Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Metabolic and Amino Acid Alterations of the Tumor Microenvironment

Author(s): Petr Stepka, Vit Vsiansky, Martina Raudenska, Jaromir Gumulec, Vojtech Adam and Michal Masarik*

Volume 28, Issue 7, 2021

Published on: 07 February, 2020

Page: [1270 - 1289] Pages: 20

DOI: 10.2174/0929867327666200207114658

Price: $65

Abstract

Metabolic changes driven by the hostile tumor microenvironment surrounding cancer cells and the effect of these changes on tumorigenesis and metastatic potential have been known for a long time. The usual point of interest is glucose and changes in its utilization by cancer cells, mainly in the form of the Warburg effect. However, amino acids, both intra- and extracellular, also represent an important aspect of tumour microenvironment, which can have a significant effect on cancer cell metabolism and overall development of the tumor. Namely, alterations in the metabolism of amino acids glutamine, sarcosine, aspartate, methionine and cysteine have been previously connected to the tumor progression and aggressivity of cancer.

The aim of this review is to pinpoint current gaps in our knowledge of the role of amino acids as a part of the tumor microenvironment and to show the effect of various amino acids on cancer cell metabolism and metastatic potential. This review shows limitations and exceptions from the traditionally accepted model of Warburg effect in some cancer tissues, with the emphasis on prostate cancer, because the traditional definition of Warburg effect as a metabolic switch to aerobic glycolysis does not always apply. Prostatic tissue both in a healthy and transformed state significantly differs in many metabolic aspects, including the metabolisms of glucose and amino acids, from the metabolism of other tissues. Findings from different tissues are, therefore, not always interchangeable and have to be taken into account during experimentation modifying the environment of tumor tissue by amino acid supplementation or depletion, which could potentially serve as a new therapeutic approach.

Keywords: Cancer metabolism, tumor microenvironment, amino acids, Warburg effect, lactate, cancer-associated fibroblasts.

[1]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[2]
Leber, M.F.; Efferth, T. Molecular principles of cancer invasion and metastasis. [review Int. J. Oncol., 2009, 34(4), 881-895.
[http://dx.doi.org/10.3892/ijo_00000214] [PMID: 19287945]
[3]
Riihimäki, M.; Thomsen, H.; Hemminki, A.; Sundquist, K.; Hemminki, K. Comparison of survival of patients with metastases from known versus unknown primaries: survival in metastatic cancer. BMC Cancer, 2013, 13, 36.
[http://dx.doi.org/10.1186/1471-2407-13-36] [PMID: 23356713]
[4]
DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5)e1600200
[http://dx.doi.org/10.1126/sciadv.1600200] [PMID: 27386546]
[5]
San-Millán, I.; Brooks, G.A. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis, 2017, 38(2), 119-133.
[http://dx.doi.org/ 10.1093/carcin/bgw127] [PMID: 27993896]
[6]
Kratochvilova, M.; Raudenska, M.; Heger, Z.; Richtera, L.; Cernei, N.; Adam, V.; Babula, P.; Novakova, M.; Masarik, M.; Gumulec, J. Amino acid profiling of zinc resistant prostate cancer cell lines: associations with cancer progression. Prostate, 2017, 77(6), 604-616.
[http://dx.doi.org/10.1002/pros.23304] [PMID: 28101932]
[7]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[8]
Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab., 2006, 3(3), 187-197.
[http://dx.doi.org/10.1016/j.cmet.2006.01.012] [PMID: 16517406]
[9]
Lu, J.; Tan, M.; Cai, Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett., 2015, 356(2 Pt A), 156-164.
[http://dx.doi.org/10.1016/j.canlet.2014.04.001] [PMID: 24732809]
[10]
Hsu, C.C.; Tseng, L.M.; Lee, H.C. Role of mitochondrial dysfunction in cancer progression. Exp. Biol. Med. (Maywood), 2016, 241(12), 1281-1295.
[http://dx.doi.org/10.1177/1535370216641787] [PMID: 27022139]
[11]
Schwartz, L.; Seyfried, T.; Alfarouk, K.O.; Moreira, J.D.; Fais, S. Out of Warburg effect: an effective cancer treatment targeting the tumor specific metabolism and dysregulated pH. Semin. Cancer Biol., 2017, 43, 134-138.
[http://dx.doi.org/10.1016/j.semcancer.2017.01.005] [PMID: 28122260]
[12]
Chen, Z.; Lu, W.; Garcia-Prieto, C.; Huang, P. The Warburg effect and its cancer therapeutic implications. J. Bioenerg. Biomembr., 2007, 39(3), 267-274.
[http://dx.doi.org/10.1007/s10863-007-9086-x] [PMID: 17551814]
[13]
Nam, S.O.; Yotsumoto, F.; Miyata, K.; Shirasu, N.; Miyamoto, S.; Kuroki, M. Possible therapeutic targets among the molecules involved in the Warburg effect in tumor cells. Anticancer Res., 2013, 33(7), 2855-2860.
[PMID: 23780970]
[14]
Czernin, J.; Allen-Auerbach, M.; Nathanson, D.; Herrmann, K. PET/CT in oncology: current status and perspectives. Curr. Radiol. Rep., 2013, 1, 177-190.
[http://dx.doi.org/10.1007/s40134-013-0016-x] [PMID: 24883234]
[15]
Zu, X.L.; Guppy, M. Cancer metabolism: facts, fantasy, and fiction. Biochem. Biophys. Res. Commun., 2004, 313(3), 459-465.
[http://dx.doi.org/10.1016/j.bbrc.2003.11.136] [PMID: 14697210]
[16]
Lim, H.Y.; Ho, Q.S.; Low, J.; Choolani, M.; Wong, K.P. Respiratory competent mitochondria in human ovarian and peritoneal cancer. Mitochondrion, 2011, 11(3), 437-443.
[http://dx.doi.org/10.1016/j.mito.2010.12.015] [PMID: 21211574]
[17]
Griguer, C.E.; Oliva, C.R.; Gillespie, G.Y. Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J. Neurooncol., 2005, 74(2), 123-133.
[http://dx.doi.org/10.1007/s11060-004-6404-6] [PMID: 16193382]
[18]
Scott, D.A.; Richardson, A.D.; Filipp, F.V.; Knutzen, C.A.; Chiang, G.G.; Ronai, Z.A.; Osterman, A.L.; Smith, J.W. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J. Biol. Chem., 2011, 286(49), 42626-42634.
[http://dx.doi.org/10.1074/jbc.M111.282046] [PMID: 21998308]
[19]
Salminen, E.; Hogg, A.; Binns, D.; Frydenberg, M.; Hicks, R. Investigations with FDG-PET scanning in prostate cancer show limited value for clinical practice. Acta Oncol., 2002, 41(5), 425-429.
[http://dx.doi.org/10.1080/028418602320405005] [PMID: 12442917]
[20]
Jadvar, H. Prostate cancer: PET with 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline. J. Nucl. Med., 2011, 52(1), 81-89.
[http://dx.doi.org/10.2967/jnumed.110.077941] [PMID: 21149473]
[21]
Rayn, K.N.; Elnabawi, Y.A.; Sheth, N. Clinical implications of PET/CT in prostate cancer management. Transl. Androl. Urol., 2018, 7(5), 844-854.
[http://dx.doi.org/10.21037/tau.2018.08.26] [PMID: 30456187]
[22]
Elia, I.; Schmieder, R.; Christen, S.; Fendt, S.M. Organ-specific cancer metabolism and its potential for therapy. Handb. Exp. Pharmacol., 2016, 233, 321-353.
[http://dx.doi.org/10.1007/164_2015_10] [PMID: 25912014]
[23]
Costello, L.C.; Franklin, R.B.; Feng, P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion, 2005, 5(3), 143-153.
[http://dx.doi.org/10.1016/j.mito.2005.02.001] [PMID: 16050980]
[24]
Fiaschi, T.; Marini, A.; Giannoni, E.; Taddei, M.L.; Gandellini, P.; De Donatis, A.; Lanciotti, M.; Serni, S.; Cirri, P.; Chiarugi, P. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res., 2012, 72(19), 5130-5140.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1949] [PMID: 22850421]
[25]
Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Pestell, R.G.; Tanowitz, H.B.; Sotgia, F.; Lisanti, M.P. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell Biol., 2011, 43(7), 1045-1051.
[http://dx.doi.org/10.1016/j.biocel.2011.01.023] [PMID: 21300172]
[26]
Sato, K.; Tsuchihara, K.; Fujii, S.; Sugiyama, M.; Goya, T.; Atomi, Y.; Ueno, T.; Ochiai, A.; Esumi, H. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res., 2007, 67(20), 9677-9684.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1462] [PMID: 17942897]
[27]
Pertega-Gomes, N.; Felisbino, S.; Massie, C.E.; Vizcaino, J.R.; Coelho, R.; Sandi, C.; Simoes-Sousa, S.; Jurmeister, S.; Ramos-Montoya, A.; Asim, M.; Tran, M.; Oliveira, E.; da Cunha, A.L.; Maximo, V.; Baltazar, F.; Neal, D.E.; Fryer, L.G. A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: a role for monocarboxylate transporters as metabolic targets for therapy. J. Pathol., 2015, 236(4), 517-530.
[http://dx.doi.org/10.1002/path.4547] [PMID: 25875424]
[28]
Pelicano, H.; Zhang, W.; Liu, J.; Hammoudi, N.; Dai, J.; Xu, R.H.; Pusztai, L.; Huang, P. Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res., 2014, 16(5), 434.
[http://dx.doi.org/10.1186/s13058-014-0434-6] [PMID: 25209360]
[29]
Witkiewicz, A.K.; Whitaker-Menezes, D.; Dasgupta, A.; Philp, N.J.; Lin, Z.; Gandara, R.; Sneddon, S.; Martinez-Outschoorn, U.E.; Sotgia, F.; Lisanti, M.P. Using the “reverse Warburg effect” to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle, 2012, 11(6), 1108-1117.
[http://dx.doi.org/10.4161/cc.11.6.19530] [PMID: 22313602]
[30]
Martinez-Outschoorn, U.E.; Pavlides, S.; Whitaker-Menezes, D.; Daumer, K.M.; Milliman, J.N.; Chiavarina, B.; Migneco, G.; Witkiewicz, A.K.; Martinez-Cantarin, M.P.; Flomenberg, N.; Howell, A.; Pestell, R.G.; Lisanti, M.P.; Sotgia, F. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 2010, 9(12), 2423-2433.
[http://dx.doi.org/10.4161/cc.9.12.12048] [PMID: 20562526]
[31]
Santidrian, A.F.; Matsuno-Yagi, A.; Ritland, M.; Seo, B.B.; LeBoeuf, S.E.; Gay, L.J.; Yagi, T.; Felding-Habermann, B. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression. J. Clin. Invest., 2013, 123(3), 1068-1081.
[http://dx.doi.org/10.1172/JCI64264] [PMID: 23426180]
[32]
Costello, L.C.; Franklin, R.B. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol. Cancer, 2006, 5, 17.
[http://dx.doi.org/10.1186/1476-4598-5-17] [PMID: 16700911]
[33]
Franklin, R.B.; Zou, J.; Yu, Z.; Costello, L.C. EAAC1 is expressed in rat and human prostate epithelial cells; functions as a high-affinity L-aspartate transporter; and is regulated by prolactin and testosterone. BMC Biochem., 2006, 7, 10.
[http://dx.doi.org/10.1186/1471-2091-7-10] [PMID: 16566829]
[34]
Xie, G.; Zhou, B.; Zhao, A.; Qiu, Y.; Zhao, X.; Garmire, L.; Shvetsov, Y.B.; Yu, H.; Yen, Y.; Jia, W. Lowered circulating aspartate is a metabolic feature of human breast cancer. Oncotarget, 2015, 6(32), 33369-33381.
[http://dx.doi.org/10.18632/oncotarget.5409] [PMID: 26452258]
[35]
Corbet, C.; Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer, 2017, 17(10), 577-593.
[http://dx.doi.org/10.1038/nrc.2017.77] [PMID: 28912578]
[36]
Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int., 2013, 13(1), 89.
[http://dx.doi.org/10.1186/1475-2867-13-89] [PMID: 24004445]
[37]
Pérez-Escuredo, J.; Van Hée, V.F.; Sboarina, M.; Falces, J.; Payen, V.L.; Pellerin, L.; Sonveaux, P. Monocarboxylate transporters in the brain and in cancer. Biochim. Biophys. Acta, 2016, 1863(10), 2481-2497.
[http://dx.doi.org/10.1016/j.bbamcr.2016.03.013] [PMID: 26993058]
[38]
Doherty, J.R.; Cleveland, J.L. Targeting lactate metabolism for cancer therapeutics. J. Clin. Invest., 2013, 123(9), 3685-3692.
[http://dx.doi.org/10.1172/JCI69741] [PMID: 23999443]
[39]
Le, A.; Cooper, C.R.; Gouw, A.M.; Dinavahi, R.; Maitra, A.; Deck, L.M.; Royer, R.E.; Jagt, D.L.V.; Semenza, G.L.; Dang, C.V. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA, 2010, 107(5), 2037-2042.
[http://dx.doi.org/10.1073/pnas.0914433107] [PMID: 20133848]
[40]
Lu, Q.Y.; Zhang, L.; Yee, J.K.; Go, V.W.; Lee, W.N. Metabolic consequences of LDHA inhibition by epigallocatechin gallate and oxamate in MIA PaCa-2 pancreatic cancer cells. Metabolomics, 2015, 11(1), 71-80.
[http://dx.doi.org/10.1007/s11306-014-0672-8] [PMID: 26246802]
[41]
Allison, S.J.; Knight, J.R.; Granchi, C.; Rani, R.; Minutolo, F.; Milner, J.; Phillips, R.M. Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogenesis, 2014, 3(5)e102
[http://dx.doi.org/10.1038/oncsis.2014.16]] [PMID: 24819061]
[42]
Pérez-Escuredo, J.; Dadhich, R.K.; Dhup, S.; Cacace, A.; Van Hée, V.F.; De Saedeleer, C.J.; Sboarina, M.; Rodriguez, F.; Fontenille, M.J.; Brisson, L.; Porporato, P.E.; Sonveaux, P. Lactate promotes glutamine uptake and metabolism in oxidative cancer cells. Cell Cycle, 2016, 15(1), 72-83.
[http://dx.doi.org/10.1080/15384101.2015.1120930] [PMID: 26636483]
[43]
Rofstad, E.K.; Mathiesen, B.; Kindem, K.; Galappathi, K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res., 2006, 66(13), 6699-6707.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0983] [PMID: 16818644]
[44]
Huang, S.; Tang, Y.; Peng, X.; Cai, X.; Wa, Q.; Ren, D.; Li, Q.; Luo, J.; Li, L.; Zou, X.; Huang, S. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs. Oncol. Rep., 2016, 36(4), 2025-2032.
[http://dx.doi.org/10.3892/or.2016.4997] [PMID: 27498716]
[45]
Doherty, J.R.; Yang, C.; Scott, K.E.; Cameron, M.D.; Fallahi, M.; Li, W.; Hall, M.A.; Amelio, A.L.; Mishra, J.K.; Li, F.; Tortosa, M.; Genau, H.M.; Rounbehler, R.J.; Lu, Y.; Dang, C.V.; Kumar, K.G.; Butler, A.A.; Bannister, T.D.; Hooper, A.T.; Unsal-Kacmaz, K.; Roush, W.R.; Cleveland, J.L. Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res., 2014, 74(3), 908-920.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2034] [PMID: 24285728]
[46]
Payen, V.L.; Mina, E.; Van Hée, V.F.; Porporato, P.E.; Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab., 2020, 33, 48-66.
[http://dx.doi.org/10.1016/j.molmet.2019.07.006]] [PMID: 31395464]
[47]
Pértega-Gomes, N.; Vizcaíno, J.R.; Miranda-Gonçalves, V.; Pinheiro, C.; Silva, J.; Pereira, H.; Monteiro, P.; Henrique, R.M.; Reis, R.M.; Lopes, C.; Baltazar, F. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer, 2011, 11, 312.
[http://dx.doi.org/10.1186/1471-2407-11-312] [PMID: 21787388]
[48]
Hao, J.; Chen, H.; Madigan, M.C.; Cozzi, P.J.; Beretov, J.; Xiao, W.; Delprado, W.J.; Russell, P.J.; Li, Y. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br. J. Cancer, 2010, 103(7), 1008-1018.
[http://dx.doi.org/10.1038/sj.bjc.6605839] [PMID: 20736947]
[49]
Gray, A.L.; Coleman, D.T.; Shi, R.; Cardelli, J.A. Monocarboxylate transporter 1 contributes to growth factor-induced tumor cell migration independent of transporter activity. Oncotarget, 2016, 7(22), 32695-32706.
[http://dx.doi.org/10.18632/oncotarget.9016] [PMID: 27127175]
[50]
Colegio, O.R.; Chu, N.Q.; Szabo, A.L.; Chu, T.; Rhebergen, A.M.; Jairam, V.; Cyrus, N.; Brokowski, C.E.; Eisenbarth, S.C.; Phillips, G.M.; Cline, G.W.; Phillips, A.J.; Medzhitov, R. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature, 2014, 513(7519), 559-563.
[http://dx.doi.org/10.1038/nature13490] [PMID: 25043024]
[51]
Xu, H.; Lai, W.; Zhang, Y.; Liu, L.; Luo, X.; Zeng, Y.; Wu, H.; Lan, Q.; Chu, Z. Tumor-associated macrophage-derived IL-6 and IL-8 enhance invasive activity of LoVo cells induced by PRL-3 in a KCNN4 channel-dependent manner. BMC Cancer, 2014, 14, 330.
[http://dx.doi.org/10.1186/1471-2407-14-330] [PMID: 24885636]
[52]
Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; Johnson, J.; Gatenby, R.A.; Gillies, R.J. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res., 2013, 73(5), 1524-1535.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2796] [PMID: 23288510]
[53]
Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; Tonc, E.; Schreiber, R.D.; Pearce, E.J.; Pearce, E.L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6), 1229-1241.
[http://dx.doi.org/10.1016/j.cell.2015.08.016] [PMID: 26321679]
[54]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006] [PMID: 26771115]
[55]
Tao, L.; Huang, G.; Song, H.; Chen, Y.; Chen, L. Cancer associated fibroblasts: an essential role in the tumor microenvironment. Oncol. Lett., 2017, 14(3), 2611-2620.
[http://dx.doi.org/10.3892/ol.2017.6497] [PMID: 28927027]
[56]
Zhao, H.; Yang, L.; Baddour, J.; Achreja, A.; Bernard, V.; Moss, T.; Marini, J.C.; Tudawe, T. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 2016, 5e10250
[http://dx.doi.org/10.7554/elife.10250]] [PMID: 26920219]
[57]
Tan, H.W.S.; Sim, A.Y.L.; Long, Y.C. Glutamine metabolism regulates autophagy-dependent mTORC1 reactivation during amino acid starvation. Nat. Commun., 2017, 8(1), 338.
[http://dx.doi.org/10.1038/s41467-017-00369-y] [PMID: 28835610]
[58]
van der Vos, K.E.; Coffer, P.J. Glutamine metabolism links growth factor signaling to the regulation of autophagy. Autophagy, 2012, 8(12), 1862-1864.
[http://dx.doi.org/10.4161/auto.22152] [PMID: 22996802]
[59]
Corbet, C.; Draoui, N.; Polet, F.; Pinto, A.; Drozak, X.; Riant, O.; Feron, O. The SIRT1/HIF2α axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res., 2014, 74(19), 5507-5519.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0705] [PMID: 25085245]
[60]
Ko, Y.H.; Lin, Z.; Flomenberg, N.; Pestell, R.G.; Howell, A.; Sotgia, F.; Lisanti, M.P.; Martinez-Outschoorn, U.E. Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing chemotherapy resistance. Cancer Biol. Ther., 2011, 12(12), 1085-1097.
[http://dx.doi.org/10.4161/cbt.12.12.18671] [PMID: 22236876]
[61]
Eng, C.H.; Yu, K.; Lucas, J.; White, E.; Abraham, R.T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal., 2010, 3(119), ra31.
[http://dx.doi.org/10.1126/scisignal.2000911] [PMID: 20424262]
[62]
Garcia-Bermudez, J.; Baudrier, L.; La, K.; Zhu, X.G.; Fidelin, J.; Sviderskiy, V.O.; Papagiannakopoulos, T.; Molina, H.; Snuderl, M.; Lewis, C.A.; Possemato, R.L.; Birsoy, K. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol., 2018, 20(7), 775-781.
[http://dx.doi.org/10.1038/s41556-018-0118-z] [PMID: 29941933]
[63]
Bertero, T.; Oldham, W.M.; Grasset, E.M.; Bourget, I.; Boulter, E.; Pisano, S.; Hofman, P.; Bellvert, F.; Meneguzzi, G.; Bulavin, D.V.; Estrach, S.; Feral, C.C.; Chan, S.Y.; Bozec, A.; Gaggioli, C. Tumor-stroma mechanics coordinate amino acid availability to sustain tumor growth and malignancy. Cell Metab., 2019, 29(1), 124.e10-140.e10.
[http://dx.doi.org/10.1016/j.cmet.2018.09.012]] [PMID: 30293773]
[64]
Sullivan, L.B.; Gui, D.Y.; Hosios, A.M.; Bush, L.N.; Freinkman, E.; Vander Heiden, M.G. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell, 2015, 162(3), 552-563.
[http://dx.doi.org/10.1016/j.cell.2015.07.017] [PMID: 26232225]
[65]
Thornburg, J.M.; Nelson, K.K.; Clem, B.F.; Lane, A.N.; Arumugam, S.; Simmons, A.; Eaton, J.W.; Telang, S.; Chesney, J. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res., 2008, 10(5), R84.
[http://dx.doi.org/10.1186/bcr2154] [PMID: 18922152]
[66]
Patel, D.; Menon, D.; Bernfeld, E.; Mroz, V.; Kalan, S.; Loayza, D.; Foster, D.A. Aspartate rescues S-phase arrest caused by suppression of glutamine utilization in KRas-driven cancer cells. J. Biol. Chem., 2016, 291(17), 9322-9329.
[http://dx.doi.org/10.1074/jbc.M115.710145] [PMID: 26921316]
[67]
Labernadie, A.; Kato, T.; Brugués, A.; Serra-Picamal, X.; Derzsi, S.; Arwert, E.; Weston, A.; González-Tarragó, V.; Elosegui-Artola, A.; Albertazzi, L.; Alcaraz, J.; Roca-Cusachs, P.; Sahai, E.; Trepat, X. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat. Cell Biol., 2017, 19(3), 224-237.
[http://dx.doi.org/10.1038/ncb3478] [PMID: 28218910]
[68]
Dumont, N.; Liu, B.; Defilippis, R.A.; Chang, H.; Rabban, J.T.; Karnezis, A.N.; Tjoe, J.A.; Marx, J.; Parvin, B.; Tlsty, T.D. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia, 2013, 15(3), 249-262.
[http://dx.doi.org/10.1593/neo.121950] [PMID: 23479504]
[69]
Rupp, C.; Scherzer, M.; Rudisch, A.; Unger, C.; Haslinger, C.; Schweifer, N.; Artaker, M.; Nivarthi, H.; Moriggl, R.; Hengstschläger, M.; Kerjaschki, D.; Sommergruber, W.; Dolznig, H.; Garin-Chesa, P. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene, 2015, 34(7), 815-825.
[http://dx.doi.org/10.1038/onc.2014.18] [PMID: 24632618]
[70]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[71]
Giannoni, E.; Bianchini, F.; Masieri, L.; Serni, S.; Torre, E.; Calorini, L.; Chiarugi, P. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res., 2010, 70(17), 6945-6956.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0785] [PMID: 20699369]
[72]
Son, H.; Moon, A. Epithelial-mesenchymal transition and cell invasion. Toxicol. Res., 2010, 26(4), 245-252.
[http://dx.doi.org/10.5487/TR.2010.26.4.245] [PMID: 24278531]
[73]
Wu, D.; Zhuo, L.; Wang, X. Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors. Semin. Cell Dev. Biol., 2017, 64, 125-131.
[http://dx.doi.org/10.1016/j.semcdb.2016.11.003] [PMID: 27833036]
[74]
Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem., 2015, 6(4), 281-289.
[http://dx.doi.org/10.4331/wjbc.v6.i4.281] [PMID: 26629311]
[75]
Liu, C.; Yu, S.; Kappes, J.; Wang, J.; Grizzle, W.E.; Zinn, K.R.; Zhang, H.G. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood, 2007, 109(10), 4336-4342.
[http://dx.doi.org/10.1182/blood-2006-09-046201] [PMID: 17244679]
[76]
Cekic, C.; Day, Y.J.; Sag, D.; Linden, J. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res., 2014, 74(24), 7250-7259.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3583] [PMID: 25377469]
[77]
Gabrilovich, D.I.; Velders, M.P.; Sotomayor, E.M.; Kast, W.M. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol., 2001, 166(9), 5398-5406.
[http://dx.doi.org/10.4049/jimmunol.166.9.5398] [PMID: 11313376]
[78]
Lindau, D.; Gielen, P.; Kroesen, M.; Wesseling, P.; Adema, G.J. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology, 2013, 138(2), 105-115.
[http://dx.doi.org/10.1111/imm.12036] [PMID: 23216602]
[79]
Masiero, M.; Simões, F.C.; Han, H.D.; Snell, C.; Peterkin, T.; Bridges, E.; Mangala, L.S.; Wu, S.Y.; Pradeep, S.; Li, D.; Han, C.; Dalton, H.; Lopez-Berestein, G.; Tuynman, J.B.; Mortensen, N.; Li, J.L.; Patient, R.; Sood, A.K.; Banham, A.H.; Harris, A.L.; Buffa, F.M. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell, 2013, 24(2), 229-241.
[http://dx.doi.org/10.1016/j.ccr.2013.06.004] [PMID: 23871637]
[80]
Zumsteg, A.; Christofori, G. Corrupt policemen: inflammatory cells promote tumor angiogenesis. Curr. Opin. Oncol., 2009, 21(1), 60-70.
[http://dx.doi.org/10.1097/CCO.0b013e32831bed7e] [PMID: 19125020]
[81]
Mitra, A.K.; Zillhardt, M.; Hua, Y.; Tiwari, P.; Murmann, A.E.; Peter, M.E.; Lengyel, E. MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov., 2012, 2(12), 1100-1108.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0206] [PMID: 23171795]
[82]
Kojima, Y.; Acar, A.; Eaton, E.N.; Mellody, K.T.; Scheel, C.; Ben-Porath, I.; Onder, T.T.; Wang, Z.C.; Richardson, A.L.; Weinberg, R.A.; Orimo, A. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl. Acad. Sci. USA, 2010, 107(46), 20009-20014.
[http://dx.doi.org/10.1073/pnas.1013805107] [PMID: 21041659]
[83]
Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med., 2013, 19(11), 1423-1437.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[84]
O’Neill, L.A.; Pearce, E.J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med., 2016, 213(1), 15-23.
[http://dx.doi.org/10.1084/jem.20151570] [PMID: 26694970]
[85]
Macintyre, A.N.; Gerriets, V.A.; Nichols, A.G.; Michalek, R.D.; Rudolph, M.C.; Deoliveira, D.; Anderson, S.M.; Abel, E.D.; Chen, B.J.; Hale, L.P.; Rathmell, J.C. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab., 2014, 20(1), 61-72.
[http://dx.doi.org/10.1016/j.cmet.2014.05.004] [PMID: 24930970]
[86]
Penny, H.L.; Sieow, J.L.; Adriani, G.; Yeap, W.H.; Ee, P.S.C.; Luis, B.S.; Lee, B.; Lee, T.; Mak, S.Y.; Ho, Y.S.; Lam, K.P.; Ong, C.K.; Huang, R.Y.; Ginhoux, F.; Rotzschke, O.; Kamm, R.D.; Wong, S.C. Warburg metabolism in tumor-conditioned macrophages promotes metastasis in human pancreatic ductal adenocarcinoma. OncoImmunology, 2016, 5(8)e1191731
[http://dx.doi.org/10.1080/2162402X.2016.1191731] [PMID: 27622062]
[87]
Netea-Maier, R.T.; Smit, J.W.A.; Netea, M.G. Metabolic changes in tumor cells and tumor-associated macrophages: a mutual relationship. Cancer Lett., 2018, 413, 102-109.
[http://dx.doi.org/10.1016/j.canlet.2017.10.037] [PMID: 29111350]
[88]
Palmieri, E.M.; Menga, A.; Martín-Pérez, R.; Quinto, A.; Riera-Domingo, C.; De Tullio, G.; Hooper, D.C.; Lamers, W.H.; Ghesquière, B.; McVicar, D.W.; Guarini, A.; Mazzone, M.; Castegna, A. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep., 2017, 20(7), 1654-1666.
[http://dx.doi.org/10.1016/j.celrep.2017.07.054] [PMID: 28813676]
[89]
Yang, L.; Achreja, A.; Yeung, T.L.; Mangala, L.S.; Jiang, D.; Han, C.; Baddour, J.; Marini, J.C.; Ni, J.; Nakahara, R.; Wahlig, S.; Chiba, L.; Kim, S.H.; Morse, J.; Pradeep, S.; Nagaraja, A.S.; Haemmerle, M.; Kyunghee, N.; Derichsweiler, M.; Plackemeier, T.; Mercado-Uribe, I.; Lopez-Berestein, G.; Moss, T.; Ram, P.T.; Liu, J.; Lu, X.; Mok, S.C.; Sood, A.K.; Nagrath, D. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab., 2016, 24(5), 685-700.
[http://dx.doi.org/10.1016/j.cmet.2016.10.011] [PMID: 27829138]
[90]
Bailey, S.R.; Nelson, M.H.; Himes, R.A.; Li, Z.; Mehrotra, S.; Paulos, C.M. Th17 cells in cancer: the ultimate identity crisis. Front. Immunol., 2014, 5, 276.
[http://dx.doi.org/10.3389/fimmu.2014.00276] [PMID: 24987392]
[91]
Haabeth, O.A.; Lorvik, K.B.; Hammarström, C.; Donaldson, I.M.; Haraldsen, G.; Bogen, B.; Corthay, A. Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat. Commun., 2011, 2, 240.
[http://dx.doi.org/10.1038/ncomms1239] [PMID: 21407206]
[92]
Klysz, D.; Tai, X.; Robert, P.A.; Craveiro, M.; Cretenet, G.; Oburoglu, L.; Mongellaz, C.; Floess, S.; Fritz, V.; Matias, M.I.; Yong, C.; Surh, N.; Marie, J.C.; Huehn, J.; Zimmermann, V.; Kinet, S.; Dardalhon, V.; Taylor, N. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal., 2015, 8(396), ra97.
[http://dx.doi.org/10.1126/scisignal.aab2610] [PMID: 26420908]
[93]
Nakaya, M.; Xiao, Y.; Zhou, X.; Chang, J.H.; Chang, M.; Cheng, X.; Blonska, M.; Lin, X.; Sun, S.C. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity, 2014, 40(5), 692-705.
[http://dx.doi.org/10.1016/j.immuni.2014.04.007] [PMID: 24792914]
[94]
Johnson, M.O.; Wolf, M.M.; Madden, M.Z.; Andrejeva, G.; Sugiura, A.; Contreras, D.C.; Maseda, D.; Liberti, M.V.; Paz, K.; Kishton, R.J.; Johnson, M.E.; de Cubas, A.A.; Wu, P.; Li, G.; Zhang, Y.; Newcomb, D.C.; Wells, A.D.; Restifo, N.P.; Rathmell, W.K.; Locasale, J.W.; Davila, M.L.; Blazar, B.R.; Rathmell, J.C. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell, 2018, 175(7), 1780-1795.
[http://dx.doi.org/10.1016/j.cell.2018.10.001] [PMID: 30392958]
[95]
Fernald, K.; Kurokawa, M. Evading apoptosis in cancer. Trends Cell Biol., 2013, 23(12), 620-633.
[http://dx.doi.org/10.1016/j.tcb.2013.07.006] [PMID: 23958396]
[96]
Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30, 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[97]
Ouyang, L.; Shi, Z.; Zhao, S.; Wang, F.T.; Zhou, T.T.; Liu, B.; Bao, J.K. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif., 2012, 45(6), 487-498.
[http://dx.doi.org/10.1111/j.1365-2184.2012.00845.x] [PMID: 23030059]
[98]
Su, M.; Mei, Y.; Sinha, S. Role of the crosstalk between autophagy and apoptosis in cancer. J. Oncol., 2013, 2013102735
[http://dx.doi.org/10.1155/2013/102735] [PMID: 23840208]
[99]
Zhang, J. Autophagy and mitophagy in cellular damage control. Redox Biol., 2013, 1(1), 19-23.
[http://dx.doi.org/10.1016/j.redox.2012.11.008] [PMID: 23946931]
[100]
Choi, K.S. Autophagy and cancer. Exp. Mol. Med., 2012, 44(2), 109-120.
[http://dx.doi.org/10.3858/emm.2012.44.2.033] [PMID: 22257886]
[101]
Xu, Y.; Yu, H.; Qin, H.; Kang, J.; Yu, C.; Zhong, J.; Su, J.; Li, H.; Sun, L. Inhibition of autophagy enhances cisplatin cytotoxicity through endoplasmic reticulum stress in human cervical cancer cells. Cancer Lett., 2012, 314(2), 232-243.
[http://dx.doi.org/10.1016/j.canlet.2011.09.034] [PMID: 22019047]
[102]
Apel, A.; Herr, I.; Schwarz, H.; Rodemann, H.P.; Mayer, A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res., 2008, 68(5), 1485-1494.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0562] [PMID: 18316613]
[103]
Thomas, M.; Davis, T.; Loos, B.; Sishi, B.; Huisamen, B.; Strijdom, H.; Engelbrecht, A.M. Autophagy is essential for the maintenance of amino acids and ATP levels during acute amino acid starvation in MDAMB231 cells. Cell Biochem. Funct., 2018, 36(2), 65-79.
[http://dx.doi.org/10.1002/cbf.3318] [PMID: 29399832]
[104]
Kenific, C.M.; Thorburn, A.; Debnath, J. Autophagy and metastasis: another double-edged sword. Curr. Opin. Cell Biol., 2010, 22(2), 241-245.
[http://dx.doi.org/10.1016/j.ceb.2009.10.008] [PMID: 19945838]
[105]
Sharifi, M.N.; Mowers, E.E.; Drake, L.E.; Collier, C.; Chen, H.; Zamora, M.; Mui, S.; Macleod, K.F. Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep., 2016, 15(8), 1660-1672.
[http://dx.doi.org/10.1016/j.celrep.2016.04.065] [PMID: 27184837]
[106]
Cathcart, J.; Pulkoski-Gross, A.; Cao, J. Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Dis., 2015, 2(1), 26-34.
[http://dx.doi.org/10.1016/j.gendis.2014.12.002] [PMID: 26097889]
[107]
Zuo, J.H.; Zhu, W.; Li, M.Y.; Li, X.H.; Yi, H.; Zeng, G.Q.; Wan, X.X.; He, Q.Y.; Li, J.H.; Qu, J.Q.; Chen, Y.; Xiao, Z.Q. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J. Cell. Biochem., 2011, 112(9), 2508-2517.
[http://dx.doi.org/10.1002/jcb.23175] [PMID: 21557297]
[108]
Min, K.W.; Kim, D.H.; Do, S.I.; Kim, K.; Lee, H.J.; Chae, S.W.; Sohn, J.H.; Pyo, J.S.; Oh, Y.H.; Kim, W.S.; Lee, S.Y.; Oh, S.; Choi, S.H.; Park, Y.L.; Park, C.H. Expression patterns of stromal MMP-2 and tumoural MMP-2 and -9 are significant prognostic factors in invasive ductal carcinoma of the breast. APMIS, 2014, 122(12), 1196-1206.
[http://dx.doi.org/10.1111/apm.12285] [PMID: 24909183]
[109]
Deryugina, E.I.; Quigley, J.P. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol., 2015, 44-46, 94-112.
[http://dx.doi.org/10.1016/j.matbio.2015.04.004] [PMID: 25912949]
[110]
Vlaicu, P.; Mertins, P.; Mayr, T.; Widschwendter, P.; Ataseven, B.; Högel, B.; Eiermann, W.; Knyazev, P.; Ullrich, A. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator. BMC Cancer, 2013, 13, 197.
[http://dx.doi.org/10.1186/1471-2407-13-197] [PMID: 23597096]
[111]
Ye, X.Z.; Xu, S.L.; Xin, Y.H.; Yu, S.C.; Ping, Y.F.; Chen, L.; Xiao, H.L.; Wang, B.; Yi, L.; Wang, Q.L.; Jiang, X.F.; Yang, L.; Zhang, P.; Qian, C.; Cui, Y.H.; Zhang, X.; Bian, X.W. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway. J. Immunol., 2012, 189(1), 444-453.
[http://dx.doi.org/10.4049/jimmunol.1103248] [PMID: 22664874]
[112]
Morita, Y.; Zhang, R.; Leslie, M.; Adhikari, S.; Hasan, N.; Chervoneva, I.; Rui, H.; Tanaka, T. Pathologic evaluation of tumor-associated macrophage density and vessel inflammation in invasive breast carcinomas. Oncol. Lett., 2017, 14(2), 2111-2118.
[http://dx.doi.org/10.3892/ol.2017.6466] [PMID: 28789438]
[113]
Li, N. Platelets in cancer metastasis: to help the “villain” to do evil. Int. J. Cancer, 2016, 138(9), 2078-2087.
[http://dx.doi.org/10.1002/ijc.29847] [PMID: 26356352]
[114]
Palumbo, J.S.; Talmage, K.E.; Massari, J.V.; La Jeunesse, C.M.; Flick, M.J.; Kombrinck, K.W.; Jirousková, M.; Degen, J.L. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood, 2005, 105(1), 178-185.
[http://dx.doi.org/10.1182/blood-2004-06-2272] [PMID: 15367435]
[115]
Rachidi, S.; Metelli, A.; Riesenberg, B.; Wu, B.X.; Nelson, M.H.; Wallace, C.; Paulos, C.M.; Rubinstein, M.P.; Garrett-Mayer, E.; Hennig, M.; Bearden, D.W.; Yang, Y.; Liu, B.; Li, Z. Platelets subvert T cell immunity against cancer via GARP-TGFβ axis. Sci. Immunol., 2017, 2(11)eaai7911
[http://dx.doi.org/10.1126/sciimmunol.aai7911] [PMID: 28763790]
[116]
Maurer, S.; Kropp, K.N.; Klein, G.; Steinle, A.; Haen, S.P.; Walz, J.S.; Hinterleitner, C.; Märklin, M.; Kopp, H.G.; Salih, H.R. Platelet-mediated shedding of NKG2D ligands impairs NK cell immune-surveillance of tumor cells. OncoImmunology, 2017, 7(2)e1364827
[http://dx.doi.org/10.1080/2162402X.2017.1364827] [PMID: 29308299]
[117]
Guido, C.; Whitaker-Menezes, D.; Capparelli, C.; Balliet, R.; Lin, Z.; Pestell, R.G.; Howell, A.; Aquila, S.; Andò, S.; Martinez-Outschoorn, U.; Sotgia, F.; Lisanti, M.P. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle, 2012, 11(16), 3019-3035.
[http://dx.doi.org/10.4161/cc.21384] [PMID: 22874531]
[118]
Bellomo, C.; Caja, L.; Moustakas, A. Transforming growth factor β as regulator of cancer stemness and metastasis. Br. J. Cancer, 2016, 115(7), 761-769.
[http://dx.doi.org/10.1038/bjc.2016.255] [PMID: 27537386]
[119]
Ran, C.; Liu, H.; Hitoshi, Y.; Israel, M.A. Proliferation-independent control of tumor glycolysis by PDGFR-mediated AKT activation. Cancer Res., 2013, 73(6), 1831-1843.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2460] [PMID: 23322009]
[120]
Takemoto, A.; Okitaka, M.; Takagi, S.; Takami, M.; Sato, S.; Nishio, M.; Okumura, S.; Fujita, N. A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis. Sci. Rep., 2017, 7, 42186.
[http://dx.doi.org/10.1038/srep42186] [PMID: 28176852]
[121]
Domigan, C.K.; Warren, C.M.; Antanesian, V.; Happel, K.; Ziyad, S.; Lee, S.; Krall, A.; Duan, L.; Torres-Collado, A.X.; Castellani, L.W.; Elashoff, D.; Christofk, H.R.; van der Bliek, A.M.; Potente, M.; Iruela-Arispe, M.L. Autocrine VEGF maintains endothelial survival through regulation of metabolism and autophagy. J. Cell Sci., 2015, 128(12), 2236-2248.
[http://dx.doi.org/10.1242/jcs.163774] [PMID: 25956888]
[122]
Shi, S.; Xu, J.; Zhang, B.; Ji, S.; Xu, W.; Liu, J.; Jin, K.; Liang, D.; Liang, C.; Liu, L.; Liu, C.; Qin, Y.; Yu, X. VEGF Promotes glycolysis in pancreatic cancer via HIF1α up-regulation. Curr. Mol. Med., 2016, 16(4), 394-403.
[http://dx.doi.org/10.2174/1566524016666160316153623] [PMID: 26980697]
[123]
Zhan, P.; Ji, Y.N.; Yu, L.K. VEGF is associated with the poor survival of patients with prostate cancer: a meta-analysis. Transl. Androl. Urol., 2013, 2(2), 99-105.
[http://dx.doi.org/10.3978/j.issn.2223-4683.2013.06.03]] [PMID: 26816732]
[124]
Yang, X.; Zhang, Y.; Hosaka, K.; Andersson, P.; Wang, J.; Tholander, F.; Cao, Z.; Morikawa, H.; Tegnér, J.; Yang, Y.; Iwamoto, H.; Lim, S.; Cao, Y. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc. Natl. Acad. Sci. USA, 2015, 112(22), E2900-E2909.
[http://dx.doi.org/10.1073/pnas.1503500112] [PMID: 25991856]
[125]
Gay, L.J.; Felding-Habermann, B. Contribution of platelets to tumour metastasis. Nat. Rev. Cancer, 2011, 11(2), 123-134.
[http://dx.doi.org/10.1038/nrc3004] [PMID: 21258396]
[126]
Nguyen, D.X.; Bos, P.D.; Massagué, J. Metastasis: from dissemination to organ-specific colonization. Nat. Rev. Cancer, 2009, 9(4), 274-284.
[http://dx.doi.org/10.1038/nrc2622] [PMID: 19308067]
[127]
Kaplan, R.N.; Riba, R.D.; Zacharoulis, S.; Bramley, A.H.; Vincent, L.; Costa, C.; MacDonald, D.D.; Jin, D.K.; Shido, K.; Kerns, S.A.; Zhu, Z.; Hicklin, D.; Wu, Y.; Port, J.L.; Altorki, N.; Port, E.R.; Ruggero, D.; Shmelkov, S.V.; Jensen, K.K.; Rafii, S.; Lyden, D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 2005, 438(7069), 820-827.
[http://dx.doi.org/10.1038/nature04186] [PMID: 16341007]
[128]
Malanchi, I.; Santamaria-Martínez, A.; Susanto, E.; Peng, H.; Lehr, H.A.; Delaloye, J.F.; Huelsken, J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 2011, 481(7379), 85-89.
[http://dx.doi.org/10.1038/nature10694] [PMID: 22158103]
[129]
Hood, J.L.; San, R.S.; Wickline, S.A. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res., 2011, 71(11), 3792-3801.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4455] [PMID: 21478294]
[130]
Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer, 2007, 7(11), 834-846.
[http://dx.doi.org/10.1038/nrc2256] [PMID: 17957189]
[131]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634.
[http://dx.doi.org/10.1038/nrc.2016.71] [PMID: 27492215]
[132]
Newsholme, P.; Lima, M.M.; Procopio, J.; Pithon-Curi, T.C.; Doi, S.Q.; Bazotte, R.B.; Curi, R. Glutamine and glutamate as vital metabolites. Braz. J. Med. Biol. Res., 2003, 36(2), 153-163.
[http://dx.doi.org/10.1590/S0100-879X2003000200002] [PMID: 12563517]
[133]
Yuneva, M.; Zamboni, N.; Oefner, P.; Sachidanandam, R.; Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol., 2007, 178(1), 93-105.
[http://dx.doi.org/10.1083/jcb.200703099] [PMID: 17606868]
[134]
Yuneva, M. Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle, 2008, 7(14), 2083-2089.
[http://dx.doi.org/10.4161/cc.7.14.6256] [PMID: 18635953]
[135]
Li, Y.; Li, X.; Li, X.; Zhong, Y.; Ji, Y.; Yu, D.; Zhang, M.; Wen, J.G.; Zhang, H.; Goscinski, M.A.; Nesland, J.M.; Suo, Z. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence. Oncotarget, 2016, 7(33), 53837-53852.
[http://dx.doi.org/10.18632/oncotarget.10782] [PMID: 27462778]
[136]
Zacharias, N.M.; McCullough, C.; Shanmugavelandy, S.; Lee, J.; Lee, Y.; Dutta, P.; McHenry, J.; Nguyen, L.; Norton, W.; Jones, L.W.; Bhattacharya, P.K. Metabolic differences in glutamine utilization lead to metabolic vulnerabilities in prostate cancer. Sci. Rep., 2017, 7(1), 16159.
[http://dx.doi.org/10.1038/s41598-017-16327-z] [PMID: 29170516]
[137]
Yang, L.; Moss, T.; Mangala, L.S.; Marini, J.; Zhao, H.; Wahlig, S.; Armaiz-Pena, G.; Jiang, D.; Achreja, A.; Win, J.; Roopaimoole, R.; Rodriguez-Aguayo, C.; Mercado-Uribe, I.; Lopez-Berestein, G.; Liu, J.; Tsukamoto, T.; Sood, A.K.; Ram, P.T.; Nagrath, D. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol., 2014, 10, 728.
[http://dx.doi.org/10.1002/msb.20134892] [PMID: 24799285]
[138]
Shelton, L.M.; Huysentruyt, L.C.; Seyfried, T.N. Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int. J. Cancer, 2010, 127(10), 2478-2485.
[http://dx.doi.org/10.1002/ijc.25431] [PMID: 20473919]
[139]
Lee, S.Y.; Jeon, H.M.; Ju, M.K.; Jeong, E.K.; Kim, C.H.; Park, H.G.; Han, S.I.; Kang, H.S. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget, 2016, 7(7), 7925-7939.
[http://dx.doi.org/10.18632/oncotarget.6879] [PMID: 26771232]
[140]
Hao, Y.; Samuels, Y.; Li, Q.; Krokowski, D.; Guan, B.J.; Wang, C.; Jin, Z.; Dong, B.; Cao, B.; Feng, X.; Xiang, M.; Xu, C.; Fink, S.; Meropol, N.J.; Xu, Y.; Conlon, R.A.; Markowitz, S.; Kinzler, K.W.; Velculescu, V.E.; Brunengraber, H.; Willis, J.E.; LaFramboise, T.; Hatzoglou, M.; Zhang, G.F.; Vogelstein, B.; Wang, Z. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat. Commun., 2016, 7, 11971.
[http://dx.doi.org/10.1038/ncomms11971] [PMID: 27321283]
[141]
Spinelli, J.B.; Yoon, H.; Ringel, A.E.; Jeanfavre, S.; Clish, C.B.; Haigis, M.C. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science, 2017, 358(6365), 941-946.
[http://dx.doi.org/10.1126/science.aam9305] [PMID: 29025995]
[142]
Smith, B.; Schafer, X.L.; Ambeskovic, A.; Spencer, C.M.; Land, H.; Munger, J. Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells. Cell Rep., 2016, 17(3), 821-836.
[http://dx.doi.org/10.1016/j.celrep.2016.09.045] [PMID: 27732857]
[143]
Kadayifci, F.Z.; Zheng, S.; Pan, Y.X. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. Sci., 2018, 19(12)E4055
[http://dx.doi.org/10.3390/ijms19124055] [PMID: 30558203]
[144]
Martínez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Más, D.; Valdivié, M.; Hu, C.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 2017, 49(12), 2091-2098.
[http://dx.doi.org/10.1007/s00726-017-2494-2] [PMID: 28929442]
[145]
Ji, Y.; Nordgren, K.K.; Chai, Y.; Hebbring, S.J.; Jenkins, G.D.; Abo, R.P.; Peng, Y.; Pelleymounter, L.L.; Moon, I.; Eckloff, B.W.; Chai, X.; Zhang, J.; Fridley, B.L.; Yee, V.C.; Wieben, E.D.; Weinshilboum, R.M. Human liver methionine cycle: MAT1A and GNMT gene resequencing, functional genomics, and hepatic genotype-phenotype correlation. Drug Metab. Dispos., 2012, 40(10), 1984-1992.
[http://dx.doi.org/10.1124/dmd.112.046953] [PMID: 22807109]
[146]
Mentch, S.J.; Locasale, J.W. One-carbon metabolism and epigenetics: understanding the specificity. Ann. N. Y. Acad. Sci., 2016, 1363, 91-98.
[http://dx.doi.org/10.1111/nyas.12956] [PMID: 26647078]
[147]
Hansen, K.D.; Timp, W.; Bravo, H.C.; Sabunciyan, S.; Langmead, B.; McDonald, O.G.; Wen, B.; Wu, H.; Liu, Y.; Diep, D.; Briem, E.; Zhang, K.; Irizarry, R.A.; Feinberg, A.P. Increased methylation variation in epigenetic domains across cancer types. Nat. Genet., 2011, 43(8), 768-775.
[http://dx.doi.org/10.1038/ng.865] [PMID: 21706001]
[148]
Mentch, S.J.; Mehrmohamadi, M.; Huang, L.; Liu, X.; Gupta, D.; Mattocks, D.; Gómez Padilla, P.; Ables, G.; Bamman, M.M.; Thalacker-Mercer, A.E.; Nichenametla, S.N.; Locasale, J.W. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab., 2015, 22(5), 861-873.
[http://dx.doi.org/10.1016/j.cmet.2015.08.024] [PMID: 26411344]
[149]
Dai, Z.; Mentch, S.J.; Gao, X.; Nichenametla, S.N.; Locasale, J.W. Methionine metabolism influences genomic architecture and gene expression through H3K4me3 peak width. Nat. Commun., 2018, 9(1), 1955.
[http://dx.doi.org/10.1038/s41467-018-04426-y] [PMID: 29769529]
[150]
Locasale, J.W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer, 2013, 13(8), 572-583.
[http://dx.doi.org/10.1038/nrc3557] [PMID: 23822983]
[151]
Maddocks, O.D.; Labuschagne, C.F.; Adams, P.D.; Vousden, K.H. Serine metabolism supports the methionine cycle and DNA/RNA methylation through de novo ATP synthesis in cancer cells. Mol. Cell, 2016, 61(2), 210-221.
[http://dx.doi.org/10.1016/j.molcel.2015.12.014] [PMID: 26774282]
[152]
Xu, W.; Gao, L.; Shao, A.; Zheng, J.; Zhang, J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget, 2017, 8(53), 91030-91039.
[http://dx.doi.org/10.18632/oncotarget.19024] [PMID: 29207622]
[153]
Albers, E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5′-methylthioadenosine. IUBMB Life, 2009, 61(12), 1132-1142.
[http://dx.doi.org/10.1002/iub.278] [PMID: 19946895]
[154]
Morvan, D.; Demidem, A.; Guenin, S.; Madelmont, J.C. Methionine-dependence phenotype of tumors: metabolite profiling in a melanoma model using L-[methyl-13C]methionine and high-resolution magic angle spinning 1H-13C nuclear magnetic resonance spectroscopy. Magn. Reson. Med., 2006, 55(5), 984-996.
[http://dx.doi.org/10.1002/mrm.20869] [PMID: 16598721]
[155]
Jeon, H.; Kim, J.H.; Lee, E.; Jang, Y.J.; Son, J.E.; Kwon, J.Y.; Lim, T.G.; Kim, S.; Park, J.H.; Kim, J.E.; Lee, K.W. Methionine deprivation suppresses triple-negative breast cancer metastasis in vitro and in vivo. Oncotarget, 2016, 7(41), 67223-67234.
[http://dx.doi.org/10.18632/oncotarget.11615] [PMID: 27579534]
[156]
Fu, Y.M.; Yu, Z.X.; Li, Y.Q.; Ge, X.; Sanchez, P.J.; Fu, X.; Meadows, G.G. Specific amino acid dependency regulates invasiveness and viability of androgen-independent prostate cancer cells. Nutr. Cancer, 2003, 45(1), 60-73.
[http://dx.doi.org/10.1207/S15327914NC4501_8] [PMID: 12791506]
[157]
Sinha, R.; Cooper, T.K.; Rogers, C.J.; Sinha, I.; Turbitt, W.J.; Calcagnotto, A.; Perrone, C.E.; Richie, J.P. Jr. Dietary methionine restriction inhibits prostatic intraepithelial neoplasia in TRAMP mice. Prostate, 2014, 74(16), 1663-1673.
[http://dx.doi.org/10.1002/pros.22884] [PMID: 25250521]
[158]
Stabler, S.; Koyama, T.; Zhao, Z.; Martinez-Ferrer, M.; Allen, R.H.; Luka, Z.; Loukachevitch, L.V.; Clark, P.E.; Wagner, C.; Bhowmick, N.A. Serum methionine metabolites are risk factors for metastatic prostate cancer progression. PLoS One, 2011, 6(8)e22486
[http://dx.doi.org/10.1371/journal.pone.0022486] [PMID: 21853037]
[159]
McCarty, M.F.; Barroso-Aranda, J.; Contreras, F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med. Hypotheses, 2009, 72(2), 125-128.
[http://dx.doi.org/10.1016/j.mehy.2008.07.044] [PMID: 18789600]
[160]
Cavuoto, P.; Fenech, M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev., 2012, 38(6), 726-736.
[http://dx.doi.org/10.1016/j.ctrv.2012.01.004] [PMID: 22342103]
[161]
Sreekumar, A.; Poisson, L.M.; Rajendiran, T.M.; Khan, A.P.; Cao, Q.; Yu, J.; Laxman, B.; Mehra, R.; Lonigro, R.J.; Li, Y.; Nyati, M.K.; Ahsan, A.; Kalyana-Sundaram, S.; Han, B.; Cao, X.; Byun, J.; Omenn, G.S.; Ghosh, D.; Pennathur, S.; Alexander, D.C.; Berger, A.; Shuster, J.R.; Wei, J.T.; Varambally, S.; Beecher, C.; Chinnaiyan, A.M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231), 910-914.
[http://dx.doi.org/10.1038/nature07762] [PMID: 19212411]
[162]
Jentzmik, F.; Stephan, C.; Lein, M.; Miller, K.; Kamlage, B.; Bethan, B.; Kristiansen, G.; Jung, K. Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J. Urol., 2011, 185(2), 706-711.
[http://dx.doi.org/10.1016/j.juro.2010.09.077] [PMID: 21168877]
[163]
Khan, A.P.; Rajendiran, T.M.; Ateeq, B.; Asangani, I.A.; Athanikar, J.N.; Yocum, A.K.; Mehra, R.; Siddiqui, J.; Palapattu, G.; Wei, J.T.; Michailidis, G.; Sreekumar, A.; Chinnaiyan, A.M. The role of sarcosine metabolism in prostate cancer progression. Neoplasia, 2013, 15(5), 491-501.
[http://dx.doi.org/10.1593/neo.13314] [PMID: 23633921]
[164]
Martínez-Chantar, M.L.; Vázquez-Chantada, M.; Ariz, U.; Martínez, N.; Varela, M.; Luka, Z.; Capdevila, A.; Rodríguez, J.; Aransay, A.M.; Matthiesen, R.; Yang, H.; Calvisi, D.F.; Esteller, M.; Fraga, M.; Lu, S.C.; Wagner, C.; Mato, J.M. Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology, 2008, 47(4), 1191-1199.
[http://dx.doi.org/10.1002/hep.22159] [PMID: 18318442]
[165]
Cha, Y.J.; Kim, D.H.; Jung, W.H.; Koo, J.S. Expression of sarcosine metabolism-related proteins according to metastatic site in breast cancer. Int. J. Clin. Exp. Pathol., 2014, 7(11), 7824-7833.
[PMID: 25550822]
[166]
Yoon, J.K.; Kim, D.H.; Koo, J.S. Implications of differences in expression of sarcosine metabolism-related proteins according to the molecular subtype of breast cancer. J. Transl. Med., 2014, 12, 149.
[http://dx.doi.org/10.1186/1479-5876-12-149] [PMID: 24884785]
[167]
Heger, Z.; Gumulec, J.; Cernei, N.; Polanska, H.; Raudenska, M.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. Relation of exposure to amino acids involved in sarcosine metabolic pathway on behavior of non-tumor and malignant prostatic cell lines. Prostate, 2016, 76(7), 679-690.
[http://dx.doi.org/10.1002/pros.23159] [PMID: 26847870]
[168]
Struys, E.A.; Heijboer, A.C.; van Moorselaar, J.; Jakobs, C.; Blankenstein, M.A. Serum sarcosine is not a marker for prostate cancer. Ann. Clin. Biochem., 2010, 47(Pt 3), 282.
[http://dx.doi.org/10.1258/acb.2010.009270] [PMID: 20233752]
[169]
Jentzmik, F.; Stephan, C.; Miller, K.; Schrader, M.; Erbersdobler, A.; Kristiansen, G.; Lein, M.; Jung, K. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur. Urol., 2010, 58(1), 12-18.
[http://dx.doi.org/10.1016/j.eururo.2010.01.035] [PMID: 20117878]
[170]
Bohm, L.; Serafin, A.M.; Fernandez, P.; Watt, G.V.; Bouic, P.J.; Harvey, J. Plasma sarcosine does not distinguish early and advanced stages of prostate cancer. S. Afr. Med. J., 2012, 102(8), 677-679.
[http://dx.doi.org/10.7196/SAMJ.5768] [PMID: 22831945]
[171]
Kim, M.J.; Jung, W.H.; Koo, J.S. Expression of sarcosine metabolism-related proteins in estrogen receptor negative breast cancer according to the androgen receptor and HER-2 status. Int. J. Clin. Exp. Pathol., 2015, 8(7), 7967-7977.
[PMID: 26339363]
[172]
Okuno, S.; Sato, H.; Kuriyama-Matsumura, K.; Tamba, M.; Wang, H.; Sohda, S.; Hamada, H.; Yoshikawa, H.; Kondo, T.; Bannai, S. Role of cystine transport in intracellular glutathione level and cisplatin resistance in human ovarian cancer cell lines. Br. J. Cancer, 2003, 88(6), 951-956.
[http://dx.doi.org/10.1038/sj.bjc.6600786] [PMID: 12644836]
[173]
Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol., 2018, 217(7), 2291-2298.
[http://dx.doi.org/10.1083/jcb.201804161] [PMID: 29915025]
[174]
Tang, X.; Ding, C.K.; Wu, J.; Sjol, J.; Wardell, S.; Spasojevic, I.; George, D.; McDonnell, D.P.; Hsu, D.S.; Chang, J.T.; Chi, J.T. Cystine addiction of triple-negative breast cancer associated with EMT augmented death signaling. Oncogene, 2017, 36(30), 4235-4242.
[http://dx.doi.org/10.1038/onc.2016.394] [PMID: 27869167]
[175]
Tang, X.; Wu, J.; Ding, C.K.; Lu, M.; Keenan, M.M.; Lin, C.C.; Lin, C.A.; Wang, C.C.; George, D.; Hsu, D.S.; Chi, J.T. Cystine deprivation triggers programmed necrosis in VHL-deficient renal cell carcinomas. Cancer Res., 2016, 76(7), 1892-1903.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2328] [PMID: 26833124]
[176]
Jiang, Y.; Cao, Y.; Wang, Y.; Li, W.; Liu, X.; Lv, Y.; Li, X.; Mi, J. Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis. Theranostics, 2017, 7(4), 1036-1046.
[http://dx.doi.org/10.7150/thno.18005] [PMID: 28382174]
[177]
Cramer, S.L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S.E.; Rowlinson, S.; Zhang, Y.J.; Keating, M.J.; Huang, P.; DiGiovanni, J.; Georgiou, G.; Stone, E. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med., 2017, 23(1), 120-127.
[http://dx.doi.org/10.1038/nm.4232] [PMID: 27869804]
[178]
Zhang, S.M.; Willett, W.C.; Selhub, J.; Manson, J.E.; Colditz, G.A.; Hankinson, S.E. A prospective study of plasma total cysteine and risk of breast cancer. Cancer Epidemiol. Biomarkers Prev., 2003, 12(11 Pt 1), 1188-1193.
[PMID: 14652279]
[179]
Lin, J.; Lee, I.M.; Song, Y.; Cook, N.R.; Selhub, J.; Manson, J.E.; Buring, J.E.; Zhang, S.M. Plasma homocysteine and cysteine and risk of breast cancer in women. Cancer Res., 2010, 70(6), 2397-2405.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3648] [PMID: 20197471]
[180]
Murphy, G.; Fan, J.H.; Mark, S.D.; Dawsey, S.M.; Selhub, J.; Wang, J.; Taylor, P.R.; Qiao, Y.L.; Abnet, C.C. Prospective study of serum cysteine levels and oesophageal and gastric cancers in China. Gut, 2011, 60(5), 618-623.
[http://dx.doi.org/10.1136/gut.2010.225854] [PMID: 21242262]
[181]
Miranti, E.H.; Freedman, N.D.; Weinstein, S.J.; Abnet, C.C.; Selhub, J.; Murphy, G.; Diaw, L.; Männistö, S.; Taylor, P.R.; Albanes, D.; Stolzenberg-Solomon, R.Z. Prospective study of serum cysteine and cysteinylglycine and cancer of the head and neck, esophagus, and stomach in a cohort of male smokers. Am. J. Clin. Nutr., 2016, 104(3), 686-693.
[http://dx.doi.org/10.3945/ajcn.115.125799] [PMID: 27534643]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy