Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Stem-Cell Derived Exosomes for the Treatment of Osteoarthritis

Author(s): Zekai Ke and Jinyu Zhu*

Volume 15, Issue 7, 2020

Page: [597 - 601] Pages: 5

DOI: 10.2174/1574888X15666200206104332

Price: $65

Abstract

Osteoarthritis(OA) is a common degenerative orthopedic disease with multiple pathologic changes in joints affecting large populations worldwide. No treatment can reverse the progress of OA. Since exosomes were first reported in 1983, researches have been conducted to explore the mechanisms and therapeutic potential of exosomes in treating OA. Exosomes derived from Mesenchymal stem cells have attracted increasing attention in tackling the disease. This article summarizes the current advances and challenges in exosomes for OA, which may providea reference for further research.

Keywords: MSC exosomes, exosomes, osteoarthritis, micro-RNA, cytokines, microenvironment.

[1]
Losina E, Weinstein AM, Reichmann WM, et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res (Hoboken) 2013; 65(5): 703-11.
[http://dx.doi.org/10.1002/acr.21898] [PMID: 23203864]
[2]
Sharif B, Garner R, Hennessy D, Sanmartin C, Flanagan WM, Marshall DA. Productivity costs of work loss associated with osteoarthritis in Canada from 2010 to 2031. Osteoarthritis Cartilage 2017; 25(2): 249-58.
[http://dx.doi.org/10.1016/j.joca.2016.09.011] [PMID: 27666512]
[3]
Guilak F, Fermor B, Keefe FJ, et al. The role of biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res 2004; (423): 17-26.
[http://dx.doi.org/10.1097/01.blo.0000131233.83640.91] [PMID: 15232421]
[4]
Birchfield PC. Osteoarthritis overview. Geriatr Nurs 2001; 22(3): 124-30.
[http://dx.doi.org/10.1067/mgn.2001.116375] [PMID: 11410762]
[5]
Eyre DR. Collagens and cartilage matrix homeostasis. Clin Orthop Relat Res 2004; (427): S118-22.
[http://dx.doi.org/10.1097/01.blo.0000144855.48640.b9]
[6]
Gouttenoire J, Valcourt U, Ronzière MC, Aubert-Foucher E, Mallein-Gerin F, Herbage D. Modulation of collagen synthesis in normal and osteoarthritic cartilage. Biorheology 2004; 41(3-4): 535-42.
[PMID: 15299284]
[7]
Heinegård D, Saxne T. The role of the cartilage matrix in osteoarthritis. Nat Rev Rheumatol 2011; 7(1): 50-6.
[http://dx.doi.org/10.1038/nrrheum.2010.198] [PMID: 21119607]
[8]
Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BioMed Res Int 2013.: 2013284873
[http://dx.doi.org/10.1155/2013/284873] [PMID: 24069595]
[9]
Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066.
[http://dx.doi.org/10.3402/jev.v4.27066] [PMID: 25979354]
[10]
Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983; 97(2): 329-39.
[http://dx.doi.org/10.1083/jcb.97.2.329] [PMID: 6309857]
[11]
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33(3): 967-78.
[http://dx.doi.org/10.1016/0092-8674(83)90040-5] [PMID: 6307529]
[12]
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183(3): 1161-72.
[http://dx.doi.org/10.1084/jem.183.3.1161] [PMID: 8642258]
[13]
Holliday LS, McHugh KP, Zuo J, Aguirre JI, Neubert JK, Rody WJ Jr. Exosomes: novel regulators of bone remodelling and potential therapeutic agents for orthodontics. Orthod Craniofac Res 2017; 20(Suppl. 1): 95-9.
[http://dx.doi.org/10.1111/ocr.12165] [PMID: 28643924]
[14]
Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS. Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthritis Cartilage 2016; 24(12): 2135-40.
[http://dx.doi.org/10.1016/j.joca.2016.06.022] [PMID: 27390028]
[15]
Domenis R, Zanutel R, Caponnetto F, et al. Characterization of the Proinflammatory Profile of Synovial Fluid-Derived Exosomes of Patients with Osteoarthritis. Mediators Inflamm 2017.: 20174814987
[http://dx.doi.org/10.1155/2017/4814987] [PMID: 28634420]
[16]
Kolhe R, Hunter M, Liu S, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep 2017; 7(1): 2029.
[http://dx.doi.org/10.1038/s41598-017-01905-y] [PMID: 28515465]
[17]
Ekström K, Omar O, Granéli C, Wang X, Vazirisani F, Thomsen P. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS One 2013; 8(9): e75227
[http://dx.doi.org/10.1371/journal.pone.0075227] [PMID: 24058665]
[18]
Wang X, Omar O, Vazirisani F, Thomsen P, Ekström K. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS One 2018; 13(2): e0193059
[http://dx.doi.org/10.1371/journal.pone.0193059] [PMID: 29447276]
[19]
Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA 2013; 110(43): 17380-5.
[http://dx.doi.org/10.1073/pnas.1304266110] [PMID: 24101524]
[20]
Svensson KJ, Christianson HC, Wittrup A, et al. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 2013; 288(24): 17713-24.
[http://dx.doi.org/10.1074/jbc.M112.445403] [PMID: 23653359]
[21]
Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3: 3.
[http://dx.doi.org/10.3402/jev.v3.24641] [PMID: 25143819]
[22]
Katsuda T, Ochiya T. Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair. Stem Cell Res Ther 2015; 6: 212.
[http://dx.doi.org/10.1186/s13287-015-0214-y] [PMID: 26560482]
[23]
Katsuda T, Tsuchiya R, Kosaka N, et al. Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci Rep 2013; 3: 1197.
[http://dx.doi.org/10.1038/srep01197] [PMID: 23378928]
[24]
Zhang B, Wang M, Gong A, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells 2015; 33(7): 2158-68.
[http://dx.doi.org/10.1002/stem.1771] [PMID: 24964196]
[25]
Deng Y, Wu S, Zhou H, et al. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev 2013; 22(16): 2278-86.
[http://dx.doi.org/10.1089/scd.2012.0686] [PMID: 23517179]
[26]
Deng Y, Zhou H, Gu P, Fan X. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells. Invest Ophthalmol Vis Sci 2014; 55(9): 6016-23.
[http://dx.doi.org/10.1167/iovs.14-14977] [PMID: 25168901]
[27]
Liu Y, Lin L, Zou R, Wen C, Wang Z, Lin F. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle 2018; 17(21-22): 2411-22.
[http://dx.doi.org/10.1080/15384101.2018.1526603] [PMID: 30324848]
[28]
Zhang S, Chuah SJ, Lai RC, Hui JHP, Lim SK, Toh WS. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018; 156: 16-27.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.028] [PMID: 29182933]
[29]
Beier F, Loeser RF. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem 2010; 110(3): 573-80.
[http://dx.doi.org/10.1002/jcb.22604] [PMID: 20512918]
[30]
Zhang B, Yin Y, Lai RC, Tan SS, Choo AB, Lim SK. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23(11): 1233-44.
[http://dx.doi.org/10.1089/scd.2013.0479] [PMID: 24367916]
[31]
Rey-Rico A, Reinecke J, Wehling P, Cucchiarini M, Madry HJO. Cartilage Effects of exosomes upon the metabolic activities of human osteoarthritic articular cartilage in situ. Osteoarthritis Cartilage 2015; 23(2): A399.
[32]
Bo Y, Hongfeng G, Yulan Z, Lei C, Dajun Y, Shiwu DJPO. MicroRNA-145 regulates chondrogenic differentiation of mesen-chymal stem cells by targeting Sox9. PLoS One 2011; 6(7): e21679
[33]
Ham O, Song BW, Lee SY, Choi E, Cha MJ, Chang YL, et al. The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 2012; 33(18): 4500-7.
[34]
Matsukawa T, Sakai T, Yonezawa T, Hiraiwa H, Hamada T, Nakashima M, et al. MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther 2013; 15(1): R28.
[35]
Meng F, Zhang Z, Chen W, Huang G, He A, Hou C, et al. MicroRNA-320 regulates matrix metalloproteinase-13 expres-sion in chondrogenesis and interleukin-1β-induced chondrocyte responses. Osteoarthritis Cartilage 2016; 24(5): 932-41.
[36]
Ning G, Liu X, Dai M, Meng A, Wang QJDC. MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation. Developm Cell 2013; 24(3): 283-95.
[37]
Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology 2016; 5(4)
[38]
Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I Clinical Trial of Autologous Ascites-derived Exosomes Combined With GM-CSF for Colorectal Cancer. Mol Ther 2008; 16(4): 782-90.
[39]
Andrea DF, Rosa L, Rossana S, Giulia B, Cristiano R, Luisa P, et al. Differential effects of extracellular vesicles secreted by mesen-chymal stem cells from different sources on glioblastoma cells. Expert Open Biol Ther 2015; 15(4): 495-504.
[40]
Lopez-Verrilli MA, Caviedes A, Cabrera A, Sandoval S, Wyneken U, Khoury MJN. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 2016; 320: 129-39.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy