Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Fused Azolo-Quinoxalines: Candidates for Medicinal Chemistry. A Review of their Biological Applications

Author(s): Cindy Patinote, Natalina Cirnat, Pierre-Antoine Bonnet and Carine Deleuze-Masquéfa*

Volume 28, Issue 4, 2021

Published on: 06 February, 2020

Page: [712 - 749] Pages: 38

DOI: 10.2174/0929867327666200206114936

Price: $65

Abstract

Heterocyclic compounds hold a huge and recognized place in the field of medicinal chemistry thanks to their multiple biological activities. Their synthetic pathways allow their easy and rapid access due to different bond-forming methodologies and provide a huge amount of multi-functionalized compounds for drug delivery. The syntheses of heterocyclic compounds are today well known for the majority, described and reviewed in an extensive literature. In this review, we choose to gather and classify available information concerning the biological activities of quinoxaline-based compounds annulated at bond a containing one and more nitrogen atoms in the fused azole ring.

Keywords: Azolo-quinoxaline, anticancer, antiparasitic, antibacterial, neuromodulator, immunomodulator, antiviral, cardiomodulator, antiobesity.

[1]
Cheng, G.; Li, B.; Wang, C.; Zhang, H.; Liang, G.; Weng, Z.; Hao, H.; Wang, X.; Liu, Z.; Dai, M.; Wang, Y.; Yuan, Z. Systematic and molecular basis of the antibacterial action of Quinoxaline 1,4-Di-N-oxides against escherichia coli. PLoS One, 2015, 10(8)e0136450
[http://dx.doi.org/10.1371/journal.pone.0136450] [PMID: 26296207]
[2]
Vieira, M.; Pinheiro, C.; Fernandes, R.; Noronha, J.P.; Prudêncio, C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2- and 3-substituted derivatives. Microbiol. Res., 2014, 169(4), 287-293.
[http://dx.doi.org/10.1016/j.micres.2013.06.015] [PMID: 23928379]
[3]
Carta, A.; Piras, S.; Loriga, G.; Paglietti, G. Chemistry, biological properties and SAR analysis of quinoxalinones. Mini Rev. Med. Chem., 2006, 6(11), 1179-1200.
[http://dx.doi.org/10.2174/138955706778742713] [PMID: 17100630]
[4]
Ajani, O.O.; Obafemi, C.A.; Nwinyi, O.C.; Akinpelu, D.A. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg. Med. Chem., 2010, 18(1), 214-221.
[http://dx.doi.org/10.1016/j.bmc.2009.10.064] [PMID: 19948407]
[5]
Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Ancizu, S.; Villar, R.; Solano, B.; Moreno, E.; Torres, E.; Pérez, S.; Aldana, I.; Monge, A. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem. Biol. Drug Des., 2011, 77(4), 255-267.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01076.x] [PMID: 21244639]
[6]
El-Sabbagh, O.I.; El-Sadek, M.E.; Lashine, S.M.; Yassin, S.H.; El-Nabtity, S.M. Synthesis of new 2(1H)-quino-xalinone derivatives for antimicrobial and antiinflammatory evaluation. Med. Chem. Res., 2009, 18(9), 782.
[http://dx.doi.org/10.1007/s00044-009-9203-y]
[7]
Rodrigues, F.A.R.; Bomfim, I. da S.; Cavalcanti, B.C. Pessoa, Cdo.Ó.; Wardell, J.L.; Wardell, S.M.; Pinheiro, A.C.; Kaiser, C.R.; Nogueira, T.C.; Low, J.N.; Gomes, L.R.; de Souza, M.V. Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl)quinoxalines, a promising and potent new class of anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(3), 934-939.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.074] [PMID: 24398294]
[8]
Abbas, H-A.S.; Al-Marhabi, A.R.; Eissa, S.I.; Ammar, Y.A. Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anticancer activity as inhibitors of c-Met kinase. Bioorg. Med. Chem., 2015, 23(20), 6560-6572.
[http://dx.doi.org/10.1016/j.bmc.2015.09.023] [PMID: 26420384]
[9]
Mashevskaya, I.V.; Makhmudov, R.R.; Aleksandrova, G.A.; Golovnina, O.V.; Duvalov, A.V.; Maslivets, A.N. Synthesis and study of the antibacterial and analgesic activity of 3-acyl-1,2,4,5-tetrahydro-[1,2-a]quinoxaline-1,2,4-triones. Pharm. Chem. J., 2001, 35(4), 196-198.
[http://dx.doi.org/10.1023/A:1010475811489]
[10]
Abu-Hashem, A.A.; Gouda, M.A.; Badria, F.A. Synthesis of some new pyrimido[2′,1′:2,3]thiazolo[4,5-b]quinoxaline derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(5), 1976-1981.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.042] [PMID: 20149490]
[11]
Pan, Y.; Li, P.; Xie, S.; Tao, Y.; Chen, D.; Dai, M.; Hao, H.; Huang, L.; Wang, Y.; Wang, L.; Liu, Z.; Yuan, Z. Synthesis, 3D-QSAR analysis and biological evaluation of quinoxaline 1,4-di-N-oxide derivatives as antituberculosis agents. Bioorg. Med. Chem. Lett., 2016, 26(16), 4146-4153.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.066] [PMID: 27426298]
[12]
Moreno, E.; Ancizu, S.; Pérez-Silanes, S.; Torres, E.; Aldana, I.; Monge, A. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Eur. J. Med. Chem., 2010, 45(10), 4418-4426.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.036] [PMID: 20656380]
[13]
Puligheddu, M.; Pillolla, G.; Melis, M.; Lecca, S.; Marrosu, F.; De Montis, M.G.; Scheggi, S.; Carta, G.; Murru, E.; Aroni, S.; Muntoni, A.L.; Pistis, M. PPAR-alpha agonists as novel antiepileptic drugs: preclinical findings. PLoS One, 2013, 8(5)e64541
[http://dx.doi.org/10.1371/journal.pone.0064541] [PMID: 23724059]
[14]
Rogawski, M.A. Revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr., 2011, 11(2), 56-63.
[http://dx.doi.org/10.5698/1535-7511-11.2.56] [PMID: 21686307]
[15]
Xu, B.; Sun, Y.; Guo, Y.; Cao, Y.; Yu, T. Synthesis and biological evaluation of N4-(hetero)arylsulfonylquinoxa-linones as HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2009, 17(7), 2767-2774.
[http://dx.doi.org/10.1016/j.bmc.2009.02.039] [PMID: 19269831]
[16]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117(Suppl. C), 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[17]
Dudash, J., Jr; Zhang, Y.; Moore, J.B.; Look, R.; Liang, Y.; Beavers, M.P.; Conway, B.R.; Rybczynski, P.J.; Demarest, K.T. Synthesis and evaluation of 3-anilino-quinoxalinones as glycogen phosphorylase inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(21), 4790-4793.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.021] [PMID: 16143521]
[18]
Yang, Y.; Zhang, S.; Wu, B.; Ma, M.; Chen, X.; Qin, X.; He, M.; Hussain, S.; Jing, C.; Ma, B.; Zhu, C. An efficient synthesis of quinoxalinone derivatives as potent inhibitors of aldose reductase. ChemMedChem, 2012, 7(5), 823-835.
[http://dx.doi.org/10.1002/cmdc.201200054] [PMID: 22416050]
[19]
Xia, Q-H.; Hu, W.; Li, C.; Wu, J-F.; Yang, L.; Han, X-M.; Shen, Y-M.; Li, Z-Y.; Li, X. Design, synthesis, biological evaluation and molecular docking study on peptidomimetic analogues of XK469. Eur. J. Med. Chem., 2016, 124(Suppl. C), 311-325.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.010] [PMID: 27597408]
[20]
Hajri, M.; Esteve, M-A.; Khoumeri, O.; Abderrahim, R.; Terme, T.; Montana, M.; Vanelle, P. Synthesis and evaluation of in vitro antiproliferative activity of new ethyl 3-(arylethynyl)quinoxaline-2-carboxylate and pyrido[4,3-b]quinoxalin-1(2H)-one derivatives. Eur. J. Med. Chem., 2016, 124(Suppl. C), 959-966.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.025] [PMID: 27770736]
[21]
Russo, E.; Gitto, R.; Citraro, R.; Chimirri, A.; De Sarro, G. New AMPA antagonists in epilepsy. Expert Opin. Investig. Drugs, 2012, 21(9), 1371-1389.
[http://dx.doi.org/10.1517/13543784.2012.705277] [PMID: 22788917]
[22]
Nguyen, L.; Matsumoto, R.R. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Behav. Brain Res., 2015, 295(Suppl. C), 26-34.
[http://dx.doi.org/10.1016/j.bbr.2015.03.024] [PMID: 25804358]
[23]
Coe, J.W.; Rollema, H.; O’Neill, B.T.; Chantix, TM/ ChampixTM (varenicline tartrate), a nicotinic acetylcholine receptor partial agonist as a smoking cessation aid. Annu. Rep. Med. Chem., 2009, 44, 71-101.
[http://dx.doi.org/10.1016/S0065-7743(09)04404-2]
[24]
Møllegaard, N.E.; Bailly, C.; Waring, M.J.; Nielsen, P.E. Quinoxaline antibiotics enhance peptide nucleic acid binding to double-stranded DNA. Biochemistry, 2000, 39(31), 9502-9507.
[http://dx.doi.org/10.1021/bi000254x] [PMID: 10924146]
[25]
Kong, D.; Park, E.J.; Stephen, A.G.; Calvani, M.; Cardellina, J.H.; Monks, A.; Fisher, R.J.; Shoemaker, R.H.; Melillo, G. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res., 2005, 65(19), 9047-9055.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1235] [PMID: 16204079]
[26]
Doležal, M.; Kráľová, K. Synthesis and evaluation of pyrazine derivatives with herbicidal activity in: Herbicides, Theory and Applications; Soloneski, S; Larramendy, M.L., Ed.; Ed InTech, 2011, pp. 581-610.
[http://dx.doi.org/10.5772/13482]
[27]
Sanchez-Bayo, F.; Goka, K. Pesticide residues and bees--a risk assessment. PLoS One, 2014, 9(4)e94482
[http://dx.doi.org/10.1371/journal.pone.0094482] [PMID: 24718419]
[28]
Gwinn, M.R.; Whipkey, D.L.; Weston, A. The effect of oxythioquinox exposure on normal human mammary epithelial cell gene expression: a microarray analysis study. Environ. Health, 2004, 3(1), 9.
[http://dx.doi.org/10.1186/1476-069X-3-9] [PMID: 15387888]
[29]
Obot, I.B.; Obi-Egbedi, N.O. Indeno-1-One [2,3-b]quinoxaline as an effective inhibitor for the corrosion of mild steel in 0.5M H2SO4 solution. Mater. Chem. Phys., 2010, 122(2), 325-328.
[http://dx.doi.org/10.1016/j.matchemphys.2010.03.037]
[30]
Justin Thomas, K.R.; Velusamy, M.; Lin, J.T.; Chuen, C-H.; Tao, Y-T. Chromophore-labeled quinoxaline derivatives as efficient electroluminescent materials. Chem. Mater., 2005, 17(7), 1860-1866.
[http://dx.doi.org/10.1021/cm047705a]
[31]
Iyer, A.; Bjorgaard, J.; Anderson, T.; Köse, M.E. Quinoxaline-based semiconducting polymers: effect of fluorination on the photophysical, thermal and charge transport properties. Macromolecules, 2012, 45(16), 6380-6389.
[http://dx.doi.org/10.1021/ma3009788]
[32]
Hinsberg, O. Ueber Chinoxaline. Ber. Dtsch. Chem. Ges., 1884, 17(1), 318-323.
[http://dx.doi.org/10.1002/cber.18840170193]
[33]
Kôrner, G. Ueber einige umwandlungen des orthonitranilins und der orthodiamine. Ber. Dtsch. Chem. Ges., 1884, 17(2), 572-573.
[34]
Saifina, D.F.; Mamedov, V.A. New and modified classical methods for the synthesis of quinoxalines. Russ. Chem. Rev., 2010, 79(5), 351.
[http://dx.doi.org/10.1070/RC2010v079n05ABEH004089]
[35]
Mamedov, V.A. Quinoxalines: Synthesis, Reactions, Mechanisms and Structure; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-29773-6]
[36]
Mamedov, V.A.; Zhukova, N.A. Progress in Quinoxaline Synthesis. In: Progress in Heterocyclic Chemistry; Elsevier Inc, 2013, 25, pp. 1 -45.
[http://dx.doi.org/10.1016/B978-0-08-099406-2.00001-7]
[37]
Cheesman, G.; Tuck, B. A new synthesis of pyrrolo (1, 2-a) quinoxalines. Chem. Ind., 1965, 31, 1382-1385.
[38]
Mamedov, V.A.; Kalinin, A.A. Pyrrolo[1,2-a]quinoxalines based on quinoxalines. Chem. Heterocycl. Compd., 2010, 46(6), 641-664.
[http://dx.doi.org/10.1007/s10593-010-0565-3]
[39]
Kalinin, A.A.; Mamedov, V.A. Pyrrolo[1,2-a]quinoxalines based on pyrroles. Chem. Heterocycl. Compd., 2011, 46(12), 1423.
[http://dx.doi.org/10.1007/s10593-011-0688-1]
[40]
Mamedov, V.A.; Kalinin, A.A.; Gubaidullin, A.T.; Litvinov, I.A.; Azancheev, N.M.; Levin, Y.A. Fused polycyclic nitrogen-containing heterocycles: VI. Pyrrolo [1,2-a]quinoxalines. Russ. J. Org. Chem., 2004, 40(1), 114-123.
[http://dx.doi.org/10.1023/B:RUJO.0000034919.73409.b3]
[41]
Huang, A.; Liu, F.; Zhan, C.; Liu, Y.; Ma, C. One-pot synthesis of pyrrolo[1,2-a]quinoxalines. Org. Biomol. Chem., 2011, 9(21), 7351-7357.
[http://dx.doi.org/10.1039/c1ob05936j] [PMID: 21894335]
[42]
Piltan, M.; Moradi, L.; Abasi, G.; Zarei, S.A. A one-pot catalyst-free synthesis of functionalized pyrrolo[1,2-a]quinoxaline derivatives from benzene-1,2-diamine, acetylenedicarboxylates and ethyl bromopyruvate. Beilstein J. Org. Chem., 2013, 9, 510-515.
[http://dx.doi.org/10.3762/bjoc.9.55] [PMID: 23616791]
[43]
Alleca, S.; Corona, P.; Loriga, M.; Paglietti, G.; Loddo, R.; Mascia, V.; Busonera, B.; La Colla, P. Quinoxaline chemistry. Part 16. 4-substituted anilino and 4-substituted phenoxymethyl pyrrolo[1,2-a]quinoxalines and N-[4-(pyrrolo [1,2-a]quinoxalin-4-yl)amino and hydroxymethyl]benzoyl glutamates. Synthesis and evaluation of in vitro biological activity. Farmaco, 2003, 58(9), 639-650.
[http://dx.doi.org/10.1016/S0014-827X(03)00101-0] [PMID: 13679156]
[44]
Grande, F.; Aiello, F.; Grazia, O.D.; Brizzi, A.; Garofalo, A.; Neamati, N. Synthesis and antitumor activities of a series of novel quinoxalinhydrazides. Bioorg. Med. Chem., 2007, 15(1), 288-294.
[http://dx.doi.org/10.1016/j.bmc.2006.09.073] [PMID: 17085054]
[45]
Plasencia, C.; Grande, F.; Oshima, T.; Cao, X.; Yamada, R.; Sanchez, T.; Aiello, F.; Garofalo, A.; Neamati, N. Discovery of a novel quinoxalinhydrazide with a broad-spectrum anticancer activity. Cancer Biol. Ther., 2009, 8(5), 458-465.
[http://dx.doi.org/10.4161/cbt.8.5.7741] [PMID: 19221468]
[46]
Li, Q.; Zhu, G-D. Targeting serine/threonine protein kinase B/Akt and cell-cycle checkpoint kinases for treating cancer. Curr. Top. Med. Chem., 2002, 2(9), 939-971.
[http://dx.doi.org/10.2174/1568026023393318] [PMID: 12171565]
[47]
Desplat, V.; Geneste, A.; Begorre, M-A.; Fabre, S.B.; Brajot, S.; Massip, S.; Thiolat, D.; Mossalayi, D.; Jarry, C.; Guillon, J. Synthesis of new pyrrolo[1,2-a]quinoxaline derivatives as potential inhibitors of Akt kinase. J. Enzyme Inhib. Med. Chem., 2008, 23(5), 648-658.
[http://dx.doi.org/10.1080/14756360802205448] [PMID: 18821254]
[48]
Desplat, V.; Moreau, S.; Gay, A.; Fabre, S.B.; Thiolat, D.; Massip, S.; Macky, G.; Godde, F.; Mossalayi, D.; Jarry, C.; Guillon, J. Synthesis and evaluation of the antiproliferative activity of novel pyrrolo[1,2-a]quinoxaline derivatives, potential inhibitors of Akt kinase. Part II. J. Enzyme Inhib. Med. Chem., 2010, 25(2), 204-215.
[http://dx.doi.org/10.3109/14756360903169881] [PMID: 20222763]
[49]
Desplat, V.; Vincenzi, M.; Lucas, R.; Moreau, S.; Savrimoutou, S.; Rubio, S.; Pinaud, N.; Bigat, D.; Enriquez, E.; Marchivie, M.; Routier, S.; Sonnet, P.; Rossi, F.; Ronga, L.; Guillon, J. Synthesis and antiproliferative effect of ethyl 4-[4-(4-substituted piperidin-1-yl)]benzylpyrrolo[1,2-a]quinoxalinecarboxylate derivatives on human leukemia cells. ChemMedChem, 2017, 12(12), 940-953.
[http://dx.doi.org/10.1002/cmdc.201700049] [PMID: 28218826]
[50]
Guillon, J.; Le Borgne, M.; Rimbault, C.; Moreau, S.; Savrimoutou, S.; Pinaud, N.; Baratin, S.; Marchivie, M.; Roche, S.; Bollacke, A.; Pecci, A.; Alvarez, L.; Desplat, V.; Jose, J. Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2. Eur. J. Med. Chem., 2013, 65, 205-222.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.051] [PMID: 23711832]
[51]
Bonhert, J.A. Antimicrobial development and efflux pump inhibitors in: Efflux-Mediated Antimicrobial Resistance in Bacteria: Mechanisms, Regulation and Clinical Implications; Li, X-Z.; Elkins, C.A. Zgurskaya H.I. (Eds.); Springer; , 2016, pp. 755-795.
[http://dx.doi.org/10.1007/978-3-319-39658-3]
[52]
Vidaillac, C.; Guillon, J.; Moreau, S.; Arpin, C.; Lagardère, A.; Larrouture, S.; Dallemagne, P.; Caignard, D-H.; Quentin, C.; Jarry, C. Synthesis of new 4-[2-(alkylamino) ethylthio]pyrrolo[1,2-a]quinoxaline and 5-[2-(alkylamino) ethylthio]pyrrolo[1,2-a]thieno[3,2-e]pyrazine derivatives, as potential bacterial multidrug resistance pump inhibitors. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 620-631.
[http://dx.doi.org/10.1080/14756360701485406] [PMID: 18035830]
[53]
Guillon, J.; Reynolds, R.C.; Leger, J-M.; Guie, M-A.; Massip, S.; Dallemagne, P.; Jarry, C. Synthesis and preliminary in vitro evaluation of antimycobacterial activity of new pyrrolo[1,2-a] quinoxaline-carboxylic acid hydrazide derivatives. J. Enzyme Inhib. Med. Chem., 2004, 19(6), 489-495.
[http://dx.doi.org/10.1080/14756360412331280464] [PMID: 15662953]
[54]
Keivanloo, A.; Soozani, A.; Bakherad, M.; Mirzaee, M.; Rudbari, H.A.; Bruno, G. Development of an unexpected reaction pathway for the synthesis of 1,2,4-trisubstituted pyrrolo[1,2-a]quinoxalines through palladium-catalyzed cascade reactions. Tetrahedron, 2017, 73(12), 1633-1639.
[http://dx.doi.org/10.1016/j.tet.2017.02.018]
[55]
de Koning, H.P. Drug resistance in protozoan parasites. Emerging Top. Life Sci., 2017, 1(6), 627-632.
[http://dx.doi.org/10.1042/ETLS20170113]
[56]
Guillon, J.; Forfar, I.; Mamani-Matsuda, M.; Desplat, V.; Saliège, M.; Thiolat, D.; Massip, S.; Tabourier, A.; Léger, J-M.; Dufaure, B.; Haumont, G.; Jarry, C.; Mossalayi, D. Synthesis, analytical behaviour and biological evaluation of new 4-substituted pyrrolo[1,2-a]quinoxalines as antileishmanial agents. Bioorg. Med. Chem., 2007, 15(1), 194-210.
[http://dx.doi.org/10.1016/j.bmc.2006.09.068] [PMID: 17049253]
[57]
Guillon, J.; Forfar, I.; Desplat, V.; Fabre, S.B.; Thiolat, D.; Massip, S.; Carrie, H.; Mossalayi, D.; Jarry, C. Synthesis of new 4-(E)-alkenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents by Suzuki-Miyaura cross-coupling reactions. J. Enzyme Inhib. Med. Chem., 2007, 22(5), 541-549.
[http://dx.doi.org/10.1080/14756360701425089] [PMID: 18035821]
[58]
Ronga, L.; Del Favero, M.; Cohen, A.; Soum, C.; Le Pape, P.; Savrimoutou, S.; Pinaud, N.; Mullié, C.; Daulouede, S.; Vincendeau, P.; Farvacques, N.; Agnamey, P.; Pagniez, F.; Hutter, S.; Azas, N.; Sonnet, P.; Guillon, J. Design, synthesis and biological evaluation of novel 4-alkapolyenyl-pyrrolo[1,2-a]quinoxalines as antileishmanial agents--part III. Eur. J. Med. Chem., 2014, 81, 378-393.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.037] [PMID: 24858543]
[59]
Guillon, J.; Dumoulin, H.; Dallemagne, P.; Reynolds, R.; Rault, S. Synthesis and antituberculosis activity of new phenylpyrrolo[1, 2-a]quinoxalinylpyrrole carboxylic acid derivatives. Pharm. Pharmacol. Commun., 1998, 4(1), 33-38.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb00314.x]]
[60]
Guillon, J.; Boulouard, M.; Lisowski, V.; Stiebing, S.; Lelong, V.; Dallemagne, P.; Rault, S. Synthesis of new 2-(aminomethyl)-4-phenylpyrrolo[1,2-a]-quinoxalines and their preliminary in-vivo central dopamine antagonist activity evaluation in mice. J. Pharm. Pharmacol., 2000, 52(11), 1369-1375.
[http://dx.doi.org/10.1211/0022357001777522] [PMID: 11186245]
[61]
Prunier, H.; Rault, S.; Lancelot, J-C.; Robba, M.; Renard, P.; Delagrange, P.; Pfeiffer, B.; Caignard, D-H.; Misslin, R.; Guardiola-Lemaitre, B.; Hamon, M. Novel and selective partial agonists of 5-HT3 receptors. 2. Synthesis and biological evaluation of piperazinopyridopyrrolopyrazines, piperazinopyrroloquinoxalines and piperazinopyridopyrroloquinoxalines. J. Med. Chem., 1997, 40(12), 1808-1819.
[http://dx.doi.org/10.1021/jm960501o] [PMID: 9191957]
[62]
Guillon, J.; Dallemagne, P.; Pfeiffer, B.; Renard, P.; Manechez, D.; Kervran, A.; Rault, S. Synthesis of new pyrrolo[1,2-a]quinoxalines: potential non-peptide glucagon receptor antagonists. Eur. J. Med. Chem., 1998, 33(4), 293-308.
[http://dx.doi.org/10.1016/S0223-5234(98)80063-9]
[63]
Guillon, J.; Grellier, P.; Labaied, M.; Sonnet, P.; Léger, J-M.; Déprez-Poulain, R.; Forfar-Bares, I.; Dallemagne, P.; Lemaître, N.; Péhourcq, F.; Rochette, J.; Sergheraert, C.; Jarry, C. Synthesis, antimalarial activity, and molecular modeling of new pyrrolo[1,2-a]quinoxalines, bispyrrolo [1,2-a]quinoxalines, bispyrido[3,2-e]pyrrolo[1,2-a]pyrazines, and bispyrrolo[1,2-a]thieno[3,2-e]pyrazines. J. Med. Chem., 2004, 47(8), 1997-2009.
[http://dx.doi.org/10.1021/jm0310840] [PMID: 15055999]
[64]
Guillon, J.; Cohen, A.; Gueddouda, N.M.; Das, R.N.; Moreau, S.; Ronga, L.; Savrimoutou, S.; Basmaciyan, L.; Monnier, A.; Monget, M.; Rubio, S.; Garnerin, T.; Azas, N.; Mergny, J.L.; Mullié, C.; Sonnet, P. Design, synthesis and antimalarial activity of novel bisN-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropylamine derivatives. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 547-563.
[http://dx.doi.org/10.1080/14756366.2016.1268608] [PMID: 28114821]
[65]
Guillon, J.; Moreau, S.; Mouray, E.; Sinou, V.; Forfar, I.; Fabre, S.B.; Desplat, V.; Millet, P.; Parzy, D.; Jarry, C.; Grellier, P. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity. Bioorg. Med. Chem., 2008, 16(20), 9133-9144.
[http://dx.doi.org/10.1016/j.bmc.2008.09.038] [PMID: 18819813]
[66]
Guillon, J.; Mouray, E.; Moreau, S.; Mullié, C.; Forfar, I.; Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.; Léger, J.M.; Gosmann, G.; Jarry, C.; Déléris, G.; Sonnet, P.; Grellier, P. New ferrocenic pyrrolo[1,2-a]quinoxaline derivatives: synthesis, and in vitro antimalarial activity--Part II. Eur. J. Med. Chem., 2011, 46(6), 2310-2326.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.014] [PMID: 21458112]
[67]
Primas, N.; Suzanne, P.; Verhaeghe, P.; Hutter, S.; Kieffer, C.; Laget, M.; Cohen, A.; Broggi, J.; Lancelot, J-C.; Lesnard, A.; Dallemagne, P.; Rathelot, P.; Rault, S.; Vanelle, P.; Azas, N. Synthesis and in vitro evaluation of 4-trichloromethylpyrrolo[1,2-a]quinoxalines as new antiplasmodial agents. Eur. J. Med. Chem., 2014, 83, 26-35.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.014] [PMID: 24946216]
[68]
Sharma, A.X.; Quittner-Strom, E.B.; Lee, Y.; Johnson, J.A.; Martin, S.A.; Yu, X.; Li, J.; Lu, J.; Cai, Z.; Chen, S.; Wang, M.Y.; Zhang, Y.; Pearson, M.J.; Dorn, A.C.; McDonald, J.G.; Gordillo, R.; Yan, H.; Thai, D.; Wang, Z.V.; Unger, R.H.; Holland, W.L. Glucagon receptor antagonism improves glucose metabolism and cardiac function by promoting AMP-mediated protein kinase in diabetic mice. Cell Rep., 2018, 22(7), 1760-1773.
[http://dx.doi.org/10.1016/j.celrep.2018.01.065] [PMID: 29444429]
[69]
Sapse, A-M.; Lawton, S.; Rothchild, R.; Unson, C. An ab initio study of non-peptide glucagon receptor antagonists. Theocam, 2003, 638(1-3), 135-145.
[http://dx.doi.org/10.1016/j.theochem.2003.07.001]]
[70]
Pertwee, R.G. The pharmacology of cannabinoid receptors and their ligands: an overview. Int. J. Obes., 2006, 30(Suppl. 1), S13-S18.
[http://dx.doi.org/10.1038/sj.ijo.0803272] [PMID: 16570099]
[71]
Szabó, G.; Kiss, R.; Páyer-Lengyel, D.; Vukics, K.; Szikra, J.; Baki, A.; Molnár, L.; Fischer, J.; Keserű, G.M. Hit-to-lead optimization of pyrrolo[1,2-a]quinoxalines as novel cannabinoid type 1 receptor antagonists. Bioorg. Med. Chem. Lett., 2009, 19(13), 3471-3475.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.010] [PMID: 19457667]
[72]
Campiani, G.; Aiello, F.; Fabbrini, M.; Morelli, E.; Ramunno, A.; Armaroli, S.; Nacci, V.; Garofalo, A.; Greco, G.; Novellino, E.; Maga, G.; Spadari, S.; Bergamini, A.; Ventura, L.; Bongiovanni, B.; Capozzi, M.; Bolacchi, F.; Marini, S.; Coletta, M.; Guiso, G.; Caccia, S. Quinoxalinylethylpyridylthioureas (QXPTs) as potent non-nucleoside HIV-1 reverse transcriptase (RT) inhibitors. Further SAR studies and identification of a novel orally bioavailable hydrazine-based antiviral agent. J. Med. Chem., 2001, 44(3), 305-315.
[http://dx.doi.org/10.1021/jm0010365] [PMID: 11462972]
[73]
Thompson, A.J.; Lummis, S.C.R. 5-HT3 receptors. Curr. Pharm. Des., 2006, 12(28), 3615-3630.
[http://dx.doi.org/10.2174/138161206778522029] [PMID: 17073663]
[74]
Campiani, G.; Morelli, E.; Gemma, S.; Nacci, V.; Butini, S.; Hamon, M.; Novellino, E.; Greco, G.; Cagnotto, A.; Goegan, M.; Cervo, L.; Dalla Valle, F.; Fracasso, C.; Caccia, S.; Mennini, T. Pyrroloquinoxaline derivatives as high-affinity and selective 5-HT(3) receptor agonists: synthesis, further structure-activity relationships, and biological studies. J. Med. Chem., 1999, 42(21), 4362-4379.
[http://dx.doi.org/10.1021/jm990151g] [PMID: 10543880]
[75]
Campiani, G.; Butini, S.; Fattorusso, C.; Trotta, F.; Franceschini, S.; De Angelis, M.; Sandager, N. Novel Aryl Piperazine Derivatives With Medical Utility. US, 2009, 2009/0238761, A1.
[76]
Butini, S.; Budriesi, R.; Hamon, M.; Morelli, E.; Gemma, S.; Brindisi, M.; Borrelli, G.; Novellino, E.; Fiorini, I.; Ioan, P.; Chiarini, A.; Cagnotto, A.; Mennini, T.; Fracasso, C.; Caccia, S.; Campiani, G. Novel, potent and selective quinoxaline-based 5-HT(3) receptor ligands. 1. Further structure-activity relationships and pharmacological characterization. J. Med. Chem., 2009, 52(21), 6946-6950.
[http://dx.doi.org/10.1021/jm901126m] [PMID: 19831400]
[77]
Morelli, E.; Gemma, S.; Budriesi, R.; Campiani, G.; Novellino, E.; Fattorusso, C.; Catalanotti, B.; Coccone, S.S.; Ros, S.; Borrelli, G.; Persico, M.; Fiorini, I.; Nacci, V.; Ioan, P.; Chiarini, A.; Hamon, M.; Cagnotto, A.; Mennini, T.; Fracasso, C.; Colovic, M.; Caccia, S.; Butini, S. Specific targeting of peripheral serotonin 5-HT(3) receptors. Synthesis, biological investigation, and structure-activity relationships. J. Med. Chem., 2009, 52(11), 3548-3562.
[http://dx.doi.org/10.1021/jm900018b] [PMID: 19425598]
[78]
Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine receptors: the state of the art. Physiol. Rev., 2018, 98(3), 1591-1625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[79]
Schann, S.; Mayer, S.; Gardan, S. Pyrrolo[1,2-a]quioxaline derivatives as adenosine A3 receptor modulators and uses thereof. US 2009/0093476 A1 2009.
[80]
Heine, H.W.; Brooker, A.C. The isomerization of aziridine derivatives. VI. The rearrangement of some 2-(1-aziridinyl). Quinoxalines. J. Org. Chem., 1962, 27(8), 2943-2944.
[http://dx.doi.org/10.1021/jo01055a522]
[81]
Mamedov, V.A.; Kalinin, A.A. Advances in the Synthesis of Imidazo[1,5-a]- and Imidazo. [1,2-a]Quinoxalines. Russ. Chem. Rev., 2014, 83(9), 820-847.
[http://dx.doi.org/10.1070/RC2014v083n09ABEH004424]
[82]
Liu, X.; Winey, M. The MPS1 family of protein kinases. Annu. Rev. Biochem., 2012, 81(1), 561-585.
[http://dx.doi.org/10.1146/annurev-biochem-061611-090435] [PMID: 22482908]
[83]
Koppitz, M.; Bader, B.; Bömer, U.; Kreft, B.; Lienau, P.; Marquardt, T.; Prechtl, S.; Siemeister, G.; Wegscheid-Gerlach, C. Substituted Imidazoquinoxalines. US 8,729,082 B2, 2014.
[84]
Moarbess, G.; Deleuze-Masquefa, C.; Bonnard, V.; Gayraud-Paniagua, S.; Vidal, J-R.; Bressolle, F.; Pinguet, F.; Bonnet, P-A. In vitro and in vivo anti-tumoral activities of imidazo[1,2-a]quinoxaline, imidazo[1,5-a]quinoxaline, and pyrazolo[1,5-a]quinoxaline derivatives. Bioorg. Med. Chem., 2008, 16(13), 6601-6610.
[http://dx.doi.org/10.1016/j.bmc.2008.05.022] [PMID: 18513976]
[85]
Deleuze-Masquefa, C.; Moarbess, G.; Khier, S.; David, N.; Gayraud-Paniagua, S.; Bressolle, F.; Pinguet, F.; Bonnet, P-A. New imidazo[1,2-a]quinoxaline derivatives: synthesis and in vitro activity against human melanoma. Eur. J. Med. Chem., 2009, 44(9), 3406-3411.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.007] [PMID: 19278757]
[86]
Khier, S.; Deleuze-Masquéfa, C.; Moarbess, G.; Gattacceca, F.; Margout, D.; Solassol, I.; Cooper, J-F.; Pinguet, F.; Bonnet, P-A.; Bressolle, F.M.M. Pharmacology of EAPB0203, a novel imidazo[1,2-a]quinoxaline derivative with anti-tumoral activity on melanoma. Eur. J. Pharm. Sci., 2010, 39(1-3), 23-29.
[http://dx.doi.org/10.1016/j.ejps.2009.10.006] [PMID: 19854270]
[87]
Courbet, A.; Bec, N.; Constant, C.; Larroque, C.; Pugniere, M.; El Messaoudi, S.; Zghaib, Z.; Khier, S.; Deleuze-Masquefa, C.; Gattacceca, F. Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One, 2017, 12(8)e0182022
[http://dx.doi.org/10.1371/journal.pone.0182022] [PMID: 28797090]
[88]
Nabbouh, A.I.; Hleihel, R.S.; Saliba, J.L.; Karam, M.M.; Hamie, M.H.; Wu, H.J.M.; Berthier, C.P.; Tawil, N.M.; Bonnet, P-A.A.; Deleuze-Masquefa, C.; El Hajj, H.A. Imidazoquinoxaline derivative EAPB0503: A promising drug targeting mutant nucleophosmin 1 in acute myeloid leukemia. Cancer, 2017, 123(9), 1662-1673.
[http://dx.doi.org/10.1002/cncr.30515] [PMID: 28055106]
[89]
Chouchou, A.; Patinote, C.; Cuq, P.; Bonnet, P-A.; Deleuze-Masquéfa, C. Imidazo[1,2-a]quinoxalines derivatives grafted with amino acids: synthesis and evaluation on A375 melanoma cells. Molecules, 2018, 23(11)E2987
[http://dx.doi.org/10.3390/molecules23112987] [PMID: 30445763]
[90]
Deleuze-Masquefa, C.; Bonnet, P.A.; Cuq, P.; Patinote, C. New imidazo[1,2-a]quinoxalines and derivates thereof for the treatment of cancer. W.O. Patent 2016107895 A1 2018.
[91]
Moarbess, G.; El-Hajj, H.; Kfoury, Y.; El-Sabban, M.E.; Lepelletier, Y.; Hermine, O.; Deleuze-Masquéfa, C.; Bonnet, P-A.; Bazarbachi, A. EAPB0203, a member of the imidazoquinoxaline family, inhibits growth and induces caspase-dependent apoptosis in T-cell lymphomas and HTLV-I-associated adult T-cell leukemia/lymphoma. Blood, 2008, 111(7), 3770-3777.
[http://dx.doi.org/10.1182/blood-2007-11-121913] [PMID: 18218850]
[92]
Saliba, J.; Deleuze-Masquéfa, C.; Iskandarani, A.; El Eit, R.; Hmadi, R.; Mahon, F-X.; Bazarbachi, A.; Bonnet, P-A.; Nasr, R. EAPB0503, a novel imidazoquinoxaline derivative, inhibits growth and induces apoptosis in chronic myeloid leukemia cells. Anticancer Drugs, 2014, 25(6), 624-632.
[PMID: 24463483]
[93]
Zghaib, Z.; Guichou, J-F.; Vappiani, J.; Bec, N.; Hadj-Kaddour, K.; Vincent, L-A.; Paniagua-Gayraud, S.; Larroque, C.; Moarbess, G.; Cuq, P.; Kassab, I.; Deleuze-Masquéfa, C.; Diab-Assaf, M.; Bonnet, P.A. New imidazoquinoxaline derivatives: Synthesis, biological evaluation on melanoma, effect on tubulin polymerization and structure-activity relationships. Bioorg. Med. Chem., 2016, 24(11), 2433-2440.
[http://dx.doi.org/10.1016/j.bmc.2016.04.004] [PMID: 27094151]
[94]
Khier, S.; Gattacceca, F.; El Messaoudi, S.; Lafaille, F.; Deleuze-Masquéfa, C.; Bompart, J.; Cooper, J-F.; Solassol, I.; Pinguet, F.; Bonnet, P-A.; Bressolle, F.M. Metabolism and pharmacokinetics of EAPB0203 and EAPB0503, two imidazoquinoxaline compounds previously shown to have antitumoral activity on melanoma and T-lymphomas. Drug Metab. Dispos., 2010, 38(10), 1836-1847.
[http://dx.doi.org/10.1124/dmd.110.034579] [PMID: 20660102]
[95]
Puar, Y.R.; Shanmugam, M.K.; Fan, L.; Arfuso, F.; Sethi, G.; Tergaonkar, V. Evidence for the involvement of the master transcription factor NF-KB in cancer initiation and progression. Biomedicines, 2018, 6(3)E82
[http://dx.doi.org/10.3390/biomedicines6030082] [PMID: 30060453]
[96]
Richmond, A.; Yang, J.; Amiri, K.; Dhawan, P. Imidazoquinoxaline compound for the treatment of melanoma. U.S. Patent 0025419 A1 2006.
[97]
Cuní, S.; Pérez-Aciego, P.; Pérez-Chacón, G.; Vargas, J.A.; Sánchez, A.; Martín-Saavedra, F.M.; Ballester, S.; García-Marco, J.; Jordá, J.; Durántez, A. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia, 2004, 18(8), 1391-1400.
[http://dx.doi.org/10.1038/sj.leu.2403398] [PMID: 15175625]
[98]
Furman, R.R.; Asgary, Z.; Mascarenhas, J.O.; Liou, H.C.; Schattner, E.J. Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J. Immunol., 2000, 164(4), 2200-2206.
[http://dx.doi.org/10.4049/jimmunol.164.4.2200] [PMID: 10657675]
[99]
López-Guerra, M.; Roué, G.; Pérez-Galán, P.; Alonso, R.; Villamor, N.; Montserrat, E.; Campo, E.; Colomer, D. p65 activity and ZAP-70 status predict the sensitivity of chronic lymphocytic leukemia cells to the selective IkappaB kinase inhibitor BMS-345541. Clin. Cancer Res., 2009, 15(8), 2767-2776.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2382] [PMID: 19351760]
[100]
Berger, A.; Quast, S-A.; Plötz, M.; Kammermeier, A.; Eberle, J. Sensitization of melanoma cells for TRAIL-induced apoptosis by BMS-345541 correlates with altered phosphorylation and activation of Bax. Cell Death Dis., 2013, 4(1)e477
[http://dx.doi.org/10.1038/cddis.2012.198] [PMID: 23348591]
[101]
Jani, T.S.; DeVecchio, J.; Mazumdar, T.; Agyeman, A.; Houghton, J.A. Inhibition of NF-kappaB signaling by quinacrine is cytotoxic to human colon carcinoma cell lines and is synergistic in combination with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or oxaliplatin. J. Biol. Chem., 2010, 285(25), 19162-19172.
[http://dx.doi.org/10.1074/jbc.M109.091645] [PMID: 20424169]
[102]
Falschlehner, C.; Emmerich, C.H.; Gerlach, B.; Walczak, H. TRAIL signalling: decisions between life and death. Int. J. Biochem. Cell Biol., 2007, 39(7-8), 1462-1475.
[http://dx.doi.org/10.1016/j.biocel.2007.02.007] [PMID: 17403612]
[103]
Ehrhardt, H.; Fulda, S.; Schmid, I.; Hiscott, J.; Debatin, K-M.; Jeremias, I. TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB. Oncogene, 2003, 22(25), 3842-3852.
[http://dx.doi.org/10.1038/sj.onc.1206520] [PMID: 12813457]
[104]
Franco, A.V.; Zhang, X.D.; Van Berkel, E.; Sanders, J.E.; Zhang, X.Y.; Thomas, W.D.; Nguyen, T.; Hersey, P. The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J. Immunol., 2001, 166(9), 5337-5345.
[http://dx.doi.org/10.4049/jimmunol.166.9.5337] [PMID: 11313369]
[105]
Ammann, J.U.; Haag, C.; Kasperczyk, H.; Debatin, K-M.; Fulda, S. Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-kappaB inhibition. Int. J. Cancer, 2009, 124(6), 1301-1311.
[http://dx.doi.org/10.1002/ijc.24068] [PMID: 19065652]
[106]
Mori, N.; Yamada, Y.; Ikeda, S.; Yamasaki, Y.; Tsukasaki, K.; Tanaka, Y.; Tomonaga, M.; Yamamoto, N.; Fujii, M. Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood, 2002, 100(5), 1828-1834.
[http://dx.doi.org/10.1182/blood-2002-01-0151] [PMID: 12176906]
[107]
Mori, N.; Fujii, M.; Iwai, K.; Ikeda, S.; Yamasaki, Y.; Hata, T.; Yamada, Y.; Tanaka, Y.; Tomonaga, M.; Yamamoto, N. Constitutive activation of transcription factor AP-1 in primary adult T-cell leukemia cells. Blood, 2000, 95(12), 3915-3921.
[PMID: 10845928]
[108]
Schwabe, R.F.; Schnabl, B.; Kweon, Y.O.; Brenner, D.A. CD40 activates NF-kappa B and c-Jun N-terminal kinase and enhances chemokine secretion on activated human hepatic stellate cells. J. Immunol., 2001, 166(11), 6812-6819.
[http://dx.doi.org/10.4049/jimmunol.166.11.6812] [PMID: 11359840]
[109]
Hironaka, N.; Mochida, K.; Mori, N.; Maeda, M.; Yamamoto, N.; Yamaoka, S. Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells. Neoplasia, 2004, 6(3), 266-278.
[http://dx.doi.org/10.1593/neo.03388] [PMID: 15153339]
[110]
Agbottah, E.; Yeh, W-I.; Berro, R.; Klase, Z.; Pedati, C.; Kehn-Hall, K.; Wu, W.; Kashanchi, F. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways. AIDS Res. Ther., 2008, 5(1), 12.
[http://dx.doi.org/10.1186/1742-6405-5-12] [PMID: 18544167]
[111]
Grimaldo, S.; Tian, F.; Li, L-Y. Sensitization of endothelial cells to VEGI-induced apoptosis by inhibiting the NF-kappaB pathway. Apoptosis, 2009, 14(6), 788-795.
[http://dx.doi.org/10.1007/s10495-009-0351-9] [PMID: 19418226]
[112]
Moarbess, G.; Guichou, J-F.; Paniagua-Gayraud, S.; Chouchou, A.; Marcadet, O.; Leroy, F.; Ruédas, R.; Cuq, P.; Deleuze-Masquéfa, C.; Bonnet, P-A. New IKK inhibitors: Synthesis of new imidazo[1,2-a]quinoxaline derivatives using microwave assistance and biological evaluation as IKK inhibitors. Eur. J. Med. Chem., 2016, 115, 268-274.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.006] [PMID: 27017554]
[113]
Liu, C-H.; Wang, B.; Li, W-Z.; Yun, L-H.; Liu, Y.; Su, R-B.; Li, J.; Liu, H. Design, synthesis, and biological evaluation of novel 4-alkylamino-1-hydroxymethylimidazo[1,2-a]quinoxalines as adenosine A(1) receptor antagonists. Bioorg. Med. Chem., 2004, 12(17), 4701-4707.
[http://dx.doi.org/10.1016/j.bmc.2004.06.026] [PMID: 15358296]
[114]
Ceccarelli, S.; D’Alessandro, A.; Prinzivalli, M.; Zanarella, S. Imidazo[1,2-a]quinoxalin-4-amines: a novel class of nonxanthine a1-adenosine receptor antagonists. Eur. J. Med. Chem., 1998, 33(12), 943-955.
[http://dx.doi.org/10.1016/S0223-5234(99)80019-1]
[115]
Potschka, H.; Löscher, W.; Wlaź, P.; Behl, B.; Hofmann, H.P.; Treiber, H-J.; Szabo, L. LU 73068, a new non-NMDA and glycine/NMDA receptor antagonist: pharmacological characterization and comparison with NBQX and L-701,324 in the kindling model of epilepsy. Br. J. Pharmacol., 1998, 125(6), 1258-1266.
[http://dx.doi.org/10.1038/sj.bjp.0702172] [PMID: 9863655]
[116]
Deleuze-Masquéfa, C.; Gerebtzoff, G.; Subra, G.; Fabreguettes, J-R.; Ovens, A.; Carraz, M.; Strub, M-P.; Bompart, J.; George, P.; Bonnet, P-A. Design and synthesis of novel imidazo[1,2-a]quinoxalines as PDE4 inhibitors. Bioorg. Med. Chem., 2004, 12(5), 1129-1139.
[http://dx.doi.org/10.1016/j.bmc.2003.11.034] [PMID: 14980625]
[117]
Parra, S.; Laurent, F.; Subra, G.; Deleuze-Masquefa, C.; Benezech, V.; Fabreguettes, J.; Vidal, J.; Pocock, T.; Elliott, K.; Small, R.; Escale, R.; Michel, A.; Chapat, J.; Bonnet, P. Imidazo[1,2-a]quinoxalines: synthesis and cyclic nucleotide phosphodiesterase inhibitory activity. Eur. J. Med. Chem., 2001, 36(3), 255-264.
[http://dx.doi.org/10.1016/S0223-5234(01)01213-2] [PMID: 11337104]
[118]
Li, B.; Cociorva, O.M.; Nomanbhoy, T.; Weissig, H.; Li, Q.; Nakamura, K.; Liyanage, M.; Zhang, M.C.; Shih, A.Y.; Aban, A.; Hu, Y.; Cajica, J.; Pham, L.; Kozarich, J.W.; Shreder, K.R. Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(18), 5217-5222.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.087] [PMID: 23916259]
[119]
Sutton, J.; Feng, X.; Valiante, N.; Lan, J. Imidazoquinoxaline Compounds as Immunomodulators. EP 2 357 184 B1 2015.
[120]
Mamedov, V.A. Quinoxalines: Synthesis, Reactions, Mechanisms and Structure; Springer, 2016.
[http://dx.doi.org/10.1007/978-3-319-29773-6]
[121]
Joshi, G.; Chauhan, M.; Kumar, R.; Thakur, A.; Sharma, S.; Singh, R.; Wani, A.A.; Sharon, A.; Bharatam, P.V.; Kumar, R. Cyclocondensation reactions of an electron deactivated 2-aminophenyl tethered imidazole with mono/1,2-biselectrophiles: synthesis and DFT studies on the rationalisation of imidazo[1,2-a]quinoxaline versus benzo[f]imidazo [1,5-a][1,3,5]triazepine selectivity switches. Org. Chem. Front., 2018, 5(24), 3526-3533.
[http://dx.doi.org/10.1039/C8QO00706C]
[122]
Ager, I.R.; Barnes, A.C.; Danswan, G.W.; Hairsine, P.W.; Kay, D.P.; Kennewell, P.D.; Matharu, S.S.; Miller, P.; Robson, P.; Rowlands, D.A. Synthesis and oral antiallergic activity of carboxylic acids derived from imidazo[2,1-c][1,4] benzoxazines, imidazo[1,2-a]quinolines, imidazo[1,2-a]quinoxalines, imidazo[1,2-a]quinoxalinones, pyrrolo[1,2-a]quinoxalinones, pyrrolo[2,3-a]quinoxalinones, and imidazo[2,1-b]benzothiazoles. J. Med. Chem., 1988, 31(6), 1098-1115.
[http://dx.doi.org/10.1021/jm00401a009] [PMID: 2897466]
[123]
MacMaster, J.F.; Dambach, D.M.; Lee, D.B.; Berry, K.K.; Qiu, Y.; Zusi, F.C.; Burke, J.R. An inhibitor of IkappaB kinase, BMS-345541, blocks endothelial cell adhesion molecule expression and reduces the severity of dextran sulfate sodium-induced colitis in mice. Inflamm. Res., 2003, 52(12), 508-511.
[http://dx.doi.org/10.1007/s00011-003-1206-4] [PMID: 14991079]
[124]
Lorenz, W.; Buhrmann, C.; Mobasheri, A.; Lueders, C.; Shakibaei, M. Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: implications for the development of rheumatoid arthritis. Arthritis Res. Ther., 2013, 15(5), R111.
[http://dx.doi.org/10.1186/ar4291] [PMID: 24020912]
[125]
GHO | By category | Number of cases of cutaneous leishmaniasis reported - Data by country. Available at: http://apps.who.int/gho/data/view.main.NTDLEISHCNUMvv (accessed Jul 15, 2019)
[126]
Testerman, T.L.; Gerster, J.F.; Imbertson, L.M.; Reiter, M.J.; Miller, R.L.; Gibson, S.J.; Wagner, T.L.; Tomai, M.A. Cytokine induction by the immunomodulators imiquimod and S-27609. J. Leukoc. Biol., 1995, 58(3), 365-372.
[http://dx.doi.org/10.1002/jlb.58.3.365] [PMID: 7665993]
[127]
Seeberger, J.; Daoud, S.; Pammer, J. Transient effect of topical treatment of cutaneous leishmaniasis with imiquimod. Int. J. Dermatol., 2003, 42(7), 576-579.
[http://dx.doi.org/10.1046/j.1365-4362.2003.01955.x] [PMID: 12839616]
[128]
Firooz, A.; Khamesipour, A.; Ghoorchi, M.H.; Nassiri-Kashani, M.; Eskandari, S.E.; Khatami, A.; Hooshmand, B.; Gorouhi, F.; Rashighi-Firoozabadi, M.; Dowlati, Y. Imiquimod in combination with meglumine antimoniate for cutaneous leishmaniasis: a randomized assessor-blind controlled trial. Arch. Dermatol., 2006, 142(12), 1575-1579.
[http://dx.doi.org/10.1001/archderm.142.12.1575] [PMID: 17178983]
[129]
Arevalo, I.; Ward, B.; Miller, R.; Meng, T.C.; Najar, E.; Alvarez, E.; Matlashewski, G.; Llanos-Cuentas, A. Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin. Infect. Dis., 2001, 33(11), 1847-1851.
[http://dx.doi.org/10.1086/324161] [PMID: 11692295]
[130]
El Hajj, R.; Bou Youness, H.; Lachaud, L.; Bastien, P.; Masquefa, C.; Bonnet, P-A.; El Hajj, H.; Khalifeh, I. EAPB0503: an imiquimod analog with potent in vitro activity against cutaneous leishmaniasis caused by Leishmania major and Leishmania tropica. PLoS Negl. Trop. Dis., 2018, 12(11)e0006854
[http://dx.doi.org/10.1371/journal.pntd.0006854] [PMID: 30462645]
[131]
King, F.E.; Clark-Lewis, J.W. 682. The structures of some supposed azetid-2 : 4-diones. Part III. The “alloxan-5-o-dimethylaminoanil” of rudy and cramer and its alkali hydrolysis product. J. Chem. Soc., 1951, 3080-3085.
[http://dx.doi.org/10.1039/JR9510003080]
[132]
Benkovic, S.J.; Barrows, T.H.; Farina, P.R. Models for the tetrahydrofolic acid. IV. Reactions of amines with formamidinium tetrahydroquinoxaline analogs. J. Am. Chem. Soc., 1973, 95(25), 8414-8420.
[http://dx.doi.org/10.1021/ja00806a036]
[133]
Jacobsen, E.J.; TenBrink, R.E.; Stelzer, L.S.; Belonga, K.L.; Carter, D.B.; Im, H.K.; Im, W.B.; Sethy, V.H.; Tang, A.H.; VonVoigtlander, P.F.; Petke, J.D. High-affinity partial agonist imidazo[1,5-a]quinoxaline amides, carbamates, and ureas at the gamma-aminobutyric acid A/benzodia-zepine receptor complex. J. Med. Chem., 1996, 39(1), 158-175.
[http://dx.doi.org/10.1021/jm940765f] [PMID: 8568803]
[134]
Danswan, G.W.; Hairsine, P.W.; Rowlands, D.A.; Taylor, J.B.; Westwood, R. Synthesis and reactions of some novel imidazobenzoxazines and related systems. J. Chem. Soc., Perkin Trans. 1, 1982, 0(0), 1049-1058.
[http://dx.doi.org/10.1039/p19820001049]
[135]
Chen, B-C.; Zhao, R.; Bednarz, M.S.; Wang, B.; Sundeen, J.E.; Barrish, J.C. A new strategy for the construction of the imidazo[1,5-a]quinoxalin-4-one ring system and its application to the efficient synthesis of BMS-238497, a novel and potent Lck inhibitor. J. Org. Chem., 2004, 69(3), 977-979.
[http://dx.doi.org/10.1021/jo0355348] [PMID: 14750833]
[136]
Sundeen, J.E.; Chen, P.; Chen, B-C.; Bednarz, M.S. Imidazoquinoxalinones, Heterocyclic-Substituted Imidazopyrazinones, Imidazoquinoxalines and Heterocyclic-Substituted Imidazopyrazines. U.S. Patent 180898 A1 2004.
[137]
Pierre, F.; Regan, C.F.; Chevrel, M-C.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Rice, W.G.; Ryckman, D.M. Novel potent dual inhibitors of CK2 and Pim kinases with antiproliferative activity against cancer cells. Bioorg. Med. Chem. Lett., 2012, 22(9), 3327-3331.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.099] [PMID: 22460033]
[138]
Pierre, F.; Stefan, E.; Nédellec, A-S.; Chevrel, M-C.; Regan, C.F.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Anderes, K.; Ryckman, D.M. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6] naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett., 2011, 21(22), 6687-6692.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.059] [PMID: 21982499]
[139]
Niiro, H.; Clark, E.A. Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol., 2002, 2(12), 945-956.
[http://dx.doi.org/10.1038/nri955] [PMID: 12461567]
[140]
Kim, K-H.; Maderna, A.; Schnute, M.E.; Hegen, M.; Mohan, S.; Miyashiro, J.; Lin, L.; Li, E.; Keegan, S.; Lussier, J.; Wrocklage, C.; Nickerson-Nutter, C.L.; Wittwer, A.J.; Soutter, H.; Caspers, N.; Han, S.; Kurumbail, R.; Dunussi-Joannopoulos, K.; Douhan, J., III; Wissner, A. Imidazo[1,5-a]quinoxalines as irreversible BTK inhibitors for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2011, 21(21), 6258-6263.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.008] [PMID: 21958547]
[141]
Ellmeier, W.; Jung, S.; Sunshine, M.J.; Hatam, F.; Xu, Y.; Baltimore, D.; Mano, H.; Littman, D.R.; Severe, B. Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J. Exp. Med., 2000, 192(11), 1611-1624.
[http://dx.doi.org/10.1084/jem.192.11.1611] [PMID: 11104803]
[142]
Molina, T.J.; Kishihara, K.; Siderovski, D.P.; van Ewijk, W.; Narendran, A.; Timms, E.; Wakeham, A.; Paige, C.J.; Hartmann, K-U.; Veillette, A. Profound block in thymocyte development in mice lacking p56lck. Nature, 1992, 357(6374), 161-164.
[http://dx.doi.org/10.1038/357161a0] [PMID: 1579166]
[143]
Straus, D.B.; Weiss, A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell, 1992, 70(4), 585-593.
[http://dx.doi.org/10.1016/0092-8674(92)90428-F] [PMID: 1505025]
[144]
Chan, A.C.; Desai, D.M.; Weiss, A. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol., 1994, 12, 555-592.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.003011] [PMID: 8011291]
[145]
Chen, P.; Iwanowicz, E.J.; Norris, D.; Gu, H.H.; Lin, J.; Moquin, R.V.; Das, J.; Wityak, J.; Spergel, S.H.; de Fex, H.; Pang, S.; Pitt, S.; Shen, D.R.; Schieven, G.L.; Barrish, J.C. Synthesis and SAR of novel imidazoquinoxaline-based Lck inhibitors: improvement of cell potency. Bioorg. Med. Chem. Lett., 2002, 12(21), 3153-3156.
[http://dx.doi.org/10.1016/S0960-894X(02)00677-7] [PMID: 12372522]
[146]
Häcker, H.; Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE, 2006, 2006(357), re13-re13.
[http://dx.doi.org/10.1126/stke.3572006re13] [PMID: 17047224]
[147]
Patinote, C.; Bou Karroum, N.; Moarbess, G.; Deleuze-Masquefa, C.; Hadj-Kaddour, K.; Cuq, P.; Diab-Assaf, M.; Kassab, I.; Bonnet, P-A. Imidazo[1,2-a]pyrazine, Imidazo[1,5-a]quinoxaline and Pyrazolo[1,5-a]quinoxaline derivatives as IKK1 and IKK2 inhibitors. Eur. J. Med. Chem., 2017, 138, 909-919.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.021] [PMID: 28750313]
[148]
Zhang, M.; Thurmond, R.L.; Dunford, P.J. The histamine H(4) receptor: a novel modulator of inflammatory and immune disorders. Pharmacol. Ther., 2007, 113(3), 594-606.
[http://dx.doi.org/10.1016/j.pharmthera.2006.11.008] [PMID: 17275092]
[149]
Borchardt, A.; Davis, R.; Beauregard, C.; Becker, D.; Gamache, D.; Noble, S.; Hellberg, M.; Klimko, P.; Zhihai, Q.; Payne, J. Heterocyclic Inhibitors of Histamine Receptors for the Treatment of Disease. W.O. Patent 2011/112731 2011.
[150]
Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol., 2000, 12(2), 174-179.
[http://dx.doi.org/10.1016/S0955-0674(99)00073-3] [PMID: 10712916]
[151]
Kaiya, H. Second messenger imbalance hypothesis of schizophrenia. Prostaglandins Leukot. Essent. Fatty Acids, 1992, 46(1), 33-38.
[http://dx.doi.org/10.1016/0952-3278(92)90056-O] [PMID: 1352895]
[152]
Garver, D.L.; Johnson, C.; Kanter, D.R. Schizophrenia and reduced cyclic AMP production: evidence for the role of receptor-linked events. Life Sci., 1982, 31(18), 1987-1992.
[http://dx.doi.org/10.1016/0024-3205(82)90037-6] [PMID: 6294425]
[153]
Malamas, M.S.; Ni, Y.; Erdei, J.J.; Egerland, U.; Langen, B. Substituted Imidazo[1,5-a]Quinoxalines as Inhibitors Of Phosphodiesterase 10. W.O. Patent 2010/138833, 2010.
[154]
Malamas, M.S.; Ni, Y.; Erdei, J.; Stange, H.; Schindler, R.; Lankau, H-J.; Grunwald, C.; Fan, K.Y.; Parris, K.; Langen, B.; Egerland, U.; Hage, T.; Marquis, K.L.; Grauer, S.; Brennan, J.; Navarra, R.; Graf, R.; Harrison, B.L.; Robichaud, A.; Kronbach, T.; Pangalos, M.N.; Hoefgen, N.; Brandon, N.J. Highly potent, selective, and orally active phosphodiesterase 10A inhibitors. J. Med. Chem., 2011, 54(21), 7621-7638.
[http://dx.doi.org/10.1021/jm2009138] [PMID: 21988093]
[155]
Jacobsen, E.J.; Stelzer, L.S.; Belonga, K.L.; Carter, D.B. Im, W. B.; Sethy, V. H.; Tang, A. H.; VonVoigtlander, P. F.; Petke, J. D. 3-phenyl-substituted imidazo[1,5-a]quinoxalin-4-ones and imidazo[1,5-a]quinoxaline ureas that have high affinity at the GABAA/benzodiazepine receptor complex. J. Med. Chem., 1996, 39(19), 3820-3836.
[http://dx.doi.org/10.1021/jm960070+] [PMID: 8809170]
[156]
Jacobsen, E.J.; Stelzer, L.S.; TenBrink, R.E.; Belonga, K.L.; Carter, D.B. Im, H.K.; Im, W.B.; Sethy, V.H.; Tang, A.H.; VonVoigtlander, P.F.; Petke, J.D.; Zhong, W.Z.; Mickelson, J.W. Piperazine imidazo[1,5-a]quinoxaline ureas as high-affinity GABAA ligands of dual functionality. J. Med. Chem., 1999, 42(7), 1123-1144.
[http://dx.doi.org/10.1021/jm9801307] [PMID: 10197957]
[157]
Tang, A.H.; Franklin, S.R.; Himes, C.S.; Ho, P.M. Behavioral effects of U-78875, a quinoxalinone anxiolytic with potent benzodiazepine antagonist activity. J. Pharmacol. Exp. Ther., 1991, 259(1), 248-254.
[PMID: 1681085]
[158]
TenBrink, R.E.; Im, W.B.; Sethy, V.H.; Tang, A.H.; Carter, D.B. Antagonist, partial agonist, and full agonist imidazo[1,5-a]quinoxaline amides and carbamates acting through the GABAA/benzodiazepine receptor. J. Med. Chem., 1994, 37(6), 758-768.
[http://dx.doi.org/10.1021/jm00032a008] [PMID: 8145225]
[159]
TenBrink, R.E. 4,5-Cyclicimidazo[1,5-A]Quinoxalines. U.S. Patent 5668282A, 1997.
[160]
Okada, M.; Sato, S.; Kawade, K.; Gotanda, K.; Shinbo, A.; Nakano, Y.; Kobayashi, H. Substituted Imidazo[1,5-A]Quinoxalines as Phosphodiesterase 9 Inhibitors. U.S. Patent 8829000B2, 2014.
[161]
Kaizawa, H.; Sugita, M.; Azami, H.; Seo, R.; Nomura, T.; Yamamoto, S.; Yamamoto, H.; Tsuchiya, K.; Kubota, H.; Kamijo, K. Quinoxaline Compound. U.S. Patent 20110319385A1 2011.
[162]
Kalinin, A.A.; Voloshina, A.D.; Kulik, N.V.; Zobov, V.V.; Mamedov, V.A. Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety. Eur. J. Med. Chem., 2013, 66, 345-354.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.038] [PMID: 23811259]
[163]
Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem., 2017, 25(21), 5891-5903.
[http://dx.doi.org/10.1016/j.bmc.2017.09.035] [PMID: 28988624]
[164]
Pérez-Fernandez, R.; Goya, P.; Elguero, J. A review of recent progress (2002-2012) on the biological activities of pyrazoles. ARKIVOC, 2014, 2, 233-293.
[http://dx.doi.org/10.3998/ark.5550190.p008.131]
[165]
Broggini, G.; Garanti, L.; Molteni, G.; Zecchi, G. Synthesis of pyrazolo[1,5-a]quinoxalines. Synthesis, 1996, 1996(09), 1076-1078.
[http://dx.doi.org/10.1055/s-1996-4346]
[166]
Albini, A.; Bettinetti, G.; Minoli, G. Chemistry of nitrenes generated by the photocleavage of both azides and a five-membered heterocycle. J. Am. Chem. Soc., 1991, 113(18), 6928-6934.
[http://dx.doi.org/10.1021/ja00018a032]
[167]
Treuner, U.D. 4-substituted derivatives of pyrazolo [1,5-a]- quinoxaline-3-carboxylic acids and esters. U.S. Patent 4052393A, 1977.
[168]
Kauer, J.C.; Carboni, R.A. Aromatic Azapentalenes. III. 1,3a,6,6a-Tetraazapentalenes. J. Am. Chem. Soc., 1967, 89(11), 2633-2637.
[http://dx.doi.org/10.1021/ja00987a022]
[169]
Saha, B.; Sharma, S.; Sawant, D.; Kundu, B. Application of the Pictet-Spengler reaction to aryl amine substrates linked to deactivated aromatic heterosystems. Tetrahedron, 2008, 64(37), 8676-8684.
[http://dx.doi.org/10.1016/j.tet.2008.07.003]
[170]
Yan, J.; Zhou, F.; Qin, D.; Cai, T.; Ding, K.; Cai, Q. Synthesis of [1,2,3]triazolo[1,5-a]quinoxalin-4(5H)-ones through copper-catalyzed tandem reactions of N-(2-haloaryl)propiolamides with sodium azide. Org. Lett., 2012, 14(5), 1262-1265.
[http://dx.doi.org/10.1021/ol300114w] [PMID: 22335274]
[171]
Li, D.; Mao, T.; Huang, J.; Zhu, Q. A one-pot synthesis of [1,2,3]triazolo[1,5-a]quinoxalines from 1-azido-2-isocyanoarenes with high bond-forming efficiency. Chem. Commun. (Camb.), 2017, 53(7), 1305-1308.
[http://dx.doi.org/10.1039/C6CC08543A] [PMID: 28070580]
[172]
Bertelli, L.; Biagi, G.; Giorgi, I.; Livi, O.; Manera, C.; Scartoni, V.; Martini, C.; Giannaccini, G.; Trincavelli, L.; Barili, P.L. 1,2,3-Triazolo[1,5-a][1,4]- and 1,2,3-triazolo[1,5-a]-[1,5]benzodiazepine derivatives: synthesis and benzodiazepine receptor binding. Farmaco, 1998, 53(4), 305-311.
[http://dx.doi.org/10.1016/S0014-827X(98)00025-1] [PMID: 9658589]
[173]
Bertelli, L.; Biagi, G.; Giorgi, I.; Manera, C.; Livi, O.; Scartoni, V.; Betti, L.; Giannaccini, G.; Trincavelli, L.; Barili, P.L. 1,2,3-triazolo[1,5-a]quinoxalines: synthesis and binding to benzodiazepine and adenosine receptors. Eur. J. Med. Chem., 1998, 33(2), 113-122.
[http://dx.doi.org/10.1016/S0223-5234(98)80036-6]
[174]
Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V.; Betti, L.; Giannaccini, G. Trincavelli, M.L. New 1,2,3-triazolo[1,5-a]quinoxalines: synthesis and binding to benzodiazepine and adenosine receptors. II. Eur. J. Med. Chem., 2002, 37(7), 565-571.
[http://dx.doi.org/10.1016/S0223-5234(02)01376-4] [PMID: 12126775]
[175]
Shen, H.C.; Ding, F-X.; Deng, Q.; Wilsie, L.C.; Krsmanovic, M.L.; Taggart, A.K.; Carballo-Jane, E.; Ren, N.; Cai, T-Q.; Wu, T-J.; Wu, K.K.; Cheng, K.; Chen, Q.; Wolff, M.S.; Tong, X.; Holt, T.G.; Waters, M.G.; Hammond, M.L.; Tata, J.R.; Colletti, S.L. Discovery of novel tricyclic full agonists for the G-protein-coupled niacin receptor 109A with minimized flushing in rats. J. Med. Chem., 2009, 52(8), 2587-2602.
[http://dx.doi.org/10.1021/jm900151e] [PMID: 19309152]
[176]
Sarges, R.; Howard, H.R.; Browne, R.G.; Lebel, L.A.; Seymour, P.A.; Koe, B.K. 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 1990, 33(8), 2240-2254.
[http://dx.doi.org/10.1021/jm00170a031] [PMID: 2374150]
[177]
Guirado, A.; López Sánchez, J.I.; Ruiz-Alcaraz, A.J.; Bautista, D.; Gálvez, J. Synthesis and biological evaluation of 4-alkoxy-6,9-dichloro[1,2,4]triazolo[4,3-a]quinoxalines as inhibitors of TNF-α and IL-6. Eur. J. Med. Chem., 2012, 54, 87-94.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.035] [PMID: 22621841]
[178]
Trivedi, B.K.; Bruns, R.F. [1,2,4]Triazolo[4,3-a]quinoxalin-4-amines: a new class of A1 receptor selective adenosine antagonists. J. Med. Chem., 1988, 31(5), 1011-1014.
[http://dx.doi.org/10.1021/jm00400a021] [PMID: 3361571]
[179]
El-Hawash, S.A.M.; Habib, N.S.; Kassem, M.A. Synthesis of some new quinoxalines and 1,2,4-triazolo[4,3-a]-quinoxalines for evaluation of in vitro antitumor and antimicrobial activities. Arch. Pharm. (Weinheim), 2006, 339(10), 564-571.
[http://dx.doi.org/10.1002/ardp.200600061] [PMID: 17009301]
[180]
Ohmori, J.; Shimizu-Sasamata, M.; Okada, M.; Sakamoto, S. 8-(1H-imidazol-1-yl)-7-nitro-4(5H)-imidazo[1,2-alpha] quinoxalinone and related compounds: synthesis and structure-activity relationships for the AMPA-type non-NMDA receptor. J. Med. Chem., 1997, 40(13), 2053-2063.
[http://dx.doi.org/10.1021/jm960664c] [PMID: 9207947]
[181]
McQuaid, L.A.; Smith, E.C.R.; South, K.K.; Mitch, C.H.; Schoepp, D.D.; True, R.A.; Calligaro, D.O.; O’Malley, P.J.; Lodge, D.; Ornstein, P.L. Synthesis and excitatory amino acid pharmacology of a series of heterocyclic-fused quinoxalinones and quinazolinones. J. Med. Chem., 1992, 35(18), 3319-3324.
[http://dx.doi.org/10.1021/jm00096a002] [PMID: 1382133]
[182]
Shiho, D.; Tagami, S. Studies on compounds related to pyrazine. II. The reaction of 3-substituted-2-hydrazino-quinoxalines with carbonyl compounds. J. Am. Chem. Soc., 1960, 82(15), 4044-4054.
[http://dx.doi.org/10.1021/ja01500a058]
[183]
Potts, K.T.; Schneller, S.W. 1,2,4-Triazoles. XX. Pyrolytic decomposition of ketone hydrazones derived from pyrid-2-ylhydrazine and related bases. some further examples of the s-triazolo[4, 3-α]pyrazine and s-triazolo[4, 3-a]quinoxaline series. J. Heterocycl. Chem., 1968, 5(4), 485-495.
[http://dx.doi.org/10.1002/jhet.5570050408]
[184]
Ali, I.; Lee, J.; Go, A.; Choi, G.; Lee, K. Discovery of novel [1,2,4]triazolo[4,3-a]quinoxaline aminophenyl derivatives as BET inhibitors for cancer treatment. Bioorg. Med. Chem. Lett., 2017, 27(20), 4606-4613.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.025] [PMID: 28939121]
[185]
Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 155, 117-134.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574]
[186]
Carosati, E.; Sforna, G.; Pippi, M.; Marverti, G.; Ligabue, A.; Guerrieri, D.; Piras, S.; Guaitoli, G.; Luciani, R.; Costi, M.P.; Cruciani, G. Ligand-based virtual screening and ADME-tox guided approach to identify triazolo-quinoxalines as folate cycle inhibitors. Bioorg. Med. Chem., 2010, 18(22), 7773-7785.
[http://dx.doi.org/10.1016/j.bmc.2010.09.065] [PMID: 20951595]
[187]
WHO | Tuberculosis (TB). Available at: http://www.who. int/tb/en/ (accessed Mar 21, 2019).
[188]
Sekhar, K.V.G.C.; Rao, V.S.; Kumar, D. Synthesis of triazoloquinoxalines as antitubercular agents. Bull. Korean Chem. Soc., 2011, 32(8), 2657-2660.
[http://dx.doi.org/10.5012/bkcs.2011.32.8.2657]
[189]
Issa, D.A.E.; Habib, N.S.; Wahab, A.E.A. Design, synthesis and biological evaluation of novel 1,2,4-triazolo and 1,2,4-triazino[4,3-a]quinoxalines as potential anticancer and antimicrobial agents. MedChemComm, 2015, 6(1), 202-211.
[http://dx.doi.org/10.1039/C4MD00257A]
[190]
El-Sawy, E.R.; Bassyouni, F.A.; Abu-Bakr, S.H.; Rady, H.M.; Abdlla, M.M. Synthesis and biological activity of some new 1-benzyl and 1-benzoyl-3-heterocyclic indole derivatives. Acta Pharm., 2010, 60(1), 55-71.
[http://dx.doi.org/10.2478/v10007-010-0004-0] [PMID: 20228041]
[191]
Nasr, M.N.A. Synthesis and antibacterial activity of fused 1, 2, 4-triazolo[4, 3-a]quinoxaline and oxopyrimido[2′, 1′:5, 1]-1, 2, 4-triazolo[4, 3-a]quinoxaline derivatives. Arch. Pharm. (Weinheim), 2002, 335(8), 389-394.
[http://dx.doi.org/10.1002/1521-4184(200211)335:8<389:AID-ARDP389>3.0.CO;2-X] [PMID: 12397623]
[192]
El‐Bendary, E.R.; Goda, F.E.; Maarouf, A.R.; Badria, F.A. Synthesis and antimicrobial evaluation of 3-hydrazino-quinoxaline derivatives and their cyclic analogues. ChemInform, 2004, 35(44)
[http://dx.doi.org/10.1002/chin.200444182]
[193]
Henen, M.A.; El Bialy, S.A.A.; Goda, F.E.; Nasr, M.N.A.; Eisa, H.M. [1,2,4]triazolo[4,3-a]quinoxaline: synthesis, antiviral, and antimicrobial activities. Med. Chem. Res., 2012, 21(9), 2368-2378.
[http://dx.doi.org/10.1007/s00044-011-9753-7]
[194]
Ajani, O.O.; Nwinyi, O.C. Synthesis and evaluation of antimicrobial activity of phenyl and furan-2-yl[1,2,4]triazolo [4,3-a]quinoxalin-4(5h)-one and their hydrazone precursors. Canad. J. Pure App. Sci., 2009, 3(3), 983-992.
[195]
el-Hawash, S.A.; Habib, N.S.; Fanaki, N.H. Quinoxaline derivatives. Part II: Synthesis and antimicrobial testing of 1,2,4-triazolo[4,3-a]quinoxalines, 1,2,4-triazino[4,3-a]quinoxalines and 2-pyrazolylquinoxalines. Pharmazie, 1999, 54(11), 808-813.
[PMID: 10603606]
[196]
Z El-Attar, M.A.; Elbayaa, R.Y.; Shaaban, O.G.; Habib, N.S.; Abdel Wahab, A.E.; Abdelwahab, I.A.; M El-Hawash, S.A. Synthesis of pyrazolo-1,2,4-triazolo[4,3-a]quinoxalines as antimicrobial agents with potential inhibition of DHPS enzyme. Future Med. Chem., 2018, 10(18), 2155-2175.
[http://dx.doi.org/10.4155/fmc-2018-0082] [PMID: 30088415]
[197]
El-Attar, M.A.Z.; Shaaban, O.G.; Elbayaa, R.Y.; Habib, N.S.; El-Hawash, S.A.M.; Wahab, A.A. Design and synthesis of some new 1, 2, 4-triazolo (4, 3a) quinoxaline derivatives as potential antimicrobialagents. Med. Chem., 2015, 5, pp, 489-495.
[198]
Ghiaty, A. Design, synthesis and biological evaluation of novel [1,2,4]triazolo[4,3-a]quinoxalinones. J. Pharm. Sci., 2015, 52(2), 208-218.
[199]
Suresh, M.; Lavanya, P.; Sudhakar, D.; Vasu, K.; Rao, C.V. Synthesis and biological activity of 8-chloro-[1,2,4]triazolo [4,3-a]quinoxalines. J. Chem. Pharm. Res., 2010, 2(1), 497-504.
[200]
Corona, P.; Vitale, G.; Loriga, M.; Paglietti, G.; La Colla, P.; Collu, G.; Sanna, G.; Loddo, R. 4-Substituted anilino imidazo[1,2-a] and triazolo[4,3-a]quinoxalines. Synthesis and evaluation of in vitro biological activity. Eur. J. Med. Chem., 2006, 41(9), 1102-1107.
[http://dx.doi.org/10.1016/j.ejmech.2006.05.015] [PMID: 16828932]
[201]
El-Tombary, A.A.; El-Hawash, S.A.M. Synthesis, antioxidant, anticancer and antiviral activities of novel quinoxaline hydrazone derivatives and their acyclic C-nucleosides. Med. Chem., 2014, 10(5), 521-532.
[http://dx.doi.org/10.2174/15734064113096660069] [PMID: 24151878]
[202]
Schatzberg, A.F.; Nemeroff, C.B. The American Psychiatric Association Publishing Textbook of Psychopharmacology. Chzpter 8: Monoamine Oxydase Inhibitors; American Psychiatric Pub, 2017, p. 283.
[http://dx.doi.org/10.1176/appi.books.9781615371624]
[203]
Khattab, S.N.; Hassan, S.Y.; Bekhit, A.A.; El Massry, A.M.; Langer, V.; Amer, A. Synthesis of new series of quinoxaline based MAO-inhibitors and docking studies. Eur. J. Med. Chem., 2010, 45(10), 4479-4489.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.008] [PMID: 20708306]
[204]
Lankau, H-J.; Langen, B.; Grunwald, C.; Hoefgen, N.; Stange, H.; Dost, R.; Egerland, U. [1,2,4]triazolo[4,3-a]quinoxaline derivatives as inhibitors of phosphodiesterases.U.S. Patent 2012/0302564 A1, 2012.
[205]
Andrès-Gil, J.; Rombouts, F.; Trabanco-Suarez, A.; Vanhoof, G.; De Angelis, M.; Buijnsters, P.; Guillemont, J. 1-aryl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline derivatives. E.U. Patent 2 723 744 B1, 2012.
[206]
Benbow, J.; Chu-Moyer, M.; Kung, D. Substituted 4- Amino[1,2,4]Triazolo[4,3-a]quinoxalines. US 2004/0192698 A1, 2004.
[207]
Jacobsen, P.; Flemming, N. Triazolo quinoxalines and their preparation and use. U.S. Patent 5,504,085 1996.
[208]
Trivedi, B. [1,2,4]triazolo[4,3-a]quinoxalin-4-amines. U.S. Patent 4,780,464, 1988.
[209]
Kadin, S.B.; Sarges, R. [1,2,4]triazolo[4,3-a]quinoxaline-4-amine derivatives. U.S. Patent 4623725A, 1986.
[210]
Colotta, V.; Catarzi, D.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Lucacchini, A. Synthesis and structure-activity relationships of a new set of 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as adenosine receptor antagonists. Bioorg. Med. Chem., 2003, 11(16), 3541-3550.
[http://dx.doi.org/10.1016/S0968-0896(03)00338-9] [PMID: 12878146]
[211]
Lenzi, O.; Colotta, V.; Catarzi, D.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Ciampi, O.; Varani, K.; Marighetti, F.; Morizzo, E.; Moro, S. 4-amido-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-ones as new potent and selective human A3 adenosine receptor antagonists. synthesis, pharmacological evaluation, and ligand-receptor modeling studies. J. Med. Chem., 2006, 49(13), 3916-3925.
[http://dx.doi.org/10.1021/jm060373w] [PMID: 16789747]
[212]
Colotta, V.; Catarzi, D.; Varano, F.; Calabri, F.R.; Lenzi, O.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Deflorian, F.; Moro, S. 1,2,4-triazolo[4,3-a]quinoxalin-1-one moiety as an attractive scaffold to develop new potent and selective human A3 adenosine receptor antagonists: synthesis, pharmacological, and ligand-receptor modeling studies. J. Med. Chem., 2004, 47(14), 3580-3590.
[http://dx.doi.org/10.1021/jm031136l] [PMID: 15214785]
[213]
Catarzi, D.; Colotta, V.; Varano, F.; Calabri, F.R.; Lenzi, O.; Filacchioni, G.; Trincavelli, L.; Martini, C.; Tralli, A.; Montopoli, C.; Moro, S. 2-aryl-8-chloro-1,2,4-triazolo[1,5-a]quinoxalin-4-amines as highly potent A1 and A3 adenosine receptor antagonists. Bioorg. Med. Chem., 2005, 13(3), 705-715.
[http://dx.doi.org/10.1016/j.bmc.2004.10.050] [PMID: 15653338]
[214]
Colotta, V.; Catarzi, D.; Varano, F.; Lenzi, O.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Ciampi, O.; Traini, C.; Pugliese, A.M.; Pedata, F.; Morizzo, E.; Moro, S. Synthesis, ligand-receptor modeling studies and pharmacological evaluation of novel 4-modified-2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives as potent and selective human A3 adenosine receptor antagonists. Bioorg. Med. Chem., 2008, 16(11), 6086-6102.
[http://dx.doi.org/10.1016/j.bmc.2008.04.039] [PMID: 18468446]
[215]
Gao, M.; Gao, A.C.; Wang, M.; Zheng, Q-H. Simple synthesis of new carbon-11-labeled 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives for PET imaging of A3 adenosine receptor. Appl. Radiat. Isot., 2014, 91, 71-78.
[http://dx.doi.org/10.1016/j.apradiso.2014.05.005] [PMID: 24908190]
[216]
Bhattacharya, P.; Roy, K. QSAR of adenosine A3 receptor antagonist 1,2,4-triazolo[4,3-a]quinoxalin-1-one derivatives using chemometric tools. Bioorg. Med. Chem. Lett., 2005, 15(16), 3737-3743.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.051] [PMID: 15993066]
[217]
Liu, X-K.; Ma, L-X.; Wei, Z-Y.; Cui, X.; Zhan, S.; Yin, X-M.; Piao, H-R. Synthesis and positive inotropic activity of [1,2,4]triazolo[4,3-a] quinoxaline derivatives bearing substituted benzylpiperazine and benzoylpiperazine moieties. Molecules, 2017, 22(2), 273.
[http://dx.doi.org/10.3390/molecules22020273] [PMID: 28208674]
[218]
Alswah, M.; Ghiaty, A.; El-Morsy, A.; El-Gamal, K. Synthesis and biological evaluation of some [1,2,4]triazolo[4,3-a]quinoxaline derivatives as novel anticonvulsant agents. ISRN Org. Chem., 2013, 2013587054
[http://dx.doi.org/10.1155/2013/587054] [PMID: 24198971]
[219]
Wagle, S.; Adhikari, A.V.; Kumari, N.S. Synthesis of some new 4-styryltetrazolo[1,5-a]quinoxaline and 1-substituted-4-styryl[1,2,4]triazolo[4,3-a]quinoxaline derivatives as potent anticonvulsants. Eur. J. Med. Chem., 2009, 44(3), 1135-1143.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.006] [PMID: 18672315]
[220]
Bayoumi, A.; Ghiaty, A.; El-Morsy, A.; Abul-Khair, H.; Hassan, M.H.; Elmeligie, S. Synthesis and evaluation of some new 1,2,4-triazolo(4,3-a)quinoxalin-4-5h-one derivatives as AMPA receptor antagonists. Bull. Fac. Pharm. Cairo Univ., 2012, 50(2), 141-146.
[http://dx.doi.org/10.1016/j.bfopcu.2012.05.002]
[221]
Ruiz-Alcaraz, A.J.; Tristán-Manzano, M.; Guirado, A.; Gálvez, J.; Martínez-Esparza, M.; García-Peñarrubia, P. Intracellular signaling modifications involved in the anti-inflammatory effect of 4-alkoxy-6,9-dichloro[1,2,4] triazolo[4,3-a]quinoxalines on macrophages. Eur. J. Pharm. Sci., 2017, 99, 292-298.
[http://dx.doi.org/10.1016/j.ejps.2016.12.037] [PMID: 28057547]
[222]
Gururaja, T.L.; Yung, S.; Ding, R.; Huang, J.; Zhou, X.; McLaughlin, J.; Daniel-Issakani, S.; Singh, R.; Cooper, R.D.G.; Payan, D.G.; Masuda, E.S.; Kinoshita, T. A class of small molecules that inhibit TNFalpha-induced survival and death pathways via prevention of interactions between TNFalphaRI, TRADD, and RIP1. Chem. Biol., 2007, 14(10), 1105-1118.
[http://dx.doi.org/10.1016/j.chembiol.2007.08.012] [PMID: 17961823]
[223]
Hutchinson, J.H.; Seiders, T.J.; Stears, B.A.; Wang, B.; Scott, J.M.; Truong, Y.U.S.U.S. Patent 2011/0112106, 2011.
[224]
Loev, B.; Musser, J.H.; Brown, R.E.; Jones, H.; Kahen, R.; Huang, F.C.; Khandwala, A.; Sonnino-Goldman, P.; Leibowitz, M.J. 1,2,4-Triazolo[4,3-a]quinoxaline-1,4-diones as antiallergic agents. J. Med. Chem., 1985, 28(3), 363-366.
[http://dx.doi.org/10.1021/jm00381a016] [PMID: 2579236]
[225]
Lee, S.; Cil, O.; Diez-Cecilia, E.; Anderson, M.O.; Verkman, A.S. Nanomolar-potency 1,2,4-triazoloquinoxaline inhibitors of the kidney urea transporter UT-A1. J. Med. Chem., 2018, 61(7), 3209-3217.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00343] [PMID: 29589443]
[226]
Kaizawa, H.; Sugita, M.; Azami, H.; Seo, R.; Nomura, T.; Yamamoto, S.; Yamamoto, H.; Tsuchiya, K.; Kubota, H.; Kamijo, K. Quinoxaline Compound. E.U. Patent 2,404,922 B1, 2011.
[227]
Catarzi, D.; Cecchi, L.; Colotta, V.; Filacchioni, G.; Melani, F. Tricyclic heteroatomic systems. 1,2,4-triazolo [1,5-a] quinoxaline. J. Heterocycl. Chem., 1992, 29, 1162.
[http://dx.doi.org/10.1002/jhet.5570290520]
[228]
Heckendorn, R. Novel polycyclic polyazaheterocycles, processes for their manufacture and pharamceutical preparations containing them. AU Patent A-88402/82 1982.
[229]
Heckendorn, R.D. Polycyclic polyazaheterocycles, process for their preparation and pharmaceutical preparations containing them. Patent 0074929 A1, 1983.
[230]
Heckendorn, R. Tricyclic Polyazaheterocycles for Treating Depression or Anxiety 4510141, 1985. United States Patent: 4510141.
[231]
Colotta, V.; Catarzi, D.; Varano, F.; Cecchi, L.; Filacchioni, G.; Galli, A.; Costagli, C. Tricyclic heteroaromatic systems. 1,2,4-triazolo[4,3-a]quinoxalines and 1,2,4-Triazino[4,3-a]quinoxalines: synthesis and central benzodiazepine receptor activity. Arch. Pharm. (Weinheim), 1997, 330(12), 387-391.
[http://dx.doi.org/10.1002/ardp.19973301206] [PMID: 9474898]
[232]
Colotta, V.; Cecchi, L.; Catarzi, D.; Conti, G.; Filacchioni, G.; Martini, C.; Giusti, L.; Lucacchini, A. Tricyclic heteroaromatic systems pyrazolo[1,5-a]quinoxalines: synthesis and benzodiazepine receptor activity. Farmaco, 1993, 48(8), 1051-1063.
[PMID: 8216668]
[233]
Catarzi, D.; Colotta, V.; Varano, F.; Filacchioni, G.; Martini, C.; Trincavelli, L.; Lucacchini, A. 1,2,4-Triazolo[1,5-a]quinoxaline derivatives: synthesis and biological evaluation as adenosine receptor antagonists. Farmaco, 2004, 59(2), 71-81.
[http://dx.doi.org/10.1016/j.farmac.2003.09.005] [PMID: 14871498]
[234]
Catarzi, D.; Colotta, V.; Varano, F.; Lenzi, O.; Filacchioni, G.; Trincavelli, L.; Martini, C.; Montopoli, C.; Moro, S. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives. J. Med. Chem., 2005, 48(25), 7932-7945.
[http://dx.doi.org/10.1021/jm0504149] [PMID: 16335918]
[235]
Catarzi, D.; Lenzi, O.; Colotta, V.; Varano, F.; Poli, D.; Filacchioni, G.; Lingenhöhl, K.; Ofner, S. Pharmacological characterization of some selected 4,5-dihydro-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates and 3-hydroxy-quinazoline-2,4-diones as (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)-propionic acid receptor antagonists. Chem. Pharm. Bull. (Tokyo), 2010, 58(7), 908-911.
[http://dx.doi.org/10.1248/cpb.58.908] [PMID: 20606335]
[236]
Catarzi, D.; Varano, F.; Poli, D.; Squarcialupi, L.; Betti, M.; Trincavelli, L.; Martini, C.; Dal Ben, D.; Thomas, A.; Volpini, R.; Colotta, V. 1,2,4-triazolo[1,5-a]quinoxaline derivatives and their simplified analogues as adenosine A3 receptor antagonists. Synthesis, structure-affinity relationships and molecular modeling studies. Bioorg. Med. Chem., 2015, 23(1), 9-21.
[http://dx.doi.org/10.1016/j.bmc.2014.11.033] [PMID: 25497490]
[237]
Colotta, V.; Cecchi, L.; Catarzi, D.; Filacchioni, G.; Martini, C.; Tacchi, P.; Lucacchini, A. Synthesis of some tricyclic heteroaromatic systems and their A1 and A2a adenosine binding activity. Eur. J. Med. Chem., 1995, 30(2), 133-139.
[http://dx.doi.org/10.1016/0223-5234(96)88218-3]
[238]
Catarzi, D.; Cecchi, L.; Colotta, V.; Filacchioni, G.; Melani, F. Tricyclic heteroaromatic systems. 1,2,4-triazolo [1,5-a] quinoxaline. J. Heterocycl. Chem., 1992, 29(5), 1161-1163.
[http://dx.doi.org/10.1002/jhet.5570290520]
[239]
Martínez, A.; Gutiérrez-de-Terán, H.; Brea, J.; Raviña, E.; Loza, M.I.; Cadavid, M.I.; Sanz, F.; Vidal, B.; Segarra, V.; Sotelo, E. Synthesis, adenosine receptor binding and 3D-QSAR of 4-substituted 2-(2′-furyl)-1,2,4-triazolo[1,5-a]quinoxalines. Bioorg. Med. Chem., 2008, 16(4), 2103-2113.
[http://dx.doi.org/10.1016/j.bmc.2007.10.103] [PMID: 18249548]
[240]
Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev., 2010, 62(3), 405-496.
[http://dx.doi.org/10.1124/pr.109.002451] [PMID: 20716669]
[241]
Michaelis, E.K. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog. Neurobiol., 1998, 54(4), 369-415.
[http://dx.doi.org/10.1016/S0301-0082(97)00055-5] [PMID: 9522394]
[242]
Bräuner-Osborne, H.; Egebjerg, J.; Nielsen, E.Ø.; Madsen, U.; Krogsgaard-Larsen, P. Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem., 2000, 43(14), 2609-2645.
[http://dx.doi.org/10.1021/jm000007r] [PMID: 10893301]
[243]
Bigge, C.F.; Nikam, S.S. AMPA receptor agonists, antagonists and modulators: their potential for clinical utility. Expert Opin. Ther. Pat., 1997, 7(10), 1099-1114.
[http://dx.doi.org/10.1517/13543776.7.10.1099]
[244]
Lees, G.J. Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs, 2000, 59(1), 33-78.
[http://dx.doi.org/10.2165/00003495-200059010-00004] [PMID: 10718099]
[245]
Arias, R.L.; Tasse, J.R.; Bowlby, M.R. Neuroprotective interaction effects of NMDA and AMPA receptor antagonists in an in vitro model of cerebral ischemia. Brain Res., 1999, 816(2), 299-308.
[http://dx.doi.org/10.1016/S0006-8993(98)01051-8] [PMID: 9878799]
[246]
Catarzi, D.; Colotta, V.; Varano, F.; Cecchi, L.; Filacchioni, G.; Galli, A.; Costagli, C.; Carlà, V. 7-Chloro-4,5-dihydro-8-(1,2,4-triazol-4-yl)-4-oxo-1,2,4-triazolo[1, 5-a]quinoxaline-2- carboxylates as novel highly selective AMPA receptor antagonists. J. Med. Chem., 2000, 43(21), 3824-3826.
[http://dx.doi.org/10.1021/jm0009686] [PMID: 11052786]
[247]
Catarzi, D.; Colotta, V.; Varano, F.; Filacchioni, G.; Galli, A.; Costagli, C.; Carlà, V. Synthesis, ionotropic glutamate receptor binding affinity, and structure-activity relationships of a new set of 4,5-dihydro-8-heteroaryl-4-oxo-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylates analogues of TQX-173. J. Med. Chem., 2001, 44(19), 3157-3165.
[http://dx.doi.org/10.1021/jm010862q] [PMID: 11543685]
[248]
Catarzi, D.; Colotta, V.; Varano, F.; Cecchi, L.; Filacchioni, G.; Galli, A.; Costagli, C. 4,5-Dihydro-1,2,4-triazolo[1,5-a]quinoxalin-4-ones: excitatory amino acid antagonists with combined glycine/NMDA and AMPA receptor affinity. J. Med. Chem., 1999, 42(13), 2478-2484.
[http://dx.doi.org/10.1021/jm981102r] [PMID: 10395489]
[249]
Catarzi, D.; Colotta, V.; Varano, F.; Calabri, F.R.; Filacchioni, G.; Galli, A.; Costagli, C.; Carlà, V. Synthesis and biological evaluation of analogues of 7-chloro-4,5-dihydro-4- oxo-8-(1,2,4-triazol-4-yl)-1,2,4-triazolo[1,5-a]quinoxaline-2-carboxylic acid (TQX-173) as novel selective AMPA receptor antagonists. J. Med. Chem., 2004, 47(1), 262-272.
[http://dx.doi.org/10.1021/jm030906q] [PMID: 14695840]
[250]
Le Bourdonnec, B.; Meulon, E.; Yous, S.; Goossens, J-F.; Houssin, R.; Hénichart, J-P. Synthesis and pharmacological evaluation of new pyrazolidine-3, 5-diones as AT(1) angiotensin II receptor antagonists. J. Med. Chem., 2000, 43(14), 2685-2697.
[http://dx.doi.org/10.1021/jm9904147] [PMID: 10893306]
[251]
Liljebris, C.; Larsen, S.D.; Ogg, D.; Palazuk, B.J.; Bleasdale, J.E. Investigation of potential bioisosteric replacements for the carboxyl groups of peptidomimetic inhibitors of protein tyrosine phosphatase 1B: identification of a tetrazole-containing inhibitor with cellular activity. J. Med. Chem., 2002, 45(9), 1785-1798.
[http://dx.doi.org/10.1021/jm011100y] [PMID: 11960490]
[252]
Hashimoto, A.; Shi, Y.; Drake, K.; Koh, J.T. Design and synthesis of complementing ligands for mutant thyroid hormone receptor TRbeta(R320H): a tailor-made approach toward the treatment of resistance to thyroid hormone. Bioorg. Med. Chem., 2005, 13(11), 3627-3639.
[http://dx.doi.org/10.1016/j.bmc.2005.03.040] [PMID: 15862991]
[253]
Stolle, R.; Hanusch, F. Über Die Umsetzung von Dichlor-2,4-Chinazolin Und Dichlor-2,3-Chinoxalin Mit Natriumazid. J. Prakt. Chem., 1933, 136(1-2), 9-14.
[http://dx.doi.org/10.1002/prac.19331360103]
[254]
Park, K.L.; Ko, N.Y.; Lee, J.H.; Kim, D.K.; Kim, H.S.; Kim, A-R.; Her, E.; Kim, B.; Kim, H.S.; Moon, E-Y.; Kim, Y.M.; Kim, H.R.; Choi, W.S. 4-Chlorotetrazolo[1,5-a]quinoxaline inhibits activation of Syk kinase to suppress mast cells in vitro and mast cell-mediated passive cutaneous anaphylaxis in mice. Toxicol. Appl. Pharmacol., 2011, 257(2), 235-241.
[http://dx.doi.org/10.1016/j.taap.2011.09.009] [PMID: 21958720]
[255]
Natarajan, U.; Kaliappan, I.; Singh, N.K. A facile design and efficient synthesis of schiff’s bases of tetrazolo [1,5-a] quinoxalines as potential anti-inflammatory and anti-microbial agents. Pharma Chem., 2010, 2(1), 159-167.
[256]
Gemma, S.; Colombo, L.; Forloni, G.; Savini, L.; Fracasso, C.; Caccia, S.; Salmona, M.; Brindisi, M.; Joshi, B.P.; Tripaldi, P.; Giorgi, G.; Taglialatela-Scafati, O.; Novellino, E.; Fiorini, I.; Campiani, G.; Butini, S. Pyrroloquinoxalinehydrazones as fluorescent probes for amyloid fibrils. . Org. Biomol. Chem.,, 2011, 9(14), 5137-5148.
[http://dx.doi.org/10.1039/c1ob05288h] [PMID: 21629961]
[257]
Mamedov, V.A.; Kalinin, A.A. Advances in the synthesis of imidazo[1,5-a]- and imidazo[1,2-a]quinoxalines. Russ. Chem. Rev., 2014, 83(9), 820-847.
[http://dx.doi.org/10.1070/RC2014v083n09ABEH004424]
[258]
Fredholm, B.B.; Lindström, K. Autoradiographic comparison of the potency of several structurally unrelated adenosine receptor antagonists at adenosine A1 and A2A receptors. Eur. J. Pharmacol., 1999, 380(2-3), 197-202.
[http://dx.doi.org/10.1016/S0014-2999(99)00533-6] [PMID: 10513579]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy