Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

DFT Study on Two Plausible Mechanistic Routes to Pyrazolo[3,4-d]pyrimidine-4- Amines from Pyrazoloformimidate

Author(s): Amal Al-Azmi*

Volume 24, Issue 2, 2020

Page: [216 - 229] Pages: 14

DOI: 10.2174/1385272824666200203122450

Price: $65

Abstract

Pyrazolo[3,4-d]pyrimidine-4-amine was prepared at room temperature in a catalyst- free medium with moderate yield and characterized by spectroscopic and X-ray diffraction techniques. Two possible mechanistic routes were suggested for its formation. Route 1 entails attack by the N of the amine on the imidate carbon followed by Dimroth rearrangement after cyclization. Route 2 is the nucleophilic attack by the amine on the CN function followed by cyclization to pyrazolo[3,4-d]pyrimidine-4-amine. Density functional theory (DFT) calculation studies of the two proposed reaction pathways illustrated that the Route 2 reaction was more likely than that of Route 1.

Keywords: Pyrazole, DFT, pyrimidine, imidate, N-heterocycles, pyrazolopyrimidine.

« Previous
Graphical Abstract

[1]
Cheng, C.C.; Robins, R.K. Potential Purine Antagonists. VI. Synthesis of 1-Alkyl- and 1-Aryl-4-substituted Pyrazolo[3,4-d]pyrimidines. J. Org. Chem., 1956, 21(11), 1240-1256.
[http://dx.doi.org/10.1021/jo01117a010]
[2]
Robins, R.K. Potential Purine Antagonists. I. Synthesis of some 4,6-substituted pyrazolo [3,4-d] pyrimidines. J. Am. Chem. Soc., 1956, 78(4), 784-790.
[http://dx.doi.org/10.1021/ja01585a023]
[3]
Skipper, H.E.; Robins, R.K.; Thomson, J.R. Inhibition of experimental neoplasms by 4-aminopyrazolo (3, 4-d) pyrimidine. Proc. Soc. Exp. Biol. Med., 1955, 89(4), 594-596.
[http://dx.doi.org/10.3181/00379727-89-21885] [PMID: 13254835]
[4]
Hsu, T.C.; Robins, R.K.; Cheng, C.C. Studies on 4APP: antineoplastic action in vitro. Science, 1956, 123(3202), 848-849.
[5]
Skipper, H.E.; Robins, R.K.; Thomson, J.R.; Cheng, C.C.; Brockman, R.W.; Schabel, F.M. Structure-activity relationships observed on screening a series of pyrazolopyrimidines against experimental neoplasms. Cancer Res., 1957, 17(6), 579-596.
[PMID: 13446843]
[6]
Devarakonda, M.; Doonaboina, R.; Vanga, S.; Vemu, J.; Boni, S.; Mailavaram, R.P. Synthesis of novel 2-alkyl-4-substituted-amino-pyrazolo[3,4-d]pyrimidines as new leads for anti-bacterial and anti-cancer activity. Med. Chem. Res., 2013, 22(3), 1090-1101.
[http://dx.doi.org/10.1007/s00044-012-0084-0]
[7]
Agrebi, A.; Allouche, F.; Fetoui, H.; Chabchoub, F. Synthesis and biological evaluation of new pyrazolo[3,4-d]pyrimidine derivatives. Mediterr. J. Chem., 2014, 3(2), 864-876.
[http://dx.doi.org/10.13171/mjc.3.2.2014.13.05.23]
[8]
Jain, K.S.; Khedkar, V.M.; Arya, N.; Rane, P.V.; Chaskar, P.K.; Coutinho, E.C. Design, synthesis & evaluation of condensed 2H-4-arylaminopyrimidines as novel antifungal agents. Eur. J. Med. Chem., 2014, 77(22), 166-175.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.066] [PMID: 24631896]
[9]
Mishra, C.B.; Mongre, R.K.; Kumari, S.; Jeong, D.K.; Tiwari, M. Synthesis, in vitro and in vivo anticancer activity of novel 1-(4-imino-1-substituted-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-yl)urea derivatives. RSC Advances, 2016, 6(29), 24491-24500.
[http://dx.doi.org/10.1039/C5RA26939C]
[10]
Ugarkar, B.G.; Cottam, H.B.; McKernan, P.A.; Robins, R.K.; Revankar, G.R. Synthesis and antiviral/antitumor activities of certain pyrazolo[3,4-d]pyrimidine-4(5H)-selone nucleosides and related compounds. J. Med. Chem., 1984, 27(8), 1026-1030.
[http://dx.doi.org/10.1021/jm00374a015] [PMID: 6086922]
[11]
Xia, Y.; Chackalamannil, S.; Czarniecki, M.; Tsai, H.; Vaccaro, H.; Cleven, R.; Cook, J.; Fawzi, A.; Watkins, R.; Zhang, H. Synthesis and evaluation of polycyclic pyrazolo[3,4-d]pyrimidines as PDE1 and PDE5 cGMP phosphodiesterase inhibitors. J. Med. Chem., 1997, 40(26), 4372-4377.
[http://dx.doi.org/10.1021/jm970495b] [PMID: 9435906]
[12]
Kumar, A.; Jaggi, A.S.; Singh, N. Pharmacological investigations on possible role of Src kinases in neuroprotective mechanism of ischemic postconditioning in mice. Int. J. Neurosci., 2014, 124(10), 777-786.
[http://dx.doi.org/10.3109/00207454.2013.879869] [PMID: 24397498]
[13]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Fathalla, N.; Abdel-Megeid, F.M. Synthesis and anti-HSV-1 evaluation of some pyrazoles and fused pyrazolopyrimidines. Eur. J. Med. Chem., 2009, 44(8), 3285-3292.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.012] [PMID: 19285757]
[14]
Al-Azmi, A. Pyrazolo[1,5-a]pyrimidines: a close look into their synthesis and applications. Curr. Org. Chem., 2019, 23(6), 721-743.
[http://dx.doi.org/10.2174/1385272823666190410145238]
[15]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: a fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[16]
Halcrow, M.A. Pyrazoles and pyrazolides-flexible synthons in self-assembly. Dalton Trans., 2009, (12), 2059-2073.
[http://dx.doi.org/10.1039/b815577a] [PMID: 19274281]
[17]
Al-Azmi, A. Novel 6-substituted pyrimidines and pyrimido[5,4-d]pyrimidines from (2-acetamido-1,2-dicyanovinyl)ammonium chloride. J. Chem. Res., 2005, 2005(8), 530-534.
[http://dx.doi.org/10.3184/030823405774663200]
[18]
Crystal data for compound 9 (ref. CCDC 1902100) can be obtained on request from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EW; UK. CCDC, 2009.
[19]
Crystal data for compound 12 (ref. CCDC 1902098) can be obtained on request from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EW; UK. CCDC, 2009.
[20]
Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision A. 1; Gaussian: Wallingford, CT, USA, 2009.
[21]
Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[22]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[23]
Perdew, J.P.; Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B., 1992, 46(20), 12947-12954.
[http://dx.doi.org/10.1103/PhysRevB.46.12947] [PMID: 10003333]
[24]
Biovia, D.S. Materials Studio. R2; Dassault Systèmes BIOVIA: San Diego, 2017.
[25]
Delley, B. Ground-state enthalpies: evaluation of electronic structure approaches with emphasis on the density functional method. J. Phys. Chem. A, 2006, 110(50), 13632-13639.
[http://dx.doi.org/10.1021/jp0653611] [PMID: 17165892]
[26]
Bulat, F.A.; Chamorro, E.; Fuentealba, P.; Toro-Labbe, A. Condensation of frontier molecular orbital Fukui functions. J. Phys. Chem. A, 2004, 108(2), 342-349.
[http://dx.doi.org/10.1021/jp036416r]
[27]
Xavier, S.; Periandy, S.; Ramalingam, S. NBO, conformational, NLO, HOMO-LUMO, NMR and electronic spectral study on 1-phenyl-1-propanol by quantum computational methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 306-320.
[http://dx.doi.org/10.1016/j.saa.2014.08.039] [PMID: 25228039]
[28]
Makhlouf, M.M.; Radwan, A.S.; Ghazal, B. Experimental and DFT insights into molecular structure and optical properties of new chalcones as promising photosensitizers towards solar cell applications. Appl. Surf. Sci., 2018, 452, 337-351.
[http://dx.doi.org/10.1016/j.apsusc.2018.05.007]
[29]
Bouchoucha, A.; Zaater, S.; Bouacida, S.; Merazig, H.; Djabbar, S. Synthesis and characterization of new complexes of nickel (II), palladium (II) and platinum(II) with derived sulfonamide ligand: Structure, DFT study, antibacterial and cytotoxicity activities. J. Mol. Struct., 2018, 1161, 345-355.
[http://dx.doi.org/10.1016/j.molstruc.2018.02.057]
[30]
Arjunan, V.; Balamourougane, P.S.; Kalaivani, M.; Raj, A.; Mohan, S. Experimental and theoretical quantum chemical investigations of 8-hydroxy-5-nitroquinoline. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 96, 506-516.
[http://dx.doi.org/10.1016/j.saa.2012.05.080] [PMID: 22728969]
[31]
Menon, V.V.; Fazal, E.; Mary, Y.S.; Panicker, C.Y.; Armaković, S.; Armaković, S.J.; Nagarajan, S.; Van Alsenoy, C.F.T-I.R. FT-Raman and NMR characterization of 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate and investigation of its reactive and optoelectronic properties by molecular dynamics simulations and DFT calculations. J. Mol. Struct., 2017, 1127, 124-137.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.096]
[32]
Okulik, N.; Jubert, A.H. Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic J. Mol. Design, 2005, 4(1), 17-30.
[33]
Olasunkanmi, L.O.; Obot, I.B.; Ebenso, E.E. Adsorption and corrosion inhibition properties of N-n-[1-R-5-(quinoxalin-6-yl)-4, 5-dihydropyrazol-3-yl] phenyl methanesulfonamides on mild steel in 1 M HCl: experimental and theoretical studies. RSC Advances, 2016, 6, 86782-86797.
[http://dx.doi.org/10.1039/C6RA11373G]
[34]
El Adnani, Z.; Mcharfi, M.; Sfaira, M.; Benzakour, M.; Benjelloun, A.; Touhami, M.E. DFT theoretical study of 7-R-3methylquinoxalin-2 (1H)-thiones (RH; CH3; Cl) as corrosion inhibitors in hydrochloric acid. Corros. Sci., 2013, 68, 223-230.
[http://dx.doi.org/10.1016/j.corsci.2012.11.020]
[35]
Mi, H.; Xiao, G.; Chen, X. Theoretical evaluation of corrosion inhibition performance of three antipyrine compounds. Comput. Theor. Chem., 2015, 1072, 7-14.
[http://dx.doi.org/10.1016/j.comptc.2015.08.023]
[36]
Messali, M.; Larouj, M.; Lgaz, H.; Rezki, N.; Al-Blewi, F.; Aouad, M.; Chaouiki, A.; Salghi, R.; Chung, I-M. A new schiff base derivative as an effective corrosion inhibitor for mild steel in acidic media: experimental and computer simulations studies. J. Mol. Struct., 2018, 1168, 39-48.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.018]
[37]
Roy, R.; Krishnamurti, S.; Geerlings, P.; Pal, S. Local softness and hardness based reactivity descriptors for predicting intra-and intermolecular reactivity sequences: carbonyl compounds. J. Phys. Chem. A, 1998, 102(21), 3746-3755.
[http://dx.doi.org/10.1021/jp973450v]
[38]
Roy, R.; de Proft, F.; Geerlings, P. Site of protonation in aniline and substituted anilines in the gas phase: a study via the local hard and soft acids and bases concept. J. Phys. Chem. A, 1998, 102(35), 7035-7040.
[http://dx.doi.org/10.1021/jp9815661]
[39]
Roy, R.K.; Pal, S.; Hirao, K. On non-negativity of Fukui function indices. J. Chem. Phys., 1999, 110, 8236-8245.
[http://dx.doi.org/10.1063/1.478792]
[40]
Booth, B.L.; Proença, M.F.J.R.P. Synthesis of 5-amino-4-(cyanoformimidoyl)-1H-imidazole: a reactive intermediate for the synthesis of 6-carbamoyl-1,2-dihydropurines and 6-carbamoylpurines. J. Chem. Soc., Perkin Trans. 1, 1990, 6, 1705-1712.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy