Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

An Overview of Structural Aspects and Health Beneficial Effects of Antioxidant Oligosaccharides

Author(s): Tatiane F. Vieira, Rúbia C. G. Corrêa, Rosely A. Peralta, Regina F. Peralta-Muniz-Moreira, Adelar Bracht and Rosane M. Peralta*

Volume 26, Issue 16, 2020

Page: [1759 - 1777] Pages: 19

DOI: 10.2174/1381612824666180517120642

Price: $65

Abstract

Background: Non-digestible oligosaccharides are versatile sources of chemical diversity, well known for their prebiotic actions, found naturally in plants or produced by chemical or enzymatic synthesis or by hydrolysis of polysaccharides. Compared to polyphenols or even polysaccharides, the antioxidant potential of oligosaccharides is still unexplored. The aim of the present work was to provide an up-to-date, broad and critical contribution on the topic of antioxidant oligosaccharides.

Methods: The search was performed by crossing the words oligosaccharides and antioxidant. Whenever possible, attempts at establishing correlations between chemical structure and antioxidant activity were undertaken.

Results: The most representative in vitro and in vivo studies were compiled in two tables. Chitooligosaccharides and xylooligosaccharides and their derivatives were the most studied up to now. The antioxidant activities of oligosaccharides depend on the degree of polymerization and the method used for depolymerization. Other factors influencing the antioxidant strength are solubility, monosaccharide composition, the type of glycosidic linkages of the side chains, molecular weight, reducing sugar content, the presence of phenolic groups such as ferulic acid, and the presence of uronic acid, among others. Modification of the antioxidant capacity of oligosaccharides has been achieved by adding diverse organic groups to their structures, thus increasing also the spectrum of potentially useful molecules.

Conclusion: A great amount of high-quality evidence has been accumulating during the last decade in support of a meaningful antioxidant activity of oligosaccharides and derivatives. Ingestion of antioxidant oligosaccharides can be visualized as beneficial to human and animal health.

Keywords: Antioxidant, circular economy, functional properties, oligosaccharides, oligosaccharide derivatives, oxidative stress.

[1]
Haminiuk CWI, Maciel GM, Plata-Oviedo MSV, et al. Phenolic compounds in fruits: an overview. Int J Food Sci Technol 2012; 47: 2023-44.
[http://dx.doi.org/10.1111/j.1365-2621.2012.03067.x]
[2]
Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013; 51: 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[3]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[4]
Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J Funct Foods 2015; 18: 820-97.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[5]
Martins N, Barros L, Ferreira ICFR. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci Technol 2016; 48: 1-12.
[http://dx.doi.org/10.1016/j.tifs.2015.11.008]
[6]
Carocho M, Morales P, Ferreira ICFR. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci Technol 2018; 71: 107-20.
[http://dx.doi.org/10.1016/j.tifs.2017.11.008]
[7]
Corrêa RCG, Peralta RM, Haminiuk CWI, Maciel GM, Bracht A, Ferreira ICFR. New phytochemicals as potential human anti-aging compounds: Reality, promise, and challenges. Crit Rev Food Sci Nutr 2018; 58(6): 942-57.
[http://dx.doi.org/10.1080/10408398.2016.1233860] [PMID: 27623718]
[8]
Neha K, Haider MR, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. Eur J Med Chem 2019; 178: 687-704.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.010] [PMID: 31228811]
[9]
Harris IS, Treloar AE, Inoue S, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015; 27(2): 211-22.
[http://dx.doi.org/10.1016/j.ccell.2014.11.019] [PMID: 25620030]
[10]
Kashyap C, Mazumder LJ, Rohman SS, et al. Re‐visiting the antioxidant activity of Se‐and Te‐carbohydrates: a theoretical study. ChemistrySelect 2019; 4: 1470-5.
[http://dx.doi.org/10.1002/slct.201803814]
[11]
Arulselvan P, Fard MT, Tan WS, et al. Role of antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016; 2016 5276130
[http://dx.doi.org/10.1155/2016/5276130] [PMID: 27803762]
[12]
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press 2007.
[13]
Granato D, Shahidi F, Wrolstad R, et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem 2018; 264: 471-5.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.012] [PMID: 29853403]
[14]
Nimse SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Adv 2015; 5: 27986-8006.
[http://dx.doi.org/10.1039/C4RA13315C]
[15]
Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria J Med 2018; 54: 287-93.
[http://dx.doi.org/10.1016/j.ajme.2017.09.001]
[16]
Oroian M, Escriche I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res Int 2015; 74: 10-36.
[http://dx.doi.org/10.1016/j.foodres.2015.04.018] [PMID: 28411973]
[17]
Kungel PTAN, Correa VG, Corrêa RCG, et al. Antioxidant and antimicrobial activities of a purified polysaccharide from yerba mate (Ilex paraguariensis). Int J Biol Macromol 2018; 114: 1161-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.020] [PMID: 29627472]
[18]
Ferreira ICFR, Heleno SA, Reis FS, et al. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 2015; 114: 38-55.
[http://dx.doi.org/10.1016/j.phytochem.2014.10.011] [PMID: 25457487]
[19]
Zhang J, Wen C, Zhang H, Duan Y. Review of isolation, structural properties, chain conformation, and bioactivities of psyllium polysaccharides. Int J Biol Macromol 2019; 139: 409-20.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.014] [PMID: 31381918]
[20]
Gurpilhares DB, Cinelli LP, Simas NK, Pessoa A Jr, Sette LD. Marine prebiotics: Polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chem 2019; 280: 175-86.
[http://dx.doi.org/10.1016/j.foodchem.2018.12.023] [PMID: 30642484]
[21]
Naveed M, Phil L, Sohail M, et al. Chitosan oligosaccharide (COS): An overview. Int J Biol Macromol 2019; 129: 827-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.192] [PMID: 30708011]
[22]
Yuan X, Zheng J, Jiao S, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydr Polym 2019; 220: 60-70.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.050] [PMID: 31196551]
[23]
Patel S, Goyal A. Functional oligosaccharides: production, properties and applications. World J Microbiol Biotechnol 2010; 27: 1119-28.
[http://dx.doi.org/10.1007/s11274-010-0558-5]
[24]
Van den Ende W. Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 2013; 4: 247-57.
[PMID: 23882273]
[25]
Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104(S2)(Suppl. 2): S1-S63.
[http://dx.doi.org/10.1017/S0007114510003363] [PMID: 20920376]
[26]
Jovanovic-Malinovska R, Kuzmanova S, Winkelhausen E. Oligosaccharide profile in fruits and vegetables as sources of prebiotics and functional foods. Int J Food Prop 2014; 17: 949-65.
[http://dx.doi.org/10.1080/10942912.2012.680221]
[27]
Zhao C, Wu Y, Liu X, et al. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends Food Sci Technol 2017; 66: 135-45.
[http://dx.doi.org/10.1016/j.tifs.2017.06.008]
[28]
Oliveira DL, Andree Wilbey R, Grandison AS, et al. Milk oligosaccharides: a review. Int J Dairy Technol 2015; 68: 305-21.
[http://dx.doi.org/10.1111/1471-0307.12209]
[29]
Boehm G, Stahl B. Oligosaccharides from milk. J Nutr 2007; 137(3)(Suppl. 2): 847S-9.
[http://dx.doi.org/10.1093/jn/137.3.847S] [PMID: 17311985]
[30]
Haslam SM, North SJ, Dell A. Mass spectrometric analysis of N- and O-glycosylation of tissues and cells. Curr Opin Struct Biol 2006; 16(5): 584-91.
[http://dx.doi.org/10.1016/j.sbi.2006.08.006] [PMID: 16938453]
[31]
Ashwini A, Ramya HN, Ramkumar C, et al. Reactive mechanism and the applications of bioactive prebiotics for human health: Review. J Microbiol Methods 2019; 159: 128-37.
[http://dx.doi.org/10.1016/j.mimet.2019.02.019] [PMID: 30826441]
[32]
Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol 2018; 102(1): 17-37.
[http://dx.doi.org/10.1007/s00253-017-8564-2] [PMID: 29032473]
[33]
Xiao X, Wen JY, Wang YY, et al. NMR and ESI-MS spectrometry characterization of autohydrolysis xylo-oligosaccharides separated by gel permeation chromatography. Carbohydr Polym 2018; 195: 303-10.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.088] [PMID: 29804981]
[34]
Zhang Y, Ahmad KA. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ ARE pathway Chem - Biol Interac 2019; 305: 54-65.
[35]
Zhao P, Piao X, Zeng Z, Li P, Xu X, Wang H. Effect of Forsythia suspensa extract and chito-oligosaccharide alone or in combination on performance, intestinal barrier function, antioxidant capacity and immune characteristics of weaned piglets. Anim Sci J 2017; 88(6): 854-62.
[http://dx.doi.org/10.1111/asj.12656] [PMID: 27758020]
[36]
Wang Y, Guo Q, Goff HD, et al. Oligosaccharides: structure, function and applicationEncyclopedia of Food Chemistry. Amsterdam: Elsevier 2019; pp. 202-7.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21585-0]
[37]
Mussatto SI, Mancilha IM. Non-digestible oligosaccharides: a review. Carbohydr Polym 2007; 68: 587-97.
[http://dx.doi.org/10.1016/j.carbpol.2006.12.011]
[38]
Arruda HS, Pereira GA, Almeida MEF, et al. Current knowledge and future perspectives of oligosaccharides research Frontiers in Natural Product Chemistry. Sharjah: Bentham Science 2017; pp. 91-175.
[39]
Moura FA, Macagnan FT, Silva LP. Oligosaccharide production by hydrolysis of polysaccharides: a review. Int J Food Sci Technol 2015; 50: 275-81.
[http://dx.doi.org/10.1111/ijfs.12681]
[40]
Nobre C, Cerqueira MÂ, Rodrigues LR, et al. Production and extraction of polysaccharides and oligosaccharides and their use as new food additivesIndustrial Biorefineries and White Biotechnology. Amsterdam: Elsevier 2015; pp. 653-79.
[http://dx.doi.org/10.1016/B978-0-444-63453-5.00021-5]
[41]
Lin X, Chen J, Xiao G, et al. Extraction, molecular weight distribution, and antioxidant activity of oligosaccharides from longan (Dimocarpus Longan Lour.) pulp. Food Sci Biotechnol 2016; 25(3): 701-6.
[http://dx.doi.org/10.1007/s10068-016-0122-7] [PMID: 30263326]
[42]
Nguyen TH, Haltrich D. Microbial production of prebiotic oligosaccharidesMicrobial production of food ingredients, enzymes and nutraceuticals. Indiana: Woodhead Publishing Limited 2013; pp. 494-530.
[http://dx.doi.org/10.1533/9780857093547.2.494]
[43]
Wu S, Cai R, Sun Y. Degradation of curdlan using hydrogen peroxide. Food Chem 2012; 135(4): 2436-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.077] [PMID: 22980825]
[44]
Sun L, Wang C, Shi Q, Ma C. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int J Biol Macromol 2009; 45(1): 42-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2009.03.013] [PMID: 19447258]
[45]
Smoot JT, Demchenko AV. Oligosaccharide synthesis: from conventional methods to modern expeditious strategies. Adv Carbohydr Chem Biochem 2009; 62: 161-250.
[http://dx.doi.org/10.1016/S0065-2318(09)00005-5] [PMID: 19501706]
[46]
Barreteau H, Delattre C, Michaud P. Production of oligosaccharides as promising new food additive generation. Food Technol Biotechnol 2006; 44: 323-33.
[47]
Yip VL, Withers SG. Breakdown of oligosaccharides by the process of elimination. Curr Opin Chem Biol 2006; 10(2): 147-55.
[http://dx.doi.org/10.1016/j.cbpa.2006.02.005] [PMID: 16495121]
[48]
Abdul Manas NH, Md Illias R, Mahadi NM. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit Rev Biotechnol 2018; 38(2): 272-93.
[http://dx.doi.org/10.1080/07388551.2017.1339664] [PMID: 28683572]
[49]
Mangas-Sánchez J, Adlercreutz P. Enzymatic preparation of oligosaccharides by transglycosylation: A comparative study of glucosidases. J Mol Catal, B Enzym 2015; 122: 51-5.
[http://dx.doi.org/10.1016/j.molcatb.2015.08.014]
[50]
Bhatia Y, Mishra S, Bisaria VS. Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 2002; 22(4): 375-407.
[http://dx.doi.org/10.1080/07388550290789568] [PMID: 12487426]
[51]
Withers SG. Mechanisms of glycosyl transferases and hydrolases. Carbohydr Polym 2001; 44: 325-37.
[http://dx.doi.org/10.1016/S0144-8617(00)00249-6]
[52]
Bemiller JN. Oligosaccharides Carbohydrate Chemistry for Food Scientists. Indiana: Woodhead Publishing and AACC International Press 2019; pp. 49-74.
[http://dx.doi.org/10.1016/B978-0-12-812069-9.00003-0]
[53]
Hsu HC, Liew CY, Huang SP, Tsai ST, Ni CK. Simple method for de novo structural determination of underivatised glucose oligosaccharides. Sci Rep 2018; 8(1): 5562.
[http://dx.doi.org/10.1038/s41598-018-23903-4] [PMID: 29615745]
[54]
Gómez B, Míguez B, Yáñez R, et al. Extraction of oligosaccharides with prebiotic properties from agro-industrial wastesWater extraction of bioactive compounds: From plants to drug development. Amsterdam: Elsevier 2018; pp. 131-61.
[55]
Sanz ML, Ruiz-Matute AI, Corzo N, et al. Analysis of prebiotic oligosaccharides Prebiotics and Probiotics Science and Technology. New York: Springer 2009; pp. 465-534.
[http://dx.doi.org/10.1007/978-0-387-79058-9_13]
[56]
Bai W, Fang X, Zhao W, et al. Determination of oligosaccharides and monosaccharides in Hakka rice wine by pre-column derivation high-performance liquid chromatography. Yao Wu Shi Pin Fen Xi 2015; 3: 1-7.
[57]
Lane JA, Hickey RM. Analysis of bioactive food-sourced oligosaccharides by high-performance liquid chromatographyfood oligosaccharides: production, analysis and bioactivity. New Jersey: John Wiley & Son 2014; pp. 399-420.
[http://dx.doi.org/10.1002/9781118817360.ch21]
[58]
Reiffová K. Analysis of food bioactive oligosaccharides by thin-layer chromatography Food oligosaccharides: production, analysis and bioactivity. New Jersey: John Wiley & Son 2014; pp. 350-69.
[http://dx.doi.org/10.1002/9781118817360.ch19]
[59]
Yan J, Ding J, Liang X. Chromatographic methods for analysis of oligosaccharides in human milk. Anal Methods 2017; 9: 1071-7.
[http://dx.doi.org/10.1039/C6AY02982E]
[60]
Kaur R, Uppal SK, Sharma P. Production of xylooligosaccharides from sugarcane bagasse and evaluation of their prebiotic potency in vitro. Waste Biomass Valoriz 2018; 10: 2627-35.
[http://dx.doi.org/10.1007/s12649-018-0266-1]
[61]
Herrero M, Cifuentes A, Ibáñez E, Dolores M. Advanced analysis of carbohydrates in foodsmethods of analysis of food components and additives. Boca Raton: CRC Press 2012; pp. 135-64.
[62]
Soria AC, Rodríguez-Sanchéz S, Sanz J, et al. Gas chromatographic analysis of food bioactive-oligosaccharidesfood oligosaccharides: production, analysis and bioactivity. New Jersey: John Wiley & Son 2014; pp. 370-98.
[http://dx.doi.org/10.1002/9781118817360.ch20]
[63]
Sabater C, Ferreira-Lazarte A, Montilla A, Corzo N. Enzymatic production and characterization of pectic oligosaccharides derived from citrus and apple pectins: A GC-MS study using random forests and association rule learning. J Agric Food Chem 2019; 67(26): 7435-47.
[http://dx.doi.org/10.1021/acs.jafc.9b00930] [PMID: 31244205]
[64]
Raessler M. Sample preparation and current applications of liquid chromatography for the determination of non-structural carbohydrates in plants. Trends Analyt Chem 2011; 2011(30): 1833-43.
[http://dx.doi.org/10.1016/j.trac.2011.06.013]
[65]
Zang H, Xie S, Zhu B, et al. Mannan oligosaccharides trigger multiple defence responses in rice and tobacco as a novel danger-associated molecular pattern. Mol Plant Pathol 2019; 20(8): 1067-79.
[http://dx.doi.org/10.1111/mpp.12811] [PMID: 31094073]
[66]
Pu J, Zhao X, Wang Q, Wang Y, Zhou H. Development and validation of a HPLC method for determination of degree of polymerization of xylo-oligosaccharides. Food Chem 2016; 213: 654-9.
[http://dx.doi.org/10.1016/j.foodchem.2016.07.014] [PMID: 27451231]
[67]
Cao L, Tian H, Wu M, Zhang H, Zhou P, Huang Q. Determination of curdlan oligosaccharides with high-performance anion exchange chromatography with pulsed amperometric detection. J Anal Methods Chem 2018; 2018 3980814
[http://dx.doi.org/10.1155/2018/3980814] [PMID: 31049244]
[68]
Szilágyi TG, Vecseri BH, Kiss Z, Hajba L, Guttman A. Analysis of the oligosaccharide composition in wort samples by capillary electrophoresis with laser induced fluorescence detection. Food Chem 2018; 256: 129-32.
[http://dx.doi.org/10.1016/j.foodchem.2018.02.106] [PMID: 29606428]
[69]
Mechelke M, Herlet J, Benz JP, et al. HPAEC-PAD for oligosaccharide analysis-novel insights into analyte sensitivity and response stability. Anal Bioanal Chem 2017; 409(30): 7169-81.
[http://dx.doi.org/10.1007/s00216-017-0678-y] [PMID: 29026979]
[70]
Duan W, Ji W, Wei Y, et al. Separation and purification of fructo-oligosaccharide by high-speed counter-current chromatography coupled with precolumn derivatization. Molecules 2018; 23(2): 381-9.
[http://dx.doi.org/10.3390/molecules23020381] [PMID: 29439422]
[71]
Pu J, Zhao X, Wang Q, et al. Structural characterization of xylo- oligosaccharides from corncob residues. J Carbohydr Chem 2016; 35: 344-54.
[http://dx.doi.org/10.1080/07328303.2016.1239107]
[72]
Valls C, Pastor FIJ, Vidal T, et al. Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydr Polym 2018; 194: 43-50.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.028] [PMID: 29801857]
[73]
Zou P, Yuan S, Yang X, et al. Structural characterization and antitumor effects of chitosan oligosaccharides against orthotopic liver tumor via NF-κB signaling pathway. J Funct Foods 2019; 57: 157-65.
[http://dx.doi.org/10.1016/j.jff.2019.04.002]
[74]
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem 2014; 86(1): 196-212.
[http://dx.doi.org/10.1021/ac403969n] [PMID: 24313268]
[75]
Hernández-Hernández O, Roepstorff P. Mass spectrometric analysis of food bioactive oligosaccharides food oligosaccharides: production, analysis and bioactivity. New Jersey: John Wiley & Son 2014; pp. 439-56.
[http://dx.doi.org/10.1002/9781118817360.ch23]
[76]
Zhang YH, Song XN, Lin Y, et al. Antioxidant capacity and prebiotic effects of Gracilaria neoagaro oligosaccharides prepared by agarase hydrolysis. Int J Biol Macromol 2019; 137: 177-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.207] [PMID: 31255619]
[77]
Xiong Y, Wang Y, Li M, et al. HPAEC-PAD and Q-TOF-MS/MS analysis reveal a novel mode of action of endo-β-1,3(4)-d-glucanase Eng16A from coprinopsis cinerea on barley β-glucan. Food Chem 2019; 287: 160-6.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.086] [PMID: 30857685]
[78]
Wang Y, Niu X, Guo X, et al. Heterologous expression, characterization and possible functions of the chitin deacetylases, Cda1 and Cda2, from mushroom Coprinopsis cinerea. Glycobiology 2018; 28(5): 318-32.
[http://dx.doi.org/10.1093/glycob/cwy007] [PMID: 29370398]
[79]
Wiercigroch E, Szafraniec E, Czamara K, et al. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim Acta A Mol Biomol Spectrosc 2017; 185: 317-35.
[http://dx.doi.org/10.1016/j.saa.2017.05.045] [PMID: 28599236]
[80]
Wang Y, Meng Z, Guo J, et al. Effect of wheat bran feruloyl oligosaccharides on the performance, blood metabolites, antioxidant status and rumen fermentation of lambs. Small Rumin Res 2019; 175: 65-71.
[http://dx.doi.org/10.1016/j.smallrumres.2019.04.006]
[81]
Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J 2013; 21(2): 143-52.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002] [PMID: 24936134]
[82]
Hou Y, Ding X, Hou W. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Mol Med Rep 2015; 11(5): 3794-9.
[http://dx.doi.org/10.3892/mmr.2014.3121] [PMID: 25529054]
[83]
Kou X, Mao C, Xie B, et al. Functional characterization of oligosaccharides purified from Asparagus officinalis peel. J Food Nutr Res 2016; 55: 313-24.
[84]
Kang HJ, Jo C, Kwon JH, Son JH, An BJ, Byun MW. Antioxidant and cancer cell proliferation inhibition effect of citrus pectin-oligosaccharide prepared by irradiation. J Med Food 2006; 9(3): 313-20.
[http://dx.doi.org/10.1089/jmf.2006.9.313] [PMID: 17004892]
[85]
Yuan X, Wang J, Yao H. Antioxidant activity of feruloylated oligosaccharides from wheat bran. Food Chem 2005; 90: 759-64.
[http://dx.doi.org/10.1016/j.foodchem.2004.05.025]
[86]
Sun Y, Yang B, Wu Y, et al. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem 2015; 178: 311-8.
[http://dx.doi.org/10.1016/j.foodchem.2015.01.105] [PMID: 25704717]
[87]
Xia Z. Preparation of the oligosaccharides derived from Flammulina velutipes and their antioxidant activities. Carbohydr Polym 2015; 118: 41-3.
[http://dx.doi.org/10.1016/j.carbpol.2014.10.074] [PMID: 25542105]
[88]
Xiong X, Li M, Xie J, Jin Q, Xue B, Sun T. Antioxidant activity of xanthan oligosaccharides prepared by different degradation methods. Carbohydr Polym 2013; 92(2): 1166-71.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.069] [PMID: 23399142]
[89]
Xiong X, Li M, Xie J, Xue B, Sun T. Preparation and antioxidant activity of xanthan oligosaccharides derivatives with similar substituting degrees. Food Chem 2014; 164: 7-11.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.001] [PMID: 24996297]
[90]
Yao X-C, Cao Y, Wu S-J. Antioxidant activity and antibacterial activity of peach gum derived oligosaccharides. Int J Biol Macromol 2013; 62: 1-3.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.022] [PMID: 23973489]
[91]
Sun T, Zhu Y, Xie J, Yin X. Antioxidant activity of N-acyl chitosan oligosaccharide with same substituting degree. Bioorg Med Chem Lett 2011; 21(2): 798-800.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.097] [PMID: 21190855]
[92]
Zhao D, Wang J, Tan L, Sun C, Dong J. Synthesis of N-furoyl chitosan and chito-oligosaccharides and evaluation of their antioxidant activity in vitro. Int J Biol Macromol 2013; 59: 391-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.072] [PMID: 23664935]
[93]
Liang S, Liao W, Ma X, Li X, Wang Y. H2O2 oxidative preparation, characterization and antiradical activity of a novel oligosaccharide derived from flaxseed gum. Food Chem 2017; 230: 135-44.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.029] [PMID: 28407893]
[94]
Antov MG, Đorđević TR. Environmental-friendly technologies for the production of antioxidant xylooligosaccharides from wheat chaff. Food Chem 2017; 235: 175-80.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.058] [PMID: 28554623]
[95]
Gowdhaman D, Ponnusami V. Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int J Biol Macromol 2015; 79: 595-600.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.046] [PMID: 26038103]
[96]
Wu S, Huang X. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas. Food Chem 2017; 216: 243-6.
[http://dx.doi.org/10.1016/j.foodchem.2016.08.043] [PMID: 27596415]
[97]
Jagtap S, Deshmukh RA, Menon S, Das S. Xylooligosaccharides production by crude microbial enzymes from agricultural waste without prior treatment and their potential application as nutraceuticals. Bioresour Technol 2017; 245(Pt A): 283-8.
[http://dx.doi.org/10.1016/j.biortech.2017.08.174] [PMID: 28892703]
[98]
Katapodis P, Vardakou M, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P. Enzymic production of a feruloylated oligosaccharide with antioxidant activity from wheat flour arabinoxylan. Eur J Nutr 2003; 42(1): 55-60.
[http://dx.doi.org/10.1007/s00394-003-0400-z] [PMID: 12594542]
[99]
Xu S-Y, Kan J, Hu Z, et al. Quantification of neoagaro-oligosaccharide production through enzymatic hydrolysis and its anti-oxidant activities. Molecules 2018; 23(6): 2-10.
[http://dx.doi.org/10.3390/molecules23061354] [PMID: 29874799]
[100]
Kang OL, Ghani M, Hassan O, et al. Novel agaro-oligosaccharide production through enzymatic hydrolysis: physicochemical properties and antioxidant activities. Food Hydrocoll 2014; 42: 304-8.
[http://dx.doi.org/10.1016/j.foodhyd.2014.04.031]
[101]
Sen M, Atik H. The antioxidant properties of oligo sodium alginates prepared by radiation-induced degradation in aqueous and hydrogen peroxide solutions. Radiat Phys Chem 2012; 81: 816-22.
[http://dx.doi.org/10.1016/j.radphyschem.2012.03.025]
[102]
Falkeborg M, Cheong LZ, Gianfico C, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 2014; 164: 185-94.
[http://dx.doi.org/10.1016/j.foodchem.2014.05.053] [PMID: 24996323]
[103]
Jin W, Ren L, Liu B, Zhang Q, Zhong W. Structural features of sulfated glucuronomannan. Mar Drugs 2018; 16(9): 1-12.
[http://dx.doi.org/10.3390/md16090291] [PMID: 30134603]
[104]
Zhao W, Chen H, Wu L, Ma W, Xie Y. Antioxidant properties of feruloylated oligosaccharides of different degrees of polymerization from wheat bran. Glycoconj J 2018; 35(6): 547-59.
[http://dx.doi.org/10.1007/s10719-018-9847-2] [PMID: 30343348]
[105]
Li E, Yang S, Zou Y, et al. Purification, characterization, prebiotic preparations and antioxidant activity of oligosaccharides from mulberries. Molecules 2019; 24(12): 1-11.
[http://dx.doi.org/10.3390/molecules24122329] [PMID: 31242560]
[106]
Shimoda K, Hamada H, Hamada H. Synthesis of xylooligosaccharides of daidzein and their anti-oxidant and anti-allergic activities. Int J Mol Sci 2011; 12(9): 5616-25.
[http://dx.doi.org/10.3390/ijms12095616] [PMID: 22016613]
[107]
Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 2016; 64(5): 997-1027.
[http://dx.doi.org/10.1021/acs.jafc.5b04739] [PMID: 26728425]
[108]
Sing S, Singh RP. In vitro methods of assay of antioxidants: an overview. Food Rev Int 2008; 24: 392-415.
[http://dx.doi.org/10.1080/87559120802304269]
[109]
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J 2012; 5(1): 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[110]
Comar JF, Babeto de Sá-Nakanishi A, de Oliveira AL, et al. Oxidative state of the liver of rats with adjuvant-induced arthritis. Free Radic Biol Med 2013; 58: 144-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.12.003] [PMID: 23246655]
[111]
Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 2015; 30(1): 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[112]
Correa VG, de Sá-Nakanishi AB, Gonçalves GA, et al. Yerba mate aqueous extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. Food Funct 2019; 10(9): 5682-96.
[http://dx.doi.org/10.1039/C9FO00491B] [PMID: 31435625]
[113]
Soares AA, de Sá-Nakanishi AB, Bracht A, et al. Hepatoprotective effects of mushrooms. Molecules 2013; 18(7): 7609-30.
[http://dx.doi.org/10.3390/molecules18077609] [PMID: 23884116]
[114]
Peña-Bautista C, Vento M, Baquero M, Cháfer-Pericás C. Lipid peroxidation in neurodegeneration. Clin Chim Acta 2019; 497: 178-88.
[http://dx.doi.org/10.1016/j.cca.2019.07.037] [PMID: 31377127]
[115]
Singh V, Fedeles BI, Li D, et al. Mechanism of repair of acrolein- and malondialdehyde-derived exocyclic guanine adducts by the α-ketoglutarate/Fe(II) dioxygenase AlkB. Chem Res Toxicol 2014; 27(9): 1619-31.
[http://dx.doi.org/10.1021/tx5002817] [PMID: 25157679]
[116]
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014 360438
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[117]
Wang Y, Yang M, Lee S-G, et al. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women. J Nutr Biochem 2012; 23(12): 1725-31.
[http://dx.doi.org/10.1016/j.jnutbio.2011.12.004] [PMID: 22617460]
[118]
Yen CH, Kuo YW, Tseng YH, Lee MC, Chen HL. Beneficial effects of fructo-oligosaccharides supplementation on fecal bifidobacteria and index of peroxidation status in constipated nursing-home residents--a placebo-controlled, diet-controlled trial. Nutrition 2011; 27(3): 323-8.
[http://dx.doi.org/10.1016/j.nut.2010.02.009] [PMID: 20579847]
[119]
Galdino FMP, Andrade MER, Barros PAV, et al. Pretreatment and treatment with fructo-oligosaccharides attenuate intestinal mucositis induced by 5-FU in mice. J Funct Foods 2018; 49: 485-92.
[http://dx.doi.org/10.1016/j.jff.2018.09.012]
[120]
Faseleh Jahromi M, Shokryazdan P, Idrus Z, Ebrahimi R, Liang JB. In Ovo and dietary administration of oligosaccharides extracted from palm kernel cake influence general health of pre- and neonatal broiler chicks. PLoS One 2017; 12(9) e0184553
[http://dx.doi.org/10.1371/journal.pone.0184553] [PMID: 28880894]
[121]
Qu Y, Wang Z, Zhou H, Kang M, Dong R, Zhao J. Oligosaccharide nanomedicine of alginate sodium improves therapeutic results of posterior lumbar interbody fusion with cages for degenerative lumbar disease in osteoporosis patients by downregulating serum miR-155. Int J Nanomedicine 2017; 12: 8459-69.
[http://dx.doi.org/10.2147/IJN.S143824] [PMID: 29200854]
[122]
Chen J, Hu Y, Zhang L, et al. Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery. Front Pharmacol 2017; 8: 623.
[http://dx.doi.org/10.3389/fphar.2017.00623] [PMID: 28955228]
[123]
Wan J, Zhang J, Chen D, et al. Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs. Anim Feed Sci Technol 2017; 234: 118-27.
[http://dx.doi.org/10.1016/j.anifeedsci.2017.09.006]
[124]
Lu J, Qi C, Mchele S, et al. Dietary mannan oligosaccharide (MOS) improves growth performance, antioxidant capacity, non-specific immunity and intestinal histology of juvenile Chinese mitten crabs (Eriocheir sinensis). Aquaculture 2019; 510: 337-46.
[http://dx.doi.org/10.1016/j.aquaculture.2019.05.048]
[125]
Cheng Y, Du M, Xu Q, Chen Y, Wen C, Zhou Y. Dietary mannan oligosaccharide improves growth performance, muscle oxidative status, and meat quality in broilers under cyclic heat stress. J Therm Biol 2018; 75: 106-11.
[http://dx.doi.org/10.1016/j.jtherbio.2018.06.002] [PMID: 30017045]
[126]
Wang Z, Yu H, Xie J, Cui H, Gao X. Effect of pectin oligosaccharides and zinc chelate on growth performance, zinc status, antioxidant ability, intestinal morphology and short-chain fatty acids in broilers. J Anim Physiol Anim Nutr (Berl) 2019; 103(3): 935-46.
[http://dx.doi.org/10.1111/jpn.13076] [PMID: 30801843]
[127]
Xie C, Wu X, Long C, et al. Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Vet Res 2016; 12(1): 243-50.
[http://dx.doi.org/10.1186/s12917-016-0872-8] [PMID: 27806719]
[128]
Jiang T, Xing X, Zhang L, et al. Clinical study chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics. 2019.
[129]
Guan D, Sun H, Meng X, et al. Effects of different molar mass chitooligosaccharides on growth, antioxidant capacity, non-specific immune response, and resistance to Aeromonas hydrophila in GIFT tilapia Oreochromis niloticus. Fish Shellfish Immunol 2019; 93: 500-7.
[http://dx.doi.org/10.1016/j.fsi.2019.08.001] [PMID: 31377430]
[130]
Kong SZ, Li JC, Li SD, et al. Anti-aging effect of chitosan oligosaccharide on D-galactose-induced subacute aging in mice. Mar Drugs 2018; 16(6): 1-13.
[http://dx.doi.org/10.3390/md16060181] [PMID: 29794973]
[131]
Fang IM, Yang CM, Yang CH. Chitosan oligosaccharides prevented retinal ischemia and reperfusion injury via reduced oxidative stress and inflammation in rats. Exp Eye Res 2015; 130: 38-50.
[http://dx.doi.org/10.1016/j.exer.2014.12.001] [PMID: 25479043]
[132]
Qu D, Han J. Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet. Rev Bras Zootec 2016; 11: 661-6.
[http://dx.doi.org/10.1590/s1806-92902016001100004]
[133]
Zhang H, Wang J, Liu Y, Sun B. Wheat bran feruloyl oligosaccharides modulate the phase II detoxifying/antioxidant enzymes via Nrf2 signaling. Int J Biol Macromol 2015; 74: 150-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.12.011] [PMID: 25542177]
[134]
Wang J, Sun B, Cao Y, et al. Wheat bran feruloyl oligosaccharides enhance the antioxidant activity of rat plasma. Food Chem 2010; 123: 472-6.
[http://dx.doi.org/10.1016/j.foodchem.2010.05.033]
[135]
Zhang H, Zhang S, Wang J, et al. Wheat bran feruloyl oligosaccharides protect against AAPH-induced oxidative injury via p38MAPK/PI3K-Nrf2/Keap1-MafK pathway. J Funct Foods 2017; 29: 53-9.
[http://dx.doi.org/10.1016/j.jff.2016.12.009]
[136]
Krishna G, Muralidhara . Oral supplements of combined fructo- and xylo-oligosaccharides during perinatal period significantly offsets acrylamide-induced oxidative impairments and neurotoxicity in rats. J Physiol Pharmacol 2018; 69(5): 801-14.
[PMID: 30683831]
[137]
Liu XY, Liu D, Lin GP, et al. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice. Int J Biol Macromol 2019; 139: 342-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.195] [PMID: 31377292]
[138]
Wang H, Liu YM, Qi ZM, et al. An overview on natural polysaccharides with antioxidant properties. Cur Med Chem 2013; pp. 2899-913.
[139]
Wang J, Hu S, Nie S, et al. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. In: Oxi Med Cell Longev. In: 2016. 13: 5692852.
[140]
Priyan Shanura Fernando I, Kim K-N, Kim D, Jeon YJ. Algal polysaccharides: potential bioactive substances for cosmeceutical applications. Crit Rev Biotechnol 2018; 9: 1-15.
[PMID: 30198346]
[141]
Jeong HK, Lee D, Kim HP, Baek SH. Structure analysis and antioxidant activities of an amylopectin-type polysaccharide isolated from dried fruits of Terminalia chebula. Carbohydr Polym 2019; 211: 100-8.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.097] [PMID: 30824068]
[142]
Li S, Xiong Q, Lai X, et al. Molecular modification of polysaccharides and resulting bioactivities. Compr Rev Food Sci 2016; 15: 237-50.
[http://dx.doi.org/10.1111/1541-4337.12161]
[143]
Liu J, Wilfor S, Xu CA. Review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Dietary Fibre 2015; 5: 31-61.
[http://dx.doi.org/10.1016/j.bcdf.2014.12.001]
[144]
Khan BM, Qiu HM, Xu SY, Liu Y, Cheong KL. Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis. Int J Biol Macromol 2019; 145: 1155-61.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.040] [PMID: 31730957]
[145]
Chen HM, Yan XJ. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochim Biophys Acta 2005; 1722(1): 103-11.
[http://dx.doi.org/10.1016/j.bbagen.2004.11.016] [PMID: 15716131]
[146]
Chen HM, Zheng L, Yan XJ. The preparation and bioactivity research of agaro-oligosaccharides. Food Technol Biotechnol 2005; 43: 29-36.
[147]
Je JY, Park PJ, Kim SK. Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem Toxicol 2004; 42(3): 381-7.
[http://dx.doi.org/10.1016/j.fct.2003.10.001] [PMID: 14871580]
[148]
Kang L, Zhang X, Wang R, et al. β-Glucosidase BGL1 from Coprinopsis cinerea exhibits a distinctive hydrolysis and transglycosylation activity for application in the production of 3-O-β-D-gentiobiosyl-D-laminarioligosaccharides. J Agric Food Chem 2019; 67(38): 10744-55.
[http://dx.doi.org/10.1021/acs.jafc.9b04488] [PMID: 31525900]
[149]
Liu Z, Xiong Y, Yi L, et al. Endo-β-1,3-glucanase digestion combined with the HPAEC-PAD-MS/MS analysis reveals the structural differences between two laminarins with different bioactivities. Carbohydr Polym 2018; 194: 339-49.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.044] [PMID: 29801847]
[150]
Eom TK, Senevirathne M, Kim SK. Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environ Toxicol Pharmacol 2012; 34(2): 519-27.
[http://dx.doi.org/10.1016/j.etap.2012.05.004] [PMID: 22809749]
[151]
Ngo D-H, Qian Z-J, Vo T-S, et al. Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264-7 cells. Carbohydr Polym 2011; 84: 1282-8.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.022]
[152]
Yuan H, Zhang W, Li X, et al. Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res 2005; 340(4): 685-92.
[http://dx.doi.org/10.1016/j.carres.2004.12.026] [PMID: 15721341]
[153]
Bian J, Peng F, Peng XP, Peng P, Xu F, Sun RC. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour Technol 2013; 127: 236-41.
[http://dx.doi.org/10.1016/j.biortech.2012.09.112] [PMID: 23131647]
[154]
Khanafari A, Marandi R, Sanatei S. Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran J Environ Health Sci Eng 2008; 5: 19-24.
[155]
Lodhi G, Kim Y-S, Hwang J-W, et al. Chitooligosaccharide and its derivatives: preparation and biological applications. In: BioMed Res Int. 2014; p. 654913.
[156]
Phil L, Naveed M, Mohammad IS, Bo L, Bin D. Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomed Pharmacother 2018; 102: 438-51.
[http://dx.doi.org/10.1016/j.biopha.2018.03.108] [PMID: 29579704]
[157]
Yuan W-P, Liu B, Liu C-H, et al. Antioxidant activity of chito-oligosaccharides on pancreatic islet cells in streptozotocin-induced diabetes in rats. World J Gastroenterol 2009; 15(11): 1339-45.
[http://dx.doi.org/10.3748/wjg.15.1339] [PMID: 19294763]
[158]
Fernandes JC, Eaton P, Nascimento H, et al. Antioxidant activity of chitooligosaccharides upon two biological systems: Erythrocytes and bacteriophages. Carbohydr Polym 2010; 79: 1101-6.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.050]
[159]
Ngo D-H, Kim S-K. Antioxidant effects of chitin, chitosan, and their derivatives. Adv Food Nutr Res 2014; 73: 15-31.
[http://dx.doi.org/10.1016/B978-0-12-800268-1.00002-0] [PMID: 25300540]
[160]
Sen VD, Sokolova EM, Neshev NI, et al. Low molecular chitosan (poly) nitroxides: synthesis and evaluation as antioxidants on free radical-induced erythrocyte hemolysis. React Funct Polym 2017; 111: 53-9.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.12.006]
[161]
Zhou J, Dai R, Wang Y, et al. A novel thermophilic exochitinase ChiEn3 from Coprinopsis cinerea exhibits a hyperhydrolytic activity toward 85% deacetylated chitosan and a significant application to preparation of chitooligosaccharides from the chitosan. Carbohydr Polym 2019; 207: 729-36.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.047] [PMID: 30600059]
[162]
Veenashri BR, Muralikrishna G. In vitro antioxidant activity of xylooligosaccharides derived from cereal and millet brans: a comparative study. Food Chem 2011; 126: 1475-81.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.163]
[163]
Wang J, Sun B, Cao Y, Tian Y. Protection of wheat bran feruloyl oligosaccharides against free radical-induced oxidative damage in normal human erythrocytes. Food Chem Toxicol 2009; 47(7): 1591-9.
[http://dx.doi.org/10.1016/j.fct.2009.04.006] [PMID: 19371769]
[164]
Nizami AS, Rehan M, Waqas M, et al. Waste biorefineries: Enabling circular economies in developing countries. Bioresour Technol 2017; 241: 1101-17.
[http://dx.doi.org/10.1016/j.biortech.2017.05.097] [PMID: 28579178]
[165]
Ngo DH, Wijesekara I, Vo TS, et al. Marine food-derived functional ingredients as potential antioxidants in the food industry: An overview. Food Res Int 2011; 44: 523-9.
[http://dx.doi.org/10.1016/j.foodres.2010.12.030]
[166]
Wang P, Jiang X, Jiang Y, et al. In vitro antioxidative activities of three marine oligosaccharides. Nat Prod Res 2007; 21(7): 646-54.
[http://dx.doi.org/10.1080/14786410701371215] [PMID: 17613823]
[167]
Chen H, Yan X, Zhu P, Lin J. Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr J 2006; 5: 31-42.
[http://dx.doi.org/10.1186/1475-2891-5-31] [PMID: 17140450]
[168]
Rivas S, Conde E, Moure A, Domínguez H, Parajó JC. Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chem 2013; 141(1): 495-502.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.008] [PMID: 23768385]
[169]
Samanta AK, Jayapal N, Kolte AP, et al. Enzymatic production of xylooligosaccharides from alkali solubilized xylan of natural grass (Sehima nervosum). Bioresour Technol 2012; 112: 199-205.
[http://dx.doi.org/10.1016/j.biortech.2012.02.036] [PMID: 22414575]
[170]
Wu SC, Wen TN, Pan CL. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fish Sci 2005; 71: 1149-59.
[http://dx.doi.org/10.1111/j.1444-2906.2005.01075.x]
[171]
Zhang Y, Wang S, Xu W, et al. Valorization of lignin-carbohydrate complexes from hydrolysates of norway spruce: efficient separation, structural characterization, and antioxidant activity. ACS Sustain Chem& Eng 2018; 7: 1447-56.
[http://dx.doi.org/10.1021/acssuschemeng.8b05142]
[172]
Linchongkon K, Khumijitjaru P, Wiboonsirikul J, et al. Extraction of oligosaccharides from passion fruit peel by subcritical water treatment. J Food Process Eng 2017; 40e12269.
[http://dx.doi.org/10.1111/jfpe.12269]
[173]
Rodríguez-Seoane P, Díaz-Reinoso B, González-Muñoz MJ, et al. Innovative technologies for the extraction of saccharides and phenolic fractions from Pleurotus eryngii. Lebensm Wiss Technol 2019; 2019(101): 774-82.
[http://dx.doi.org/10.1016/j.lwt.2018.11.062]
[174]
Bubalo MC, Vidović S, Redovniković IR, et al. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod Process 2018; 109: 52-73.
[http://dx.doi.org/10.1016/j.fbp.2018.03.001]
[175]
Mena-Garcia A, Ruiz-Matute AI, Soria AC, et al. Green techniques for extraction of bioactive carbohydrates. Trends Analyt Chem 2019; 119115612
[http://dx.doi.org/10.1016/j.trac.2019.07.023]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy