Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Biological Evaluation and Molecular Modeling of 3,4-dihydropyrimidine- 2(1H)-one Derivatives as Cytotoxic Agents on Breast Cancer In Vitro

Author(s): Hoda Sharifi, Ahmad Ebadi* and Meysam Soleimani*

Volume 17, Issue 8, 2020

Page: [983 - 992] Pages: 10

DOI: 10.2174/1570180817666200203125010

Price: $65

Abstract

Background: Kinesins and tubulin inhibitors have attracted researchers’ attention as hopeful targets for achieving effective anticancer agents. Dihydropyrimidine-2-ones (DHPMs) inhibit motor proteins Eg5 in the polymerization process of tubulin, also scaffold bearing benzothiazole heterocycle can block tubulin polymerization/depolymerization.

Objective: In this study, the cytotoxic effects and molecular modeling of newly synthesized derivatives of DHPM that were designed by the Scaffold-hopping approach were investigated as potential dual-inhibitors of Eg5 and tubulin.

Methods: We investigated the cytotoxic effects of DHPMs derivatives by MTT assay and measureing the Caspase 3 activity. Also, molecular modeling studies were performed by AutoDock4 and GROMACS 4.5.6.

Results: According to the results, the d2 derivative (IC50 = 68.58 ± 7, SI = 2.57) eliminates MDA-MB- 231 cells in a dose-dependent manner through caspase-dependent and caspase-independent cell death pathways. Molecular docking studies revealed that the d2 compound could interact with both Eg5 and tubulin key residues. MD simulation also demonstrated the stability of the studied ligand-receptor complexes during the 30 ns of the production run. The effectiveness of substitutions at C4 of the DHPM ring was obtained 4-acetoxy-phenyl, 4-methoxyphenyl, and 4-nitrophenyl, respectively.

Conclusion: The findings of the present study provide evidence that DHPM C5 amide derivatives bearing benzothiazole ring might be considered as promising lead compounds for the discovery of novel and multi-target antitumor agents.

Keywords: Breast cancer, tubulin, eg5, scaffold-hopping approach, 3, 4-dihydropyrimidine-2-one, molecular modeling.

« Previous
Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[2]
Katzung, B G; Masters, S. B; Trevor, A. J. Basic. Clin.Pharmacol., 2012.
[3]
Singh, M.; Singh, S.K. Benzothiazoles: how relevant in cancer drug design strategy? Anticancer. Agents Med. Chem., 2014, 14(1), 127-146.
[http://dx.doi.org/10.2174/18715206113139990312] [PMID: 23869774]
[4]
Itik, M.; Salamci, M.U.; Banks, S.P. Optimal control of drug therapy in cancer treatment. Nonlinear Anal. Theory Methods Appl., 2009, 71(12), e1473-e1486.
[http://dx.doi.org/10.1016/j.na.2009.01.214]
[5]
Talapatra, S.K.; Anthony, N.G.; Mackay, S.P.; Kozielski, F. Mitotic kinesin Eg5 overcomes inhibition to the phase I/II clinical candidate SB743921 by an allosteric resistance mechanism. J. Med. Chem., 2013, 56(16), 6317-6329.
[http://dx.doi.org/10.1021/jm4006274] [PMID: 23875972]
[6]
Ye, X.S.; Fan, L.; Van Horn, R.D.; Nakai, R.; Ohta, Y.; Akinaga, S.; Murakata, C.; Yamashita, Y.; Yin, T.; Credille, K.M.; Donoho, G.P.; Merzoug, F.F.; Li, H.; Aggarwal, A.; Blanchard, K.; Westin, E.H. A novel Eg5 inhibitor (LY2523355) causes mitotic arrest and apoptosis in cancer cells and shows potent antitumor activity in xenograft tumor models. Mol. Cancer Ther., 2015, 14(11), 2463-2472.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0241] [PMID: 26304237]
[7]
Gigant, B.; Cormier, A.; Dorléans, A.; Ravelli, R.; Knossow, M. Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Tubulin-Binding Agents; Springer, 2008, pp. 259-278.
[8]
Rath, O.; Kozielski, F. Kinesins and cancer. Nat. Rev. Cancer, 2012, 12(8), 527-539.
[http://dx.doi.org/10.1038/nrc3310] [PMID: 22825217]
[9]
Nagarajan, S.; Skoufias, D.A.; Kozielski, F.; Pae, A.N. Receptor-ligand interaction-based virtual screening for novel Eg5/kinesin spindle protein inhibitors. J. Med. Chem., 2012, 55(6), 2561-2573.
[http://dx.doi.org/10.1021/jm201290v] [PMID: 22309208]
[10]
Sarli, V.; Giannis, A. Targeting the kinesin spindle protein: basic principles and clinical implications. Clin. Cancer Res., 2008, 14(23), 7583-7587.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0120] [PMID: 19047082]
[11]
Jackson, J.R.; Patrick, D.R.; Dar, M.M.; Huang, P.S. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat. Rev. Cancer, 2007, 7(2), 107-117.
[http://dx.doi.org/10.1038/nrc2049] [PMID: 17251917]
[12]
de Fátima, Â.; Braga, T.C.; Neto, Lda.S.; Terra, B.S.; Oliveira, B.G.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373.
[http://dx.doi.org/10.1016/j.jare.2014.10.006] [PMID: 26257934]
[13]
Russowsky, D.; Canto, R.F.; Sanches, S.A.; D’Oca, M.G.; de Fátima, A.; Pilli, R.A.; Kohn, L.K.; Antônio, M.A.; de Carvalho, J.E. Synthesis and differential antiproliferative activity of Biginelli compounds against cancer cell lines: Monastrol, oxo-monastrol and oxygenated analogues. Bioorg. Chem., 2006, 34(4), 173-182.
[http://dx.doi.org/10.1016/j.bioorg.2006.04.003] [PMID: 16765411]
[14]
Kaan, H.Y.K.; Ulaganathan, V.; Rath, O.; Prokopcová, H.; Dallinger, D.; Kappe, C.O.; Kozielski, F. Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J. Med. Chem., 2010, 53(15), 5676-5683.
[http://dx.doi.org/10.1021/jm100421n] [PMID: 20597485]
[15]
Agbaje, O.C.; Fadeyi, O.O.; Fadeyi, S.A.; Myles, L.E.; Okoro, C.O. Synthesis and in vitro cytotoxicity evaluation of some fluorinated hexahydropyrimidine derivatives. Bioorg. Med. Chem. Lett., 2011, 21(3), 989-992.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.022] [PMID: 21216143]
[16]
Chiang, A.N.; Valderramos, J-C.; Balachandran, R.; Chovatiya, R.J.; Mead, B.P.; Schneider, C.; Bell, S.L.; Klein, M.G.; Huryn, D.M.; Chen, X.S.; Day, B.W.; Fidock, D.A.; Wipf, P.; Brodsky, J.L. Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorg. Med. Chem., 2009, 17(4), 1527-1533.
[http://dx.doi.org/10.1016/j.bmc.2009.01.024] [PMID: 19195901]
[17]
Matsuda, T.; Hirao, I. Antibacterial activity of 5-nitrofuran derivatives. Nippon Kagaku Ryoho Gakkai Zasshi., 1965, 86, 1195-1197.
[18]
Hurst, E.W.; Hull, R. Two new synthetic substances active against viruses of the psittacosis-lymphogranulomatrachoma group. J. Med. Pharm. Chem., 1961, 3(2), 215-229.
[http://dx.doi.org/10.1021/jm50015a002] [PMID: 14450164]
[19]
Alam, O.; Khan, S.A.; Siddiqui, N.; Ahsan, W.; Verma, S.P.; Gilani, S.J. Antihypertensive activity of newer 1,4-dihydro-5-pyrimidine carboxamides: synthesis and pharmacological evaluation. Eur. J. Med. Chem., 2010, 45(11), 5113-5119.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.022] [PMID: 20813434]
[20]
Alam, M.M.; Akhter, M.; Husain, A.; Marella, A.; Tanwar, O.P.; Ali, R.; Hasan, S.M.; Kumar, H.; Haider, R.; Shaquiquzzaman, M. Anti-inflammatory and antimicrobial activity of 4,5-dihydropyrimidine-5-carbonitrile derivatives: their synthesis and spectral elucidation. Acta Pol. Pharm., 2012, 69(6), 1077-1085.
[PMID: 23285668]
[21]
Guido, B.C.; Ramos, L.M.; Nolasco, D.O.; Nobrega, C.C.; Andrade, B.Y.; Pic-Taylor, A.; Neto, B.A.; Corrêa, J.R. Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin-2(1H)-one derivatives on various breast cancer cell features. BMC Cancer, 2015, 15(1), 283.
[http://dx.doi.org/10.1186/s12885-015-1274-1] [PMID: 25885813]
[22]
Prashantha Kumar, B.R.; Sankar, G.; Nasir Baig, R.B.; Chandrashekaran, S. Novel Biginelli dihydropyrimidines with potential anticancer activity: a parallel synthesis and CoMSIA study. Eur. J. Med. Chem., 2009, 44(10), 4192-4198.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.014] [PMID: 19525040]
[23]
Kamal, A.; Mallareddy, A.; Suresh, P.; Shaik, T.B.; Lakshma Nayak, V.; Kishor, C.; Shetti, R.V.; Sankara Rao, N.; Tamboli, J.R.; Ramakrishna, S.; Addlagatta, A. Synthesis of chalcone-amidobenzothiazole conjugates as antimitotic and apoptotic inducing agents. Bioorg. Med. Chem., 2012, 20(11), 3480-3492.
[http://dx.doi.org/10.1016/j.bmc.2012.04.010] [PMID: 22543234]
[24]
Kamal, A.; Sultana, F.; Ramaiah, M.J.; Srikanth, Y.V.; Viswanath, A.; Kishor, C.; Sharma, P.; Pushpavalli, S.N.; Addlagatta, A.; Pal-Bhadra, M. 3-substituted 2-phenylimidazo[2,1-b]benzothiazoles: synthesis, anticancer activity, and inhibition of tubulin polymerization. ChemMedChem, 2012, 7(2), 292-300.
[http://dx.doi.org/10.1002/cmdc.201100511] [PMID: 22241597]
[25]
van Vuuren, R.J.; Visagie, M.H.; Theron, A.E.; Joubert, A.M. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol., 2015, 76(6), 1101-1112.
[http://dx.doi.org/10.1007/s00280-015-2903-8] [PMID: 26563258]
[26]
Steinmetz, M.O.; Prota, A.E. Microtubule-targeting agents: Strategies to hijack the cytoskeleton. Trends Cell Biol., 2018, 28(10), 776-792.
[http://dx.doi.org/10.1016/j.tcb.2018.05.001] [PMID: 29871823]
[27]
Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46(5), 1874-1881.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.051] [PMID: 21414694]
[28]
Palkar, M.; Noolvi, M.; Sankangoud, R.; Maddi, V.; Gadad, A.; Nargund, L.V.G. Synthesis and antibacterial activity of a novel series of 2,3-diaryl-substituted-imidazo(2,1-b)-benzothiazole derivatives. Arch. Pharm. (Weinheim), 2010, 343(6), 353-359.
[http://dx.doi.org/10.1002/ardp.200900260] [PMID: 20397211]
[29]
SAKAI S-i; EL-GENDY, MA; OMAR, N Imidazo 2, 1-b] benzothiazoles. II.: Synthesis and Antinflammatory Activity of Some Imidazo [2, 1-b] benzothiazoles. Chem. Pharm. Bull. (Tokyo), 1989, 37(11), 2971-2975.
[http://dx.doi.org/10.1248/cpb.37.2971] [PMID: 2632041]
[30]
Mase, T.; Arima, H.; Tomioka, K.; Yamada, T.; Murase, K. Imidazo[2,1-b]benzothiazoles. 2. New immunosuppressive agents. J. Med. Chem., 1986, 29(3), 386-394.
[http://dx.doi.org/10.1021/jm00153a014] [PMID: 3512827]
[31]
Ager, I.R.; Barnes, A.C.; Danswan, G.W.; Hairsine, P.W.; Kay, D.P.; Kennewell, P.D.; Matharu, S.S.; Miller, P.; Robson, P.; Rowlands, D.A. Synthesis and oral antiallergic activity of carboxylic acids derived from imidazo[2,1-c][1,4]benzoxazines, imidazo[1,2-a]quinolines, imidazo[1,2-a]quinoxalines, imidazo[1,2-a]quinoxalinones, pyrrolo[1,2-a]quinoxalinones, pyrrolo[2,3-a]quinoxalinones, and imidazo[2,1-b]benzothiazoles. J. Med. Chem., 1988, 31(6), 1098-1115.
[http://dx.doi.org/10.1021/jm00401a009] [PMID: 2897466]
[32]
Srimanth, K.; Rao, V.R.; Krishna, D.R. Synthesis and evaluation of anticancer activity of some imidazothiazolyl, imidazobenzothiazolyl and dihydroimidazothiazolyl coumarins. Arzneimittelforschung, 2002, 52(5), 388-392.
[PMID: 12087925]
[33]
Trapani, G.; Franco, M.; Latrofa, A.; Reho, A.; Liso, G. Synthesis, in vitro and in vivo cytotoxicity, and prediction of the intestinal absorption of substituted 2-ethoxycarbonyl-imidazo[2,1-b]benzothiazoles. Eur. J. Pharm. Sci., 2001, 14(3), 209-216.
[http://dx.doi.org/10.1016/S0928-0987(01)00173-7] [PMID: 11576825]
[34]
Hiyoshi, H.; Goto, N.; Tsuchiya, M.; Iida, K.; Nakajima, Y.; Hirata, N.; Kanda, Y.; Nagasawa, K.; Yanagisawa, J. 2-(4-Hydroxy-3-methoxyphenyl)-benzothiazole suppresses tumor progression and metastatic potential of breast cancer cells by inducing ubiquitin ligase CHIP. Sci. Rep., 2014, 4, 7095.
[http://dx.doi.org/10.1038/srep07095] [PMID: 25403352]
[35]
Sun, H.; Tawa, G.; Wallqvist, A. Classification of scaffold-hopping approaches. Drug Discov. Today, 2012, 17(7-8), 310-324.
[http://dx.doi.org/10.1016/j.drudis.2011.10.024] [PMID: 22056715]
[36]
Ebadi, A.; Khoshneviszadeh, M.; Javidnia, K.; Hossein Ghahremani, M.; Firuzi, O.; Miri, R. 3, 4-Dihydropyrimidin-2 (1H)-one C5 amides as inhibitors of T NFα production: Synthesis, biological evaluation and molecular modeling. Lett. Drug Des. Discov., 2017, 14(8), 885-897.
[http://dx.doi.org/10.2174/1570180814666170306120235]
[37]
Kuznetsov, Y.I.; Shikhaliev, K.S.; Agafonkina, M.; Andreeva, N.; Semiletov, A.; Chirkunov, A. Formation of passivating layers by 1, 2, 4-triazole derivatives on copper in aqueous solutions. Russ. J. Phys. Chem, 2017, 91(12), 2458-2465.
[http://dx.doi.org/10.1134/S0036024417120147]
[38]
Jarrahpour, A.; Fathi, J.; Mimouni, M.; Hadda, T.B.; Sheikh, J.; Chohan, Z. Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: Antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med. Chem. Res., 2012, 21(8), 1984-1990.
[http://dx.doi.org/10.1007/s00044-011-9723-0]
[39]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[40]
Garrido, J.; Gaspar, A.; Garrido, E.M.; Miri, R.; Tavakkoli, M.; Pourali, S.; Saso, L.; Borges, F.; Firuzi, O. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie, 2012, 94(4), 961-967.
[http://dx.doi.org/10.1016/j.biochi.2011.12.015] [PMID: 22210493]
[41]
Paydar, M.; Kamalidehghan, B.; Wong, Y.L.; Wong, W.F.; Looi, C.Y.; Mustafa, M.R. Evaluation of cytotoxic and chemotherapeutic properties of boldine in breast cancer using in vitro and in vivo models. Drug Des. Devel. Ther., 2014, 8, 719-733.
[PMID: 24944509]
[42]
Neese, F. ORCA, an Ab initio, density functional and semiempirical electronic structure program package, version 2.8; Universität Bonn: Bonn, Germany, 2010.
[43]
Neese, F. An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix. J. Comput. Chem., 2003, 24(14), 1740-1747.
[http://dx.doi.org/10.1002/jcc.10318] [PMID: 12964192]
[44]
Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett., 1995, 240(4), 283-290.
[http://dx.doi.org/10.1016/0009-2614(95)00621-A]
[45]
Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: a fast force field generation tool for small organic molecules. J. Comput. Chem., 2011, 32(11), 2359-2368.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[46]
Šali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol., 1993, 234(3), 779-815.
[http://dx.doi.org/10.1006/jmbi.1993.1626] [PMID: 8254673]
[47]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[48]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[49]
MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616.
[http://dx.doi.org/10.1021/jp973084f] [PMID: 24889800]
[50]
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1)014101
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[51]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190.
[http://dx.doi.org/10.1063/1.328693]
[52]
Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[53]
Sakano, T.; Mahamood, M.I.; Yamashita, T.; Fujitani, H. Molecular dynamics analysis to evaluate docking pose prediction. Biophys. Physicobiol., 2016, 13, 181-194.
[http://dx.doi.org/10.2142/biophysico.13.0_181] [PMID: 27924273]
[54]
de Ruyck, J.; Brysbaert, G.; Blossey, R.; Lensink, M.F. Molecular docking as a popular tool in drug design, an in silico travel. Adv. Appl. Bioinform. Chem., 2016, 9, 1-11.
[http://dx.doi.org/10.2147/AABC.S105289] [PMID: 27390530]
[55]
Kumarasamy, D.; Roy, B.G.; Rocha-Pereira, J.; Neyts, J.; Nanjappan, S.; Maity, S.; Mookerjee, M.; Naesens, L. Synthesis and in vitro antiviral evaluation of 4-substituted 3,4-dihydropyrimidinones. Bioorg. Med. Chem. Lett., 2017, 27(2), 139-142.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.010] [PMID: 27979594]

© 2024 Bentham Science Publishers | Privacy Policy