Tang, Xiongbin Hu and Daxiong Xiang*

Volume 21, Issue 4, 2020

Page: [334 - 343] Pages: 10

DOI: 10.2174/1389203721666200210103841

Price: $65

Abstract

Therapeutic peptides (TPs) are biological macromolecules which can act as neurotransmitters, hormones, ion channel ligands and growth factors. Undoubtedly, TPs are crucial in modern medicine. But low bio-stability and some special adverse reactions reduce their places to the application.

With the development of nanotechnology, nanoparticles (NPs) in pharmaceutical science gained much attention. They can encapsulate the TPs into their membrane or shell. Therefore, they can protect the TPs against degradation and then increase the bioavailability, which was thought to be the biggest advantage of them. Additionally, targeting was also studied to improve the effect of TPs. However, there were some drawbacks of nano TPs like low loading efficiency and difficulty to manufacture.

Nowadays, lots of studies focused on improving effect of TPs by preparing nanoparticles. In this review, we presented a brief analysis of peptide-combined nanoparticles. Their advantages and disadvantages were listed in terms of mechanism. And several examples of applications were summarized.

Keywords: Therapeutic peptides, nanoparticle, ligands, active targeting, passive targeting, encapsulation, drug delivery.

Graphical Abstract

[1]
Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: science and market. Drug Discov. Today, 2010, 15(1-2), 40-56.
[http://dx.doi.org/10.1016/j.drudis.2009.10.009] [PMID: 19879957]
[2]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[3]
Kaspar, A.A.; Reichert, J.M. Future directions for peptide therapeutics development. Drug Discov. Today, 2013, 18(17-18), 807-817.
[http://dx.doi.org/10.1016/j.drudis.2013.05.011] [PMID: 23726889]
[4]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[5]
Shimanovich, U.; Bernardes, G.J.; Knowles, T.P.; Cavaco-Paulo, A. Protein micro- and nano-capsules for biomedical applications. Chem. Soc. Rev., 2014, 43(5), 1361-1371.
[http://dx.doi.org/10.1039/C3CS60376H] [PMID: 24336689]
[6]
Herrera Estrada, L.P.; Champion, J.A. Protein nanoparticles for therapeutic protein delivery. Biomater. Sci., 2015, 3(6), 787-799.
[http://dx.doi.org/10.1039/C5BM00052A] [PMID: 26221839]
[7]
Aubin-Tam, M.E.; Hamad-Schifferli, K. Structure and function of nanoparticle-protein conjugates. Biomed. Mater., 2008, 3(3)034001
[http://dx.doi.org/10.1088/1748-6041/3/3/034001] [PMID: 18689927]
[8]
DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. Int. J. Mol. Sci., 2018, 19(6), E1717
[http://dx.doi.org/10.3390/ijms19061717] [PMID: 29890756]
[9]
Maitani, Y.; Nakamura, Y.; Kon, M.; Sanada, E.; Sumiyoshi, K.; Fujine, N.; Asakawa, M.; Kogiso, M.; Shimizu, T. Higher lung accumulation of intravenously injected organic nanotubes. Int. J. Nanomedicine, 2013, 8, 315-323.
[http://dx.doi.org/10.2147/IJN.S38462] [PMID: 23345977]
[10]
van Bracht, E.; Raavé, R.; Perevyazko, I.Y.; Versteeg, E.M.; Hafmans, T.G.; Schubert, U.S.; Oosterwijk, E.; van Kuppevelt, T.H.; Daamen, W.F. Biodistribution of size-selected lyophilisomes in mice. Eur. J. Pharm. Biopharm., 2015, 94, 141-151.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.020] [PMID: 25953331]
[11]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int. J. Pharm., 2018, 549(1-2), 201-217.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.041] [PMID: 30071309]
[12]
McClements, D.J. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocoll., 2017, 68, 238-245.
[http://dx.doi.org/10.1016/j.foodhyd.2016.05.037]
[13]
Alai, M.S.; Lin, W.J.; Pingale, S.S. Application of polymeric nanoparticles and micelles in insulin oral delivery. Yao Wu Shi Pin Fen Xi, 2015, 23(3), 351-358.
[http://dx.doi.org/10.1016/j.jfda.2015.01.007] [PMID: 28911691]
[14]
Simovic, S.; Song, Y.; Nann, T.; Desai, T.A. Intestinal absorption of fluorescently labeled nanoparticles. Nanomedicine (Lond.), 2015, 11(5), 1169-1178.
[http://dx.doi.org/10.1016/j.nano.2015.02.016] [PMID: 25791810]
[15]
Chen, M.C.; Sonaje, K.; Chen, K.J.; Sung, H.W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 2011, 32(36), 9826-9838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.087] [PMID: 21925726]
[16]
Ramesan, R.M.; Sharma, C.P. Challenges and advances in nanoparticle-based oral insulin delivery. Expert Rev. Med. Devices, 2009, 6(6), 665-676.
[http://dx.doi.org/10.1586/erd.09.43] [PMID: 19911877]
[17]
Vassie, J.A.; Whitelock, J.M.; Lord, M.S. Endocytosis of cerium oxide nanoparticles and modulation of reactive oxygen species in human ovarian and colon cancer cells. Acta Biomater., 2017, 50, 127-141.
[http://dx.doi.org/10.1016/j.actbio.2016.12.010] [PMID: 27940194]
[18]
He, B.; Lin, P.; Jia, Z.; Du, W.; Qu, W.; Yuan, L.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials, 2013, 34(25), 6082-6098.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.053] [PMID: 23694903]
[19]
He, C.; Yin, L.; Tang, C.; Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials, 2012, 33(33), 8569-8578.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.063] [PMID: 22906606]
[20]
Chen, M.C.; Mi, F.L.; Liao, Z.X.; Hsiao, C.W.; Sonaje, K.; Chung, M.F.; Hsu, L.W.; Sung, H.W. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv. Drug Deliv. Rev., 2013, 65(6), 865-879.
[http://dx.doi.org/10.1016/j.addr.2012.10.010] [PMID: 23159541]
[21]
Du, X.J.; Wang, J.L.; Iqbal, S.; Li, H.J.; Cao, Z.T.; Wang, Y.C.; Du, J.Z.; Wang, J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater. Sci., 2018, 6(3), 642-650.
[http://dx.doi.org/10.1039/C7BM01096F] [PMID: 29412203]
[22]
Yun, Y.; Cho, Y.W.; Park, K. Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev., 2013, 65(6), 822-832.
[http://dx.doi.org/10.1016/j.addr.2012.10.007] [PMID: 23123292]
[23]
Fan, T.; Chen, C.; Guo, H.; Xu, J.; Zhang, J.; Zhu, X.; Yang, Y.; Zhou, Z.; Li, L.; Huang, Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur. J. Pharm. Biopharm., 2014, 88(2), 518-528.
[http://dx.doi.org/10.1016/j.ejpb.2014.06.011] [PMID: 24968819]
[24]
Chen, G. Svirskis, D.; Lu, W.; Ying, M.; Huang, Y.; Wen, J., &ITN&IT-trimethyl chitosan nanoparticles and CSKSSDYQC peptide: &ITN&IT-trimethyl chitosan conjugates enhance the oral bioavailability of gemcitabine to treat breast cancer. J. Control. Release, 2018, 277, 142-153.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.013] [PMID: 29548985]
[25]
Barbari, G.R.; Dorkoosh, F.A.; Amini, M.; Sharifzadeh, M.; Atyabi, F.; Balalaie, S.; Rafiee Tehrani, N.; Rafiee Tehrani, M. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. Int. J. Nanomedicine, 2017, 12, 3471-3483.
[http://dx.doi.org/10.2147/IJN.S116063] [PMID: 28496323]
[26]
Shrestha, N.; Araujo, F.; Shahbazi, M-A.; Makila, E.; Gomes, M.J.; Herranz-Blanco, B.; Lindgren, R.; Granroth, S.; Kukk, E.; Salonen, J.; Hirvonen, J.; Sarmento, B.; Santos, H.A. Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Adv. Funct. Mater., 2016, 26(20), 3405-3416.
[http://dx.doi.org/10.1002/adfm.201505252]
[27]
Guo, Z.; Peng, H.; Kang, J.; Sun, D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed. Rep., 2016, 4(5), 528-534.
[http://dx.doi.org/10.3892/br.2016.639] [PMID: 27123243]
[28]
Hwang, S.R.; Byun, Y. Advances in oral macromolecular drug delivery. Expert Opin. Drug Deliv., 2014, 11(12), 1955-1967.
[http://dx.doi.org/10.1517/17425247.2014.945420] [PMID: 25078141]
[29]
Lin, Y-H.; Chen, C-T.; Liang, H-F.; Kulkarni, A.R.; Lee, P-W.; Chen, C-H.; Sung, H-W. Novel nanoparticles for oral insulin delivery via the paracellular pathway. Nanotechnology, 2007, 18(10), 105102
[http://dx.doi.org/10.1088/0957-4484/18/10/105102]
[30]
Li, P.; Nielsen, H.M.; Müllertz, A. Impact of Lipid-Based Drug Delivery Systems on the Transport and Uptake of Insulin Across Caco-2 Cell Monolayers. J. Pharm. Sci., 2016, 105(9), 2743-2751.
[http://dx.doi.org/10.1016/j.xphs.2016.01.006] [PMID: 26921121]
[31]
Maltby, J.B.; Albright, L.J.; Kennedy, C.J.; Higgs, D.A. Effect of route of administration and carrier on bioavailability and kinetics of astaxanthin in Atlantic salmon Salmo salar L. Aquacult. Res., 2003, 34(10), 829-838.
[http://dx.doi.org/10.1046/j.1365-2109.2003.00888.x]
[32]
Cleland, J.L.; Daugherty, A.; Mrsny, R. Emerging protein delivery methods. Curr. Opin. Biotechnol., 2001, 12(2), 212-219.
[http://dx.doi.org/10.1016/S0958-1669(00)00202-0] [PMID: 11287240]
[33]
Fu, A.Z.; Qiu, Y.; Radican, L. Impact of fear of insulin or fear of injection on treatment outcomes of patients with diabetes. Curr. Med. Res. Opin., 2009, 25(6), 1413-1420.
[http://dx.doi.org/10.1185/03007990902905724] [PMID: 19422281]
[34]
Zhao, S-J.; Wang, D-H.; Li, Y-W.; Han, L.; Xiao, X.; Ma, M.; Wan, D.C-C.; Hong, A.; Ma, Y. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects. Int. J. Nanomedicine, 2017, 12, 2143-2160.
[http://dx.doi.org/10.2147/IJN.S130566] [PMID: 28356733]
[35]
Peng, Q.; Sun, X.; Gong, T.; Wu, C.Y.; Zhang, T.; Tan, J.; Zhang, Z.R. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater., 2013, 9(2), 5063-5069.
[http://dx.doi.org/10.1016/j.actbio.2012.09.034] [PMID: 23036950]
[36]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[37]
Nichols, J.W.; Bae, Y.H. EPR: Evidence and fallacy. J. Control. Release, 2014, 190, 451-464.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[38]
Shi, M.; Lu, J.; Shoichet, M.S. Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. J. Mater. Chem., 2009, 19(31), 5485-5498.
[http://dx.doi.org/10.1039/b822319j]
[39]
Huang, C.; Jin, H.; Qian, Y.; Qi, S.; Luo, H.; Luo, Q.; Zhang, Z. Hybrid melittin cytolytic Peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS Nano, 2013, 7(7), 5791-5800.
[http://dx.doi.org/10.1021/nn400683s] [PMID: 23790040]
[40]
Mao, J.; Liu, S.; Ai, M.; Wang, Z.; Wang, D.; Li, X.; Hu, K.; Gao, X.; Yang, Y. A novel melittin nano-liposome exerted excellent anti-hepatocellular carcinoma efficacy with better biological safety. J. Hematol. Oncol., 2017, 10(1), 71.
[http://dx.doi.org/10.1186/s13045-017-0442-y] [PMID: 28320480]
[41]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[42]
Singh, R.; Norret, M.; House, M.J.; Galabura, Y.; Bradshaw, M.; Ho, D.; Woodward, R.C.; St Pierre, T.G.; Luzinov, I.; Smith, N.M.; Lim, L.Y.; Iyer, K.S. Dose-dependent therapeutic distinction between active and passive targeting revealed using transferrin-coated PGMA nanoparticles. Small, 2016, 12(3), 351-359.
[http://dx.doi.org/10.1002/smll.201502730] [PMID: 26619362]
[43]
Choi, C.H.J.; Alabi, C.A.; Webster, P.; Davis, M.E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(3), 1235-1240.
[http://dx.doi.org/10.1073/pnas.0914140107] [PMID: 20080552]
[44]
Lu, F.; Mencia, A.; Bi, L.; Taylor, A.; Yao, Y.; HogenEsch, H. Dendrimer-like alpha-d-glucan nanoparticles activate dendritic cells and are effective vaccine adjuvants. J. Control. Release, 2015, 204, 51-59.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.002] [PMID: 25747143]
[45]
Fu, L.; Morsch, M.; Shi, B.; Wang, G.; Lee, A.; Radford, R.; Lu, Y.; Jin, D.; Chung, R. A versatile upconversion surface evaluation platform for bio-nano surface selection for the nervous system. Nanoscale, 2017, 9(36), 13683-13692.
[http://dx.doi.org/10.1039/C7NR03557H] [PMID: 28876356]
[46]
Fury, M.G.; Sherman, E.J.; Rao, S.S.; Wolden, S.; Smith-Marrone, S.; Mueller, B.; Ng, K.K.; Dutta, P.R.; Gelblum, D.Y.; Lee, J.L.; Shen, R.; Kurz, S.; Katabi, N.; Haque, S.; Lee, N.Y.; Pfister, D.G. Phase I study of weekly nab-paclitaxel + weekly cetuximab + intensity-modulated radiation therapy (IMRT) in patients with stage III-IVB head and neck squamous cell carcinoma (HNSCC). Ann. Oncol., 2014, 25(3), 689-694.
[http://dx.doi.org/10.1093/annonc/mdt579] [PMID: 24496920]
[47]
Yewale, C.; Baradia, D.; Vhora, I.; Patil, S.; Misra, A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials, 2013, 34(34), 8690-8707.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.100] [PMID: 23953842]
[48]
Kutty, R.V.; Feng, S-S. Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials, 2013, 34(38), 10160-10171.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.043] [PMID: 24090836]
[49]
Kutty, R.V.; Chia, S.L.; Setyawati, M.I.; Muthu, M.S.; Feng, S-S.; Leong, D.T. In vivo and ex vivo proofs of concept that cetuximab conjugated vitamin E TPGS micelles increases efficacy of delivered docetaxel against triple negative breast cancer. Biomaterials, 2015, 63, 58-69.
[http://dx.doi.org/10.1016/j.biomaterials.2015.06.005] [PMID: 26081868]
[50]
Karra, N.; Nassar, T.; Ripin, A.N.; Schwob, O.; Borlak, J.; Benita, S. Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate: efficacy and biofate in a lung cancer mouse model. Small, 2013, 9(24), 4221-4236.
[http://dx.doi.org/10.1002/smll.201301417] [PMID: 23873835]
[51]
Löw, K.; Wacker, M.; Wagner, S.; Langer, K.; von Briesen, H. Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. Nanomedicine (Lond.), 2011, 7(4), 454-463.
[http://dx.doi.org/10.1016/j.nano.2010.12.003] [PMID: 21215330]
[52]
Ding, C.; Li, Z. A review of drug release mechanisms from nanocarrier systems. Mater. Sci. Eng. C, 2017, 76, 1440-1453.
[http://dx.doi.org/10.1016/j.msec.2017.03.130] [PMID: 28482511]
[53]
Zhai, P.; Chen, X.B.; Schreyer, D.J. An in vitro study of peptide-loaded alginate nanospheres for antagonizing the inhibitory effect of Nogo-A protein on axonal growth. Biomed. Mater., 2015, 10(4)045016
[http://dx.doi.org/10.1088/1748-6041/10/4/045016] [PMID: 26238410]
[54]
Liu, T.Y.; Chen, S.Y.; Liu, D.M.; Liou, S.C. On the study of BSA-loaded calcium-deficient hydroxyapatite nano-carriers for controlled drug delivery. J. Control. Release, 2005, 107(1), 112-121.
[http://dx.doi.org/10.1016/j.jconrel.2005.05.025] [PMID: 15982777]
[55]
Niu, X.; Feng, Q.; Wang, M.; Guo, X.; Zheng, Q. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J. Control. Release, 2009, 134(2), 111-117.
[http://dx.doi.org/10.1016/j.jconrel.2008.11.020] [PMID: 19100794]
[56]
Taranejoo, S.; Monemian, S.; Moghri, M.; Derakhshankhah, H. Development of Ultrasmall Chitosan/Succinyl beta-Cyclodextrin Nanoparticles as a Sustained Protein-Delivery System. J. Appl. Polym. Sci., 2014, 131(1), 6.
[http://dx.doi.org/10.1002/app.39648]
[57]
Sudeep, P.K.; Emrick, T. Polymer-nanoparticle composites: Preparative methods and electronically active materials. Polym. Rev. (Phila. Pa.), 2007, 47(2), 155-163.
[http://dx.doi.org/10.1080/15583720701271229]
[58]
Vauthier, C.; Bouchemal, K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res., 2009, 26(5), 1025-1058.
[http://dx.doi.org/10.1007/s11095-008-9800-3] [PMID: 19107579]
[59]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[60]
Jeong, S.; Park, J.Y.; Cha, M.G.; Chang, H.; Kim, Y.I.; Kim, H-M.; Jun, B-H.; Lee, D.S.; Lee, Y-S.; Jeong, J.M.; Lee, Y-S.; Jeong, D.H. Highly robust and optimized conjugation of antibodies to nanoparticles using quantitatively validated protocols. Nanoscale, 2017, 9(7), 2548-2555.
[http://dx.doi.org/10.1039/C6NR04683E] [PMID: 28150822]
[61]
Sivaram, A.J.; Wardiana, A.; Howard, C.B.; Mahler, S.M.; Thurecht, K.J. Recent advances in the generation of antibody-nanomaterial conjugates. Adv. Healthc. Mater., 2018, 7(1)
[http://dx.doi.org/10.1002/adhm.201700607] [PMID: 28961378]
[62]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[63]
Kolate, A.; Baradia, D.; Patil, S.; Vhora, I.; Kore, G.; Misra, A. PEG - a versatile conjugating ligand for drugs and drug delivery systems. J. Control. Release, 2014, 192, 67-81.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.046] [PMID: 24997275]
[64]
Jiang, S-P.; He, S-N.; Li, Y-L.; Feng, D-L.; Lu, X-Y.; Du, Y-Z.; Yu, H-Y.; Hu, F-Q.; Yuan, H. Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin. Int. J. Nanomedicine, 2013, 8, 3141-3150.
[PMID: 23990722]
[65]
Plourde, K.; Derbali, R.M.; Desrosiers, A.; Dubath, C.; Vallée-Bélisle, A.; Leblond, J. Aptamer-based liposomes improve specific drug loading and release. J. Control. Release, 2017, 251, 82-91.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.026] [PMID: 28238787]
[66]
Sonar, S.; D’Souza, S.E.; Mishra, K.P. A simple one-step protocol for preparing small-sized doxorubicin-loaded liposomes. J. Environ. Pathol. Toxicol. Oncol., 2008, 27(3), 181-189.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v27.i3.20] [PMID: 18652565]
[67]
Prokopowicz, M.; Lukasiak, J.; Przyjazny, A. Utilization of a sol-gel method for encapsulation of doxorubicin. J. Biomater. Sci. Polym. Ed., 2004, 15(3), 343-356.
[http://dx.doi.org/10.1163/156856204322977229] [PMID: 15147166]
[68]
Bulmer, C.; Margaritis, A.; Xenocostas, A. Encapsulation and controlled release of recombinant human erythropoietin from chitosan-carrageenan nanoparticles. Curr. Drug Deliv., 2012, 9(5), 527-537.
[http://dx.doi.org/10.2174/156720112802650680] [PMID: 22812393]
[69]
Bardania, H.; Shojaosadati, S.A.; Kobarfard, F.; Dorkoosh, F. Optimization of RGD-modified Nano-liposomes Encapsulating Eptifibatide. Iranian J. Biotechnol., 2016, 14(2), 33-40.
[http://dx.doi.org/10.15171/ijb.1399] [PMID: 28959324]
[70]
Hassani, L.N.; Hindré, F.; Beuvier, T.; Calvignac, B.; Lautram, N.; Gibaud, A.; Boury, F. Lysozyme encapsulation into nanostructured CaCO3 microparticles using a supercritical CO2 process and comparison with the normal route. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(32), 4011-4019.
[http://dx.doi.org/10.1039/c3tb20467g]
[71]
Li, Z.Y.; Paulson, A.T.; Gill, T.A. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. J. Funct. Foods, 2015, 19, 733-743.
[http://dx.doi.org/10.1016/j.jff.2015.09.058]
[72]
Bhattacharyya, A.; Mukherjee, D.; Mishra, R.; Kundu, P.P. Preparation of polyurethane-alginate/chitosan core shell nanoparticles for the purpose of oral insulin delivery. Eur. Polym. J., 2017, 92, 294-313.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.05.015]
[73]
El-Say, K.M.; El-Sawy, H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm., 2017, 528(1-2), 675-691.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.052] [PMID: 28629982]
[74]
Lalani, R.; Misra, A.; Amrutiya, J.; Patel, H.; Bhatt, P.; Patel, V. Challenges in dermal delivery of therapeutic antimicrobial protein and peptides. Curr. Drug Metab., 2017, 18(5), 426-436.
[http://dx.doi.org/10.2174/1389200218666170222151217] [PMID: 28228075]
[75]
Guo, S.; Fu, D.; Utupova, A.; Sun, D.; Zhou, M.; Jin, Z.; Zhao, K. Applications of polymer-based nanoparticles in vaccine field. Nanotechnol. Rev., 2019, 8(1), 143-155.
[http://dx.doi.org/10.1515/ntrev-2019-0014]
[76]
Zhu, G.; Zhang, F.; Ni, Q.; Niu, G.; Chen, X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano, 2017, 11(3), 2387-2392.
[http://dx.doi.org/10.1021/acsnano.7b00978] [PMID: 28277646]
[77]
Wang, J.; Hu, X.; Xiang, D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv., 2018, 25(1), 1319-1327.
[http://dx.doi.org/10.1080/10717544.2018.1477857] [PMID: 29869539]
[78]
Dong, Y.; Yang, J.; Zhang, J.; Zhang, X. Nano-Delivery Vehicles/Adjuvants for DNA Vaccination Against HIV. J. Nanosci. Nanotechnol., 2016, 16(3), 2126-2133.
[http://dx.doi.org/10.1166/jnn.2016.10947] [PMID: 27455611]
[79]
Climent, N.; García, I.; Marradi, M.; Chiodo, F.; Miralles, L.; Maleno, M.J.; Gatell, J.M.; García, F.; Penadés, S.; Plana, M. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. Nanomedicine (Lond.), 2018, 14(2), 339-351.
[http://dx.doi.org/10.1016/j.nano.2017.11.009] [PMID: 29157976]
[80]
Zhang, Z.; Tongchusak, S.; Mizukami, Y.; Kang, Y.J.; Ioji, T.; Touma, M.; Reinhold, B.; Keskin, D.B.; Reinherz, E.L.; Sasada, T. Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials, 2011, 32(14), 3666-3678.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.067] [PMID: 21345488]
[81]
Lin, A.Y.; Lunsford, J.; Bear, A.S.; Young, J.K.; Eckels, P.; Luo, L.; Foster, A.E.; Drezek, R.A. High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro. Nanoscale Res. Lett., 2013, 8(1), 72.
[http://dx.doi.org/10.1186/1556-276X-8-72] [PMID: 23402570]
[82]
Park, J.; Wrzesinski, S.H.; Stern, E.; Look, M.; Criscione, J.; Ragheb, R.; Jay, S.M.; Demento, S.L.; Agawu, A.; Licona Limon, P.; Ferrandino, A.F.; Gonzalez, D.; Habermann, A.; Flavell, R.A.; Fahmy, T.M. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat. Mater., 2012, 11(10), 895-905.
[http://dx.doi.org/10.1038/nmat3355] [PMID: 22797827]
[83]
Kim, H.; Griffith, T.S.; Panyam, J. poly(D,L-lactide-co-glycolide) nanoparticles as a vaccine delivery platform for TLR7/8 agonist-based cancer vaccine. J. Pharmacol. Exp. Ther., 2019, 370(3), 715-724.
[http://dx.doi.org/10.1124/jpet.118.254953]
[84]
Yang, L.; Li, W.; Kirberger, M.; Liao, W.; Ren, J. Design of nanomaterial based systems for novel vaccine development. Biomater. Sci., 2016, 4(5), 785-802.
[http://dx.doi.org/10.1039/C5BM00507H] [PMID: 26891972]
[85]
Grabnar, P.A.; Kristl, J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J. Microencapsul., 2011, 28(4), 323-335.
[http://dx.doi.org/10.3109/02652048.2011.569763] [PMID: 21545323]
[86]
Mousavizadeh, A.; Jabbari, A.; Akrami, M.; Bardania, H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf. B Biointerfaces, 2017, 158, 507-517.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.012] [PMID: 28738290]
[87]
Ying, M.; Chen, G.; Lu, W. Recent Advances and Strategies in Tumor Vasculature Targeted Nano-Drug Delivery Systems. Curr. Pharm. Des., 2015, 21(22), 3066-3075.
[http://dx.doi.org/10.2174/1381612821666150531163047] [PMID: 26027578]
[88]
Bei, C.; Bindu, T.; Remant, K.C.; Peisheng, X. Dual secured nano-melittin for the safe and effective eradication of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(1), 25-29.
[http://dx.doi.org/10.1039/C4TB01401D] [PMID: 25734006]
[89]
Yu, X.; Gou, X.; Wu, P.; Han, L.; Tian, D.; Du, F.; Chen, Z.; Liu, F.; Deng, G.; Chen, A.T.; Ma, C.; Liu, J.; Hashmi, S.M.; Guo, X.; Wang, X.; Zhao, H.; Liu, X.; Zhu, X.; Sheth, K.; Chen, Q.; Fan, L.; Zhou, J. Activatable Protein Nanoparticles for Targeted Delivery of Therapeutic Peptides. Adv. Mater., 2018, 30(49), e1803888
[http://dx.doi.org/10.1002/adma.201803888] [PMID: 30507051]
[90]
Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev., 2014, 43(10), 3595-3629.
[http://dx.doi.org/10.1039/c3cs60436e] [PMID: 24626293]
[91]
Yin, L.; Ding, J.; He, C.; Cui, L.; Tang, C.; Yin, C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials, 2009, 30(29), 5691-5700.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.055] [PMID: 19615735]
[92]
Liu, M.; Zhang, J.; Zhu, X.; Shan, W.; Li, L.; Zhong, J.; Zhang, Z.; Huang, Y. Efficient mucus permeation and tight junction opening by dissociable “mucus-inert” agent coated trimethyl chitosan nanoparticles for oral insulin delivery. J. Control. Release, 2016, 222, 67-77.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.008] [PMID: 26686663]
[93]
Zhang, P.; Xu, Y.; Zhu, X.; Huang, Y. Goblet cell targeting nanoparticle containing drug-loaded micelle cores for oral delivery of insulin. Int. J. Pharm., 2015, 496(2), 993-1005.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.078] [PMID: 26541299]
[94]
Liu, J.; Detrembleur, C.; Debuigne, A.; De Pauw-Gillet, M-C.; Mornet, S.; Vander Elst, L.; Laurent, S.; Duguet, E.; Jérôme, C. Glucose-, pH- and thermo-responsive nanogels crosslinked by functional superparamagnetic maghemite nanoparticles as innovative drug delivery systems. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(8), 1009-1023.
[http://dx.doi.org/10.1039/c3tb21272f]
[95]
Gu, Z.; Aimetti, A.A.; Wang, Q.; Dang, T.T.; Zhang, Y.; Veiseh, O.; Cheng, H.; Langer, R.S.; Anderson, D.G. Injectable nano-network for glucose-mediated insulin delivery. ACS Nano, 2013, 7(5), 4194-4201.
[http://dx.doi.org/10.1021/nn400630x] [PMID: 23638642]
[96]
Sonaje, K.; Lin, K-J.; Wang, J-J.; Mi, F-L.; Chen, C-T.; Juang, J-H.; Sung, H-W. Self-assembled pH-sensitive nanoparticles: A platform for oral delivery of protein drugs. Adv. Funct. Mater., 2010, 20(21), 3695-3700.
[http://dx.doi.org/10.1002/adfm.201001014]
[97]
Kim, J.D.; Jung, Y.J.; Woo, C.H.; Choi, Y.C.; Choi, J.S.; Cho, Y.W. Thermo-responsive human α-elastin self-assembled nanoparticles for protein delivery. Colloids Surf. B Biointerfaces, 2017, 149, 122-129.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.012] [PMID: 27744209]
[98]
Wang, S.; Huang, P.; Chen, X. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater., 2016, 28(34), 7340-7364.
[http://dx.doi.org/10.1002/adma.201601498] [PMID: 27255214]
[99]
Zhu, D.; Tao, W.; Zhang, H.; Liu, G.; Wang, T.; Zhang, L.; Zeng, X.; Mei, L. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater., 2016, 30, 144-154.
[http://dx.doi.org/10.1016/j.actbio.2015.11.031] [PMID: 26602819]
[100]
Couvreur, P. Nanoparticles in drug delivery: past, present and future. Adv. Drug Deliv. Rev., 2013, 65(1), 21-23.
[http://dx.doi.org/10.1016/j.addr.2012.04.010] [PMID: 22580334]
[101]
Shao, H.; Im, H.; Castro, C.M.; Breakefield, X.; Weissleder, R.; Lee, H. New technologies for analysis of extracellular vesicles. Chem. Rev., 2018, 118(4), 1917-1950.
[http://dx.doi.org/10.1021/acs.chemrev.7b00534] [PMID: 29384376]
[102]
Kim, S.M.; Yang, Y.; Oh, S.J.; Hong, Y.; Seo, M.; Jang, M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release, 2017, 266, 8-16.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.013] [PMID: 28916446]
[103]
Limoni, S.K.; Moghadam, M.F.; Moazzeni, S.M.; Gomari, H.; Salimi, F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl. Biochem. Biotechnol., 2019, 187(1), 352-364.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy