Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Formation of High Added Value Chemicals by Photocatalytic Treatment of Biomass

Author(s): Marianna Bellardita*, Vittorio Loddo and Leonardo Palmisano

Volume 17, Issue 7, 2020

Page: [884 - 901] Pages: 18

DOI: 10.2174/1570193X17666200131112856

Abstract

The depletion of fossil fuel requires the search for alternative renewable feedstock and environmentally friendly methods for the production of high value-added compounds and fuels. In this context, the efficient use of biomass has emerged as a significant research field as it represents an alternative green and renewable carbon source. Various technologies have been explored for this purpose and heterogeneous photocatalysis represents a valid alternative to the catalytic methods since it can be carried out under mild experimental conditions without the addition of harmful oxidizing agents. Different biomass components have been used as the starting materials, and many valuable chemicals have been obtained with different selectivity depending on some experimental conditions as, for instance, type of photocatalyst, solvent, and physico-chemical features of the catalysts. Moreover, by carrying out the reaction in de-aerated systems, in addition to high added value compounds, hydrogen can be obtained in the gaseous phase. In particular, photocatalytic conversion of lignocellulose, carbohydrates, 5-hydroxymethyl-2-furfural and glycerol (considering only the partial oxidation products) is reported.

Keywords: Biomass conversion, green conditions, H2 formation, fossil fuel, heterogeneous photocatalysis, high added value compounds.

« Previous
Graphical Abstract

[1]
Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev., 1995, 83, 341-357.
[2]
Mills, A.; Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol. Chem., 1997, 108, 1-35.
[http://dx.doi.org/10.1016/S1010-6030(97)00118-4]
[3]
Hermann, J-M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 1999, 53, 115-129.
[http://dx.doi.org/10.1016/S0920-5861(99)00107-8]
[4]
Gaya, U.I.; Abdullah, A.H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. Chem., 2008, 9, 1-12.
[http://dx.doi.org/10.1016/j.jphotochemrev.2007.12.003]
[5]
Shiraishi, Y.; Hirai, T. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. Chem., 2008, 9, 157-170.
[http://dx.doi.org/10.1016/j.jphotochemrev.2008.05.001]
[6]
Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 2014, 43(1), 473-486.
[http://dx.doi.org/10.1039/C3CS60188A] [PMID: 24162830]
[7]
Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives. Green Chem., 2016, 18, 5391-5411.
[http://dx.doi.org/10.1039/C6GC01582D]
[8]
Parrino, F.; Bellardita, M.; García-López, E.I.; Marcì, G.; Loddo, V.; Palmisano, L. Heterogeneous photocatalysis for selective formation of high value-added molecules: Some chemical and engineering aspects. ACS Catal., 2018, 8, 11191-11225.
[http://dx.doi.org/10.1021/acscatal.8b03093]
[9]
Palmisano, L.; Augugliaro, V.; Bellardita, M.; Di Paola, A.; García López, E.; Loddo, V.; Marcì, G.; Palmisano, G.; Yurdakal, S. Titania photocatalysts for selective oxidations in water. ChemSusChem, 2011, 4(10), 1431-1438.
[http://dx.doi.org/10.1002/cssc.201100196] [PMID: 21957017]
[10]
Li, C-J.; Xu, G-R.; Zhang, B.; Gong, J.R. High Selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Appl. Catal. B, 2012, 115, 201-208.
[http://dx.doi.org/10.1016/j.apcatb.2011.12.003]
[11]
Bellardita, M.; Loddo, V.; Palmisano, G.; Pibiri, I.; Palmisano, L.; Augugliaro, V. Photocatalytic green synthesis of piperonal in aqueous TiO2 suspension. Appl. Catal. B, 2014, 144, 607-613.
[http://dx.doi.org/10.1016/j.apcatb.2013.07.070]
[12]
Tomita, O.; Otsubo, T.; Higashi, M.; Ohtani, B.; Abe, R. Partial oxidation of alcohols on visible-light-responsive WO3 photocatalysts loaded with palladium oxide cocatalyst. ACS Catal., 2016, 6, 1134-1144.
[http://dx.doi.org/10.1021/acscatal.5b01850]
[13]
Liu, S.; Chen, Z.; Zhang, N.; Tang, Z-R.; Xu, Y-J. An efficient self-assembly of CdS nanowires-reduced graphene oxide nanocomposites for selective reduction of nitro organics under visible light irradiation. J. Phys. Chem. C, 2013, 117, 8251-8261.
[http://dx.doi.org/10.1021/jp400550t]
[14]
Ke, X.; Zhang, X.; Zhao, J.; Sarina, S.; Barry, J.; Zhu, H. Selective reductions using visible light photocatalysts of supported gold nanoparticles. Green Chem., 2013, 15, 236-244.
[http://dx.doi.org/10.1039/C2GC36542A]
[15]
Colmenares, J.C.; Luque, R.; Campelo, J.M.; Colmenares, F.; Karpinski, Z.; Romero, A.A. Nanostructured photocatalysts and their applications in the photocatalytic transformation of lignocellulosic biomass: An overview. Materials (Basel), 2009, 2, 2228-2258.
[http://dx.doi.org/10.3390/ma2042228]
[16]
Colmenares, J.C.; Luque, R. Heterogeneous photocatalytic nanomaterials: Prospects and challenges in selective transformations of biomass-derived compounds. Chem. Soc. Rev., 2014, 43(3), 765-778.
[http://dx.doi.org/10.1039/C3CS60262A] [PMID: 24217399]
[17]
Omri, M.; Sauvage, F.; Golonu, S.; Wadouachi, A.; Pourceau, G. Photocatalyzed transformation of free carbohydrates. Catalysts, 2018, 8, 672.
[http://dx.doi.org/10.3390/catal8120672]
[18]
Chong, R.; Li, J.; Ma, Y.; Zhang, B.; Han, H.; Li, C. Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. J. Catal., 2014, 314, 101-108.
[http://dx.doi.org/10.1016/j.jcat.2014.03.009]
[19]
Bellardita, M.; García-López, E.I.; Marci, G.; Megna, B.; Pomilla, F.R.; Palmisano, L. Photocatalytic conversion of glucose in aqueous suspensions of heteropolyacid-TiO2 composites. RSC Advances, 2015, 5, 59037-59047.
[http://dx.doi.org/10.1039/C5RA09894G]
[20]
Gazi, S.; Hung Ng, W.K.; Ganguly, R.; Putra Moeljadi, A.M.; Hirao, H.; Soo, H.S. Selective photocatalytic C-C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chem. Sci. (Camb.), 2015, 6(12), 7130-7142.
[http://dx.doi.org/10.1039/C5SC02923F] [PMID: 29861949]
[21]
Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. Engl., 2013, 52(29), 7372-7408.
[http://dx.doi.org/10.1002/anie.201207199] [PMID: 23765842]
[22]
Bellardita, M.; Di Paola, A.; García-López, E.; Loddo, V.; Marcì, G.; Palmisano, L. Photocatalytic CO2 reduction in gas-solid regime in the presence of Bare, SiO2 supported or Cu-loaded TiO2 samples. Curr. Org. Chem., 2013, 17, 2440-2448.
[http://dx.doi.org/10.2174/13852728113179990057]
[23]
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev., 2009, 38(1), 253-278.
[http://dx.doi.org/10.1039/B800489G] [PMID: 19088977]
[24]
Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev., 2014, 114(19), 9987-10043.
[http://dx.doi.org/10.1021/cr500008u] [PMID: 25098384]
[25]
Navarro, R.M.; Sánchez-Sánchez, M.C.; Alvarez-Galvan, M.C.; Valle, F.D.; Fierro, J.L.G. Hydrogen production from renewable sources: Biomass and photocatalytic opportunities. Energy Environ. Sci., 2009, 2, 35-54.
[http://dx.doi.org/10.1039/B808138G]
[26]
Bellardita, M.; García-López, E.; Marcì, G.; Palmisano, L. Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension. Int. J. Hydrogen Energy, 2016, 41, 5934-5947.
[http://dx.doi.org/10.1016/j.ijhydene.2016.02.103]
[27]
Bellardita, M.; García-López, E.; Marcì, G.; Nasillo, G.; Palmisano, L. Photocatalytic solar light H2 production by aqueous glucose reforming. Eur. J. Inorg. Chem., 2018, 2018, 4522-4532.
[http://dx.doi.org/10.1002/ejic.201800663]
[28]
Ramachandran, S.; Fontanille, P.; Pandey, A.; Larroche, C. Gluconic acid: Properties, applications and microbial production. Food Technol. Biotechnol., 2006, 44, 185-195.
[29]
Zhang, H.D.; Li, N.; Pan, X.J.; Wu, S.B.; Xie, J. Oxidative conversion of glucose to gluconic acid by iron(III) chloride in water under mild conditions. Green Chem., 2016, 18, 2308-2312.
[http://dx.doi.org/10.1039/C5GC02614H]
[30]
Ghorpade, V.; Hanna, M. Industrial Applications for Levulinic Acid. In: Cereals; Campbell, G.M.; Webb, C.; McKee, S.L., Eds.; Springer: Boston, 1997.
[http://dx.doi.org/10.1007/978-1-4757-2675-6_7]
[31]
Manas, M.G.; Campos, J.; Sharninghausen, L.S.; Lin, E.; Grabtree, R.H. Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chem., 2015, 17, 594-600.
[http://dx.doi.org/10.1039/C4GC01694G]
[32]
Albert, J.; Wasserscheid, P. Expanding the scope of biogenic substrates for the selective production of formic acid from water-insoluble and wet waste biomass. Green Chem., 2015, 17, 5164-5171.
[http://dx.doi.org/10.1039/C5GC01474C]
[33]
Chou, C.F.; Chou, T.C. Paired electrooxidation IV. Decarboxylation of sodium gluconate to D-arabinose. J. Appl. Electrochem., 2003, 33, 741-745.
[http://dx.doi.org/10.1023/A:1025005832155]
[34]
Sheldon, R.A. Green chemistry, catalysis and valorization of waste biomass. J. Mol. Catal. Chem., 2016, 422, 3-12.
[http://dx.doi.org/10.1016/j.molcata.2016.01.013]
[35]
Smith, A.D.; Landoll, M.; Falls, M.; Holtzapple, M.T. Chemical production from lignocellulosic biomass: Thermochemical, sugar and carboxylate platforms. In: Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass; Waldron, K.W., Ed.; Woodhead Publishing Limited: Cambridge, 2010.
[http://dx.doi.org/10.1533/9781845699611.5.391]
[36]
Lu, Y.; Wei, X-Y.; Wen, Z.; Chen, H-B.; Lu, Y-C.; Zong, Z-M.; Cao, J-P.; Qi, S-C.; Wang, S-Z.; Yu, L-C.; Zhao, W.; Fan, X.; Zhao, Y-P. Photocatalytic depolymerization of rice husk over TiO2 with H2O2. Fuel Process. Technol., 2014, 117, 8-16.
[http://dx.doi.org/10.1016/j.fuproc.2013.04.001]
[37]
Sakata, T.; Kawai, T. Hydrogen production from biomass and water by photocatalytic processes. New J. Chem., 1981, 5, 279-281.
[38]
Zou, J.; Zhang, G.; Xu, X. One-pot photoreforming of cellulosic biomass waste to hydrogen by merging photocatalysis with acid hydrolysis. Appl. Catal. A, 2018, 563, 73-79.
[http://dx.doi.org/10.1016/j.apcata.2018.06.030]
[39]
Wakerley, D.W.; Kuehnel, M.F.; Orchard, K.L.; Ly, K.H.; Rosser, T.E.; Reisner, E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy, 2017, 2, 17021.
[http://dx.doi.org/10.1038/nenergy.2017.21]
[40]
Yasuda, M.; Miura, A.; Yuki, R.; Nakamura, Y.; Shiragami, T.; Ishii, Y.; Yokoi, H. The effect of TiO2-photocatalytic pretreatment on the biological production of ethanol from lignocelluloses. J. Photochem. Photobiol. Chem., 2011, 220, 195-199.
[http://dx.doi.org/10.1016/j.jphotochem.2011.04.019]
[41]
Tian, M.; Wen, J.; MacDonald, D.; Asmussen, R.M.; Chen, A. A novel approach for lignin modification and degradation. Electrochem. Commun., 2010, 12, 527-530.
[http://dx.doi.org/10.1016/j.elecom.2010.01.035]
[42]
Ksibi, M.; Ben Amor, S.; Cherif, S.; Elaloui, E.; Houas, A.; Elaloui, M. Photodegradation of lignin from black liquor using UV/TiO2 system. J. Photochem. Photobiol. Chem., 2003, 154, 211-218.
[http://dx.doi.org/10.1016/S1010-6030(02)00316-7]
[43]
Prado, R.; Erdocia, X.; Labidi, J. Effect of the photocatalytic activity of TiO2 on lignin depolymerization. Chemosphere, 2013, 91(9), 1355-1361.
[http://dx.doi.org/10.1016/j.chemosphere.2013.02.008] [PMID: 23473431]
[44]
Li, H.; Lei, Z.; Liu, C.; Zhang, Z.; Lu, B. Photocatalytic degradation of lignin on synthesized Ag-AgCl/ZnO nanorods under solar light and preliminary trials for methane fermentation. Bioresour. Technol., 2015, 175, 494-501.
[http://dx.doi.org/10.1016/j.biortech.2014.10.143] [PMID: 25459860]
[45]
Gong, J.; Imbault, A.; Farnood, R. The promoting role of bismuth for the enhanced photocatalytic oxidation of lignin on Pt-TiO2 under solar light illumination. Appl. Catal. B, 2017, 204, 296-303.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.045]
[46]
Wang, L.; Zhang, Z.; Zhang, L.; Xue, S.; Doherty, W.O.; O’Hara, I.M.; Ke, X. Sustainable conversion of cellulosic biomass to chemicals under visible-light irradiation. RSC Advances, 2015, 5, 85242-85247.
[http://dx.doi.org/10.1039/C5RA16616K]
[47]
Colmenares, J.C.; Magdziarz, A.; Bielejewska, A. High-value chemicals obtained from selective photo-oxidation of glucose in the presence of nanostructured titanium photocatalysts. Bioresour. Technol., 2011, 102(24), 11254-11257.
[http://dx.doi.org/10.1016/j.biortech.2011.09.101] [PMID: 22014701]
[48]
Colmenares, J.C.; Magdziarz, A. Room temperature versatile conversion of biomass-derived compounds by means of supported TiO2 photocatalysts. J. Mol. Catal. Chem., 2013, 366, 156-162.
[http://dx.doi.org/10.1016/j.molcata.2012.09.018]
[49]
Colmenares, J.C.; Magdziarz, A.; Chernyayeva, O.; Lisovytskiy, D.; Kurzydłowski, K.; Grzonka, J. Sonication-assisted low-temperature routes for the synthesis of supported Fe-TiO2 econanomaterials: Partial photooxidation of glucose and phenol aqueous degradation. ChemCatChem, 2013, 5, 2270-2277.
[http://dx.doi.org/10.1002/cctc.201300025]
[50]
Colmenares, J.C.; Magdziarz, A.; Kurzydlowski, K.; Grzonka, J.; Chernyayeva, O.; Lisovytskiy, D. Low-temperature ultrasound-promoted synthesis of Cr-TiO2-supported photocatalysts for valorization of glucose and phenol degradation from liquid phase. Appl. Catal. B, 2013, 134-135, 136-144.
[http://dx.doi.org/10.1016/j.apcatb.2013.01.020]
[51]
Da Vià, L.; Recchi, C.; Gonzalez-Yanez, E.O.; Davies, T.E.; Lopez-Sanchez, J.A. Visible light selective photocatalytic conversion of glucose by TiO2. Appl. Catal. B, 2017, 202, 281-288.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.035]
[52]
Da Vià, L.; Recchi, C.; Davies, T.E.; Greeves, N.; Lopez-Sanchez, J.A. Visible-light-controlled oxidation of glucose using titania-supported silver photocatalysts. ChemCatChem, 2016, 8(22), 3475-3483.
[http://dx.doi.org/10.1002/cctc.201600775] [PMID: 28450968]
[53]
Zhou, B.; Song, J.; Zhang, Z.; Jiang, Z.; Zhang, P.; Han, B. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2. Green Chem., 2017, 19, 1075-1081.
[http://dx.doi.org/10.1039/C6GC03022J]
[54]
Payormhorm, J.; Chuangchote, S.; Kiatkittipong, K.; Chiarakorn, S.; Laosiripojana, N. Xylitol and gluconic acid productions via photocatalytic-glucose conversion using TiO2 fabricated by surfactant-assisted techniques: Effects of structural and textural properties. Mater. Chem. Phys., 2017, 196, 29-36.
[http://dx.doi.org/10.1016/j.matchemphys.2017.03.058]
[55]
Jin, B.; Yao, G.; Wang, X.; Ding, K.; Jin, F. Photocatalytic oxidation of glucose into formate on nano TiO2 catalyst. ACS Sustain. Chem.& Eng., 2017, 5, 6377-6381.
[http://dx.doi.org/10.1021/acssuschemeng.7b00364]
[56]
Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed. Engl., 2007, 46(38), 7164-7183.
[http://dx.doi.org/10.1002/anie.200604274] [PMID: 17659519]
[57]
Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, C.A.M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem., 2011, 13, 754.
[http://dx.doi.org/10.1039/c0gc00401d]
[58]
Gandini, A. The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem., 2011, 13, 1061-1083.
[http://dx.doi.org/10.1039/c0gc00789g]
[59]
Kanetaka, Y.; Yamazaki, S.; Kimura, K. Preparation of poly(ether ketone)s derived from 2,5-furandicarboxylic acid by polymerization in ionic liquid. Macromolec., 2016, 49, 1252-1258.
[http://dx.doi.org/10.1021/acs.macromol.5b02788]
[60]
Takagaki, A.; Nishimura, S.; Ebitani, K. Catalytic transformations of biomass-derived materials into value-added chemicals. Catal. Surv. Asia, 2012, 16, 164-182.
[http://dx.doi.org/10.1007/s10563-012-9142-3]
[61]
Román-Leshkov, Y.; Chheda, J.N.; Dumesic, J.A. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science, 2006, 312(5782), 1933-1937.
[http://dx.doi.org/10.1126/science.1126337] [PMID: 16809536]
[62]
Román-Leshkov, Y.; Chheda, J.N. Dumesic, Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem., 2007, 9, 342-350.
[http://dx.doi.org/10.1039/B611568C]
[63]
Qi, X.; Watanabe, M.; Aida, M.T.; Smith, R.L. Catalytic conversion of fructose into 5- hydroxymethylfurfural in hot compressed water by microwave heating. Catal. Commun., 2008, 9, 2244-2249.
[http://dx.doi.org/10.1016/j.catcom.2008.04.025]
[64]
Tsutsumi, K.; Kurata, N.; Takata, E.; Furuichi, K.; Nagano, M.; Tabata, K. Silicon semiconductor-assisted Brønsted acid-catalyzed dehydration: Highly selective synthesis of 5-hydroxymethylfurfural from fructose under visible light irradiation. Appl. Catal. B, 2014, 147, 1009-1014.
[http://dx.doi.org/10.1016/j.apcatb.2013.10.032]
[65]
Ma, B.; Wang, Y.; Guo, X.; Tong, X.; Liu, C.; Wang, Y.; Guo, X. Photocatalytic synthesis of 2,5-diformylfuran from 5-hydroxy-methyfurfural or fructose over bimetallic Au-Ru nanoparticles supported on reduced graphene oxides. Appl. Catal. A Gen., 2018, 552, 70-76.
[http://dx.doi.org/10.1016/j.apcata.2018.01.002]
[66]
Kondarides, D.I.; Daskalaki, V.M.; Patsoura, A.; Verykios, X.E. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catal. Lett., 2008, 122, 26-32.
[http://dx.doi.org/10.1007/s10562-007-9330-3]
[67]
Kampouri, S.; Stylianou, K.C. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal., 2019, 9, 4247-4270.
[http://dx.doi.org/10.1021/acscatal.9b00332]
[68]
Ilie, M.; Cojocaru, B.; Parvulescu, V.I.; Garcia, H. Improving TiO2 activity in photo-production of hydrogen from sugar industry wastewaters. Int. J. Hydrogen Energy, 2011, 36, 15509-15518.
[http://dx.doi.org/10.1016/j.ijhydene.2011.09.029]
[69]
Wu, G.P.; Chen, T.; Zhou, G.H.; Zong, X.; Li, C. H2 production with CO selectivity from photocatalytic reforming of glucose on metal/TiO2 catalysts. Sci. China B Chem., 2008, 51, 97-100.
[http://dx.doi.org/10.1007/s11426-007-0132-7]
[70]
Jafiezic-Renault, N.; Pichat, P.; Foissy, A.; Mercier, R. Effect of deposited Pt particles on the surface charge of TiO2 aqueous suspensions by potentiometry, electrophoresis, and labeled ion adsorption. J. Phys. Chem., 1986, 90, 2733-2738.
[http://dx.doi.org/10.1021/j100403a035]
[71]
Gomathisankar, P.; Yamamoto, D.; Katsumata, H.; Suzuki, T.; Kaneco, S. Photocatalytic hydrogen production with aid of simultaneous metal deposition using titanium dioxide from aqueous glucose solution. Int. J. Hydrogen Energy, 2013, 38, 5517-5524.
[http://dx.doi.org/10.1016/j.ijhydene.2013.03.014]
[72]
Xu, Q.; Ma, Y.; Zhang, J.; Wang, X.; Feng, Z.; Li, C. Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase-rutile phase structure. J. Catal., 2011, 278, 329-335.
[http://dx.doi.org/10.1016/j.jcat.2011.01.001]
[73]
Fu, X.; Long, J.; Wang, X.; Leung, D.Y.C.; Ding, Z.; Wu, L.; Zhang, Z.; Li, Z.; Fu, X. Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. Int. J. Hydrogen Energy, 2008, 33, 6484-6491.
[http://dx.doi.org/10.1016/j.ijhydene.2008.07.068]
[74]
Colmenares, J.C.; Magdziarz, A.; Aramendia, M.A.; Marinas, A.; Marinas, J.M.; Urbano, F.J.; Navio, J.A. Influence of the Strong Metal Support Interaction effect (SMSI) of Pt/TiO2 and Pd/TiO2 systems in the photocatalytic biohydrogen production from glucose solution. Catal. Commun., 2011, 16, 1-6.
[http://dx.doi.org/10.1016/j.catcom.2011.09.003]
[75]
Silva, C.G.; Sampaio, M.J.; Marques, R.R.N.; Ferreira, L.A.; Tavares, P.B.; Silva, A.M.T.; Faria, J.L. Photocatalytic production of hydrogen from methanol and saccharides using carbon nanotube-TiO2 catalysts. Appl. Catal. B, 2015, 178, 82-90.
[http://dx.doi.org/10.1016/j.apcatb.2014.10.032]
[76]
Bellardita, M.; El Nazer, H.A.; Loddo, V.; Parrino, F.; Venezia, A.M.; Palmisano, L. Photoactivity under visible light of metal loaded TiO2 catalysts prepared by low frequency ultrasound treatment. Catal. Today, 2017, 284, 92-99.
[http://dx.doi.org/10.1016/j.cattod.2016.11.026]
[77]
Iervolino, G.; Vaiano, V.; Murcia, J.J.; Rizzo, L.; Ventre, G.; Pepe, G.; Campiglia, P.; Hidalgo, M.C.; Navío, J.A.; Sannino, D. Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. J. Catal., 2016, 339, 47-56.
[http://dx.doi.org/10.1016/j.jcat.2016.03.032]
[78]
Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Kandjani, A.E.; Bhargava, S.K. Effective role of trifluoroacetic acid (TFA) to enhance thephotocatalytic activity of F-doped TiO2 prepared by modified sol-gelmethod. Appl. Surf. Sci., 2016, 365, 57-68.
[http://dx.doi.org/10.1016/j.apsusc.2016.01.016]
[79]
Ma, C.; Li, Y.; Zhang, H.; Chen, Y.; Lu, C.; Wang, J. Photocatalytic hydrogen evolution with simultaneous photocatalytic reforming of biomass by Er3+:YAlO3/Pt-TiO2 membranes under visible light driving. Chem. Eng. J., 2015, 273, 277-285.
[http://dx.doi.org/10.1016/j.cej.2015.03.090]
[80]
Li, Y.; Wang, J.; Peng, S.; Lu, G.; Li, S. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int. J. Hydrogen Energy, 2010, 35, 7116-7126.
[http://dx.doi.org/10.1016/j.ijhydene.2010.02.017]
[81]
Fu, X.; Wang, X.; Leung, D.Y.; Xue, W.; Ding, Z.; Huang, H.; Fu, X. Photocatalytic reforming of glucose over La doped alkali tantalate photocatalysts for H2 production. Catal. Commun., 2010, 12, 184-187.
[http://dx.doi.org/10.1016/j.catcom.2010.09.004]
[82]
Zhang, L.; Shi, J.; Liu, M.; Jing, D.; Guo, L. Photocatalytic reforming of glucose under visible light over morphology controlled Cu2O: efficient charge separation by crystal facet engineering. Chem. Commun. (Camb.), 2014, 50(2), 192-194.
[http://dx.doi.org/10.1039/C3CC46423G] [PMID: 24217641]
[83]
Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Ciambelli, P. Production of hydrogen from glucose by LaFeO3 based photocatalytic process during water treatment. Int. J. Hydrogen Energy, 2016, 41, 959-966.
[http://dx.doi.org/10.1016/j.ijhydene.2015.10.085]
[84]
Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Galluzzi, A.; Polichetti, M.; Pepe, G.; Campiglia, P. Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton. Int. J. Hydrogen Energy, 2018, 43, 2184-2196.
[http://dx.doi.org/10.1016/j.ijhydene.2017.12.071]
[85]
Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Pisanu, A.; Malavasi, L.; Profumo, A. Improved photocatalytic H2 production assisted by aqueous glucose biomass by oxidized g-C3N4. Int. J. Hydrogen Energy, 2018, 43, 14925-14933.
[http://dx.doi.org/10.1016/j.ijhydene.2018.06.103]
[86]
Sanwald, K.E.; Berto, T.F.; Eisenreich, W.; Jentys, A.; Gutiérrez, O.Y.; Lercher, J.A. Overcoming the rate-limiting reaction during photoreforming of sugar aldoses for H2-generation. ACS Catal., 2017, 7, 3236-3244.
[http://dx.doi.org/10.1021/acscatal.7b00508]
[87]
A.; Lolli, Maslova, V.; Bonincontro, D.; Basile, F.; Ortelli, S.; Albonetti, S. Selective oxidation of HMF via catalytic and photocatalytic processes using metal-supported catalysts. Molecules, 2018, 23, 2792.
[http://dx.doi.org/10.3390/molecules23112792]
[88]
Moreau, C.; Durand, R.; Pourcheron, C.; Tichit, D. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furan-dicarboxaldehyde in the presence of titania supported vanadia catalysts. Stud. Surf. Sci. Catal., 1997, 108, 399-406.
[http://dx.doi.org/10.1016/S0167-2991(97)80930-5]
[89]
Davis, S.E.; Houk, L.R.; Tamargo, E.C.; Datye, A.K.; Davis, R.J. Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catal. Today, 2011, 160, 55-60.
[http://dx.doi.org/10.1016/j.cattod.2010.06.004]
[90]
Vuyyuru, K.R.; Strasser, P. Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catal. Today, 2012, 195, 144-154.
[http://dx.doi.org/10.1016/j.cattod.2012.05.008]
[91]
Villa, A.; Schiavoni, M.; Campisi, S.; Veith, G.M.; Prati, L. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2,5-furandicarboxylic acid. ChemSusChem, 2013, 6(4), 609-612.
[http://dx.doi.org/10.1002/cssc.201200778] [PMID: 23495091]
[92]
Albonetti, S.; Lolli, A.; Morandi, V.; Migliori, A.; Lucarelli, C.; Cavani, F. Conversion of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Au-based catalysts: Optimization of active phase and metal-support interaction. Appl. Catal. B, 2015, 163, 520-530.
[http://dx.doi.org/10.1016/j.apcatb.2014.08.026]
[93]
Liu, B.; Zhang, Z.; Lv, K.; Deng, K.; Duan, H. Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide. Appl. Catal. A Gen., 2014, 472, 64-71.
[http://dx.doi.org/10.1016/j.apcata.2013.12.014]
[94]
Yurdakal, S.; Tek, B.S.; Alagoz, O.; Augugliaro, V.; Loddo, V.; Palmisano, G.; Palmisano, L. Photocatalytic selective oxidation of 5-(hydroxymethyl)-2-furaldehyde to 2,5-furandicarbaldehyde in water by using Anatase, Rutile, and Brookite TiO2 nanoparticles. ACS Sustain. Chem.& Eng., 2013, 1, 456-461.
[http://dx.doi.org/10.1021/sc300142a]
[95]
Krivtsov, I.; Ilkaeva, M.; Salas-Colera, E.; Amghouz, Z.; García, J.R.; Díaz, E.; Ordoñez, S.; Villar-Rodil, S. Consequences of nitrogen doping and oxygen enrichment on titanium local order and photocatalytic performance of TiO2 Anatase. J. Phys. Chem. C, 2017, 121, 6770-6780.
[http://dx.doi.org/10.1021/acs.jpcc.7b00354]
[96]
Wu, Q.; He, Y.; Zhang, H.; Feng, Z.; Wu, Y.; Wu, T. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free g-C3N4 under visible light irradiation. Molec. Catal, 2017, 436, 10-18.
[http://dx.doi.org/10.1016/j.mcat.2017.04.012]
[97]
Krivtsov, I.; García-López, E.I.; Marcì, G.; Palmisano, L.; Amghouz, Z.; García, J.R.; Díaz, E.; Ordóñez, S. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandi-carboxyaldehyde in aqueous suspension of g-C3N4. Appl. Catal. B, 2017, 204, 430-439.
[http://dx.doi.org/10.1016/j.apcatb.2016.11.049]
[98]
Ilkaeva, M.; Krivtsov, I.; García, J.R.; Díaz, E.; Ordoñez, S.; García-López, E.I.; Marcì, G.; Palmisano, L.; Maldonado, M.I.; Malato, S. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catal. Today, 2018, 315, 138-148.
[http://dx.doi.org/10.1016/j.cattod.2018.03.013]
[99]
Zhang, H.; Feng, Z.; Zhu, Y.; Wu, Y.; Wu, T. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light. J. Photochem. Photobiol. Chem., 2019, 371, 1-9.
[http://dx.doi.org/10.1016/j.jphotochem.2018.10.044]
[100]
Xu, S.; Zhou, P.; Zhang, Z.; Yang, C.; Zhang, B.; Deng, K.; Bottle, S.; Zhu, H. Selective oxidation of 5-Hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of Co-thioporphyrazine bonded to g-C3N4. J. Am. Chem. Soc., 2017, 139(41), 14775-14782.
[http://dx.doi.org/10.1021/jacs.7b08861] [PMID: 28956917]
[101]
Bellardita, M.; García-López, E.I.; Marcì, G.; Krivtsov, I.; García, J.R.; Palmisano, L. Selective photocatalytic oxidation of aromatic alcohols in water by using P doped g-C3N4. Appl. Catal. B, 2018, 220, 222-233.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.033]
[102]
Zhang, H.; Wu, Q.; Guo, C.; Wu, Y.; Wu, T. Photocatalytic Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over Nb2O5 under visible light. ACS Sustain. Chem.& Eng., 2017, 5, 3517-3523.
[http://dx.doi.org/10.1021/acssuschemeng.7b00231]
[103]
Ye, H.F.; Shi, R.; Yang, X.; Fu, W.F.; Chen, Y. P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural. Appl. Catal. B, 2018, 233, 70-79.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.060]
[104]
Aresta, M.; Dibenedetto, A.; Nocito, F.; Ferragina, C. Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea. J. Catal., 2009, 268, 106-114.
[http://dx.doi.org/10.1016/j.jcat.2009.09.008]
[105]
Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem., 2008, 10, 13-30.
[http://dx.doi.org/10.1039/B710561D]
[106]
Ciriminna, R.; Palmisano, G.; Della Pina, C.; Rossi, M.; Pagliaro, M. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Lett., 2006, 47, 6993-6995.
[http://dx.doi.org/10.1016/j.tetlet.2006.07.123]
[107]
Demirel, S.; Lehnert, K.; Lucas, M.; Claus, P. Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts. Appl. Catal. B, 2007, 70, 637-643.
[http://dx.doi.org/10.1016/j.apcatb.2005.11.036]
[108]
Bianchi, C.L.; Canton, P.; Dimitratos, N.; Porta, F.; Prati, L. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal. Today, 2005, 102-103, 203-212.
[http://dx.doi.org/10.1016/j.cattod.2005.02.003]
[109]
Lakshmanan, P.; Upare, P.P.; Le, N.T.; Hwang, Y.K.; Hwang, D.W.; Lee, U.H.; Kim, H.R.; Chang, J.S. Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid. Appl. Catal. A Gen., 2013, 468, 260-268.
[http://dx.doi.org/10.1016/j.apcata.2013.08.048]
[110]
Luo, N.; Jiang, Z.; Shi, H.; Cao, F.; Xiao, T.; Edwards, P.P. Photo-catalytic conversion of oxygenated hydrocarbons to hydrogen over heteroatom-doped TiO2 catalysts. Int. J. Hydrogen Energy, 2009, 34, 125-129.
[http://dx.doi.org/10.1016/j.ijhydene.2008.09.097]
[111]
Seadira, T.; Sadanandam, G.; Ntho, T.A.; Lu, X.; Masuku, C.M.; Scurrell, M. Hydrogen production from glycerol reforming: Conventional and green production. Rev. Chem. Eng., 2017, 34, 695-726.
[http://dx.doi.org/10.1515/revce-2016-0064]
[112]
Fu, N.; Lu, G. Hydrogen Evolution over heteropoly blue-sensitized Pt/TiO2 under visible light irradiation. Catal. Lett., 2009, 127, 319-322.
[http://dx.doi.org/10.1007/s10562-008-9681-4]
[113]
Bowker, M.; Davies, P.R.; Al-Mazroai, L.S. Photocatalytic reforming of glycerol over Gold and Palladium as an alternative fuel source. Catal. Lett., 2009, 128, 253-255.
[http://dx.doi.org/10.1007/s10562-008-9781-1]
[114]
Daskalaki, V.M.; Kondarides, D.I. Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal. Today, 2009, 144, 75-80.
[http://dx.doi.org/10.1016/j.cattod.2008.11.009]
[115]
Lalitha, K.; Sadanandam, G.; Kumari, V.D.; Subrahmanyam, M.; Sreedhar, B.; Hebalkar, N.Y. Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: Water mixtures. J. Phys. Chem. C, 2010, 114, 22181-22189.
[http://dx.doi.org/10.1021/jp107405u]
[116]
Liu, R.; Yoshida, H.; Fujita, S.I.; Arai, M. Photocatalytic hydrogen production from glycerol and water with NiOx/TiO2 catalysts. Appl. Catal. B, 2014, 144, 41-45.
[http://dx.doi.org/10.1016/j.apcatb.2013.06.024]
[117]
Maurino, V.; Bedini, A.; Minella, M.; Rubertelli, F.; Pelizzetti, E.; Minero, C. Glycerol transformation through photocatalysis: A possible route to value-added chemicals. J. Adv. Ox. Technol., 2008, 11, 184-192.
[http://dx.doi.org/10.1515/jaots-2008-0201]
[118]
Augugliaro, V.; Nazer, H.A.H.E.; Loddo, V.; Mele, A.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Partial photocatalytic oxidation of glycerol in TiO2 water suspensions. Catal. Today, 2010, 151, 21-28.
[http://dx.doi.org/10.1016/j.cattod.2010.01.022]
[119]
Chong, R.; Li, J.; Zhou, X.; Ma, Y.; Yang, J.; Huang, L.; Han, H.; Zhang, F.; Li, C. Selective photocatalytic conversion of glycerol to hydroxyacetaldehyde in aqueous solution on facet tuned TiO2-based catalysts. Chem. Commun. (Camb.), 2014, 50(2), 165-167.
[http://dx.doi.org/10.1039/C3CC46515B] [PMID: 24226191]
[120]
Fu, X.; Wang, X.; Leung, D.Y.C.; Gu, Q.; Chen, S.; Huang, H. Photocatalytic reforming of C3-polyols for H2 production Part (I). Role of their OH groups. Appl. Catal. B, 2011, 106, 681-688.
[http://dx.doi.org/10.1016/j.apcatb.2011.05.045]
[121]
Fujita, S.I.; Kawamori, H.; Honda, D.; Yoshida, H.; Arai, M. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Appl. Catal. B, 2016, 181, 818-824.
[http://dx.doi.org/10.1016/j.apcatb.2015.08.048]
[122]
Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R.S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev., 2017, 117(3), 1445-1514.
[http://dx.doi.org/10.1021/acs.chemrev.6b00396] [PMID: 28093903]
[123]
Colmenares, J.C.; Varma, R.S.; Nair, V. Selective photocatalysis of lignin-inspired chemicals by integrating hybrid nanocatalysis in microfluidic reactors. Chem. Soc. Rev., 2017, 46(22), 6675-6686.
[http://dx.doi.org/10.1039/C7CS00257B] [PMID: 29034941]

© 2024 Bentham Science Publishers | Privacy Policy