Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Electrospun Cellulose Acetate Nanofiber Morphology and Property Derived from CaCl2-Formic Acid Solvent System

Author(s): Zhi Liu, Ningli Xu, Huizhen Ke* and Lei Zhou*

Volume 13, Issue 1, 2021

Published on: 29 January, 2020

Page: [61 - 66] Pages: 6

DOI: 10.2174/1876402912666200130103228

Abstract

Background: Electrospun Cellulose Acetate (CA) nanofibrous membrane can be used in many areas such as biomedicine, water treatment. However, due to the strong hydrogen-bond interaction, the rare solvent can dissolve the CA and the resulting CA nanofibrous membranes always show bad morphology and poor performance.

Aims: To research the effect of CaCl2-Formic acid (CaCl2-FA) solvent system on the morphology and structure of CA nanofibrous membrane.

Methods: CA nanofibrous membrane was fabricated with a two-step dissolution method using the first step of CaCl2-FA solvent system followed by the second step of FA solvent solely. Subsequently, the CA nanofibrous membrane morphology and structure property were systematically investigated.

Results and Conclusion: The results show that the CaCl2-FA can dissolve the CA efficiently. Additionally, the regenerated CA nanofibers are well-formed under all the CA concentrations with controlling fiber diameter ranging from 224.9 ± 38.6 nm to 367.8 ± 80.4 nm. The results suggest that this two-step dissolution method can be an effective and alternative approach to dissolve CA and regenerate CA nanofibrous membrane.

Keywords: Cellulose acetate, CaCl2-formic acid, nanofiber, water treatment, CA, regenerate.

Graphical Abstract

[1]
Shibuya, M.; Park, M.J.; Lim, S.; Phuntsho, S.; Matsuyama, H.; Shon, H.K. Novel CA/PVDF nanofiber supports strategically designed via coaxial electrospinning for high performance thin-film composite forward osmosis membranes for desalination. Desalination, 2018, 445, 63-74.
[http://dx.doi.org/10.1016/j.desal.2018.07.025]
[2]
Tian, D.; He, J.H. Macromolecular electrospinning: basic concept & preliminary experiment. Results Phys., 2018, 11, 740-742.
[http://dx.doi.org/10.1016/j.rinp.2018.10.042]
[3]
Tian, D.; He, C.H.; He, J.H. Macromolecule orientation in nanofibers. Nanomaterials (Basel), 2018, 8(11), 918.
[http://dx.doi.org/10.3390/nano8110918] [PMID: 30405041]
[4]
Li, Y.; He, J.H. Fabrication and characterization of ZrO2 nanofibers by critical bubble electrospinning for high-temperature-resistant adsorption and separation. Adsorpt. Sci. Technol., 2019.0263617419828268
[http://dx.doi.org/10.1177/0263617419828268]
[5]
Fang, Y.; Liu, F.; Xu, L.; Wang, P.; He, J. Preparation of PLGA/MWCNT composite nanofibers by airflow bubble-spinning and their characterization. Polymers (Basel), 2018, 10(5), 481.
[http://dx.doi.org/10.3390/polym10050481] [PMID: 30966515]
[6]
Ertas, Y.; Uyar, T. Fabrication of cellulose acetate/polybenzoxa- zine cross-linked electrospun nanofibrous membrane for water treatment. Carbohydr. Polym., 2017, 177, 378-387.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.127] [PMID: 28962782]
[7]
Liu, Z.; Cao, R.; Wei, A.; Zhao, J.; He, J. Superflexible/superhydrophilic PVDF-HFP/CuO-nanosheet nanofibrous membrane for efficient microfiltration. Appl. Nanosci., 2019, 9(8), 1991-2000.
[http://dx.doi.org/10.1007/s13204-019-01014-4]
[8]
Arslan, O.; Aytac, Z.; Uyar, T. Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification. ACS Appl. Mater. Interfaces, 2016, 8(30), 19747-19754.
[http://dx.doi.org/10.1021/acsami.6b05429] [PMID: 27398738]
[9]
Nosar, M.N.; Salehi, M.; Ghorbani, S.; Beiranvand, S.P.; Goodarzi, A.; Azami, M. Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose, 2016, 23(5), 3239-3248.
[http://dx.doi.org/10.1007/s10570-016-1026-7]
[10]
Milovanovic, S.; Adamovic, T.; Aksentijevic, K.; Misic, D.; Ivanovic, J.; Zizovic, I. Cellulose acetate based material with antibacterial properties created by supercritical solvent impregnation. Int. J. Polym. Sci., 2017.
[http://dx.doi.org/10.1155/2017/8762649]
[11]
Andanson, J.M.; Pádua, A.A.H.; Costa Gomes, M.F. Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chem. Commun. (Camb.), 2015, 51(21), 4485-4487.
[http://dx.doi.org/10.1039/C4CC10249E] [PMID: 25683335]
[12]
Tan, X.; Chen, L.; Li, X.; Xie, F. Effect of anti-solvents on the characteristics of regenerated cellulose from 1-ethyl-3-methylimidazolium acetate ionic liquid. Int. J. Biol. Macromol., 2019, 124, 314-320.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.138] [PMID: 30448486]
[13]
Son, W.K.; Youk, J.H.; Lee, T.S.; Park, W.H. Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J. Polym. Sci. Pol. Phys., 2004, 42(1), 5-11.
[http://dx.doi.org/10.1002/polb.10668]
[14]
Liu, H.; Hsieh, Y.L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. Pol. Phys., 2002, 40(18), 2119-2129.
[http://dx.doi.org/10.1002/polb.10261]
[15]
Han, S.O.; Youk, J.H.; Min, K.D.; Kang, Y.O.; Park, W.H. Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Mater. Lett., 2008, 62(4-5), 759-762.
[http://dx.doi.org/10.1016/j.matlet.2007.06.059]
[16]
Tungprapa, S.; Puangparn, T.; Weerasombut, M.; Jangchud, I.; Fakum, P.; Semongkhol, S.; Meechaisue, C.; Supaphol, P. Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose, 2007, 14(6), 563-575.
[http://dx.doi.org/10.1007/s10570-007-9113-4]
[17]
Crabbe-Mann, M.; Tsaoulidis, D.; Parhizkar, M.; Edirisinghe, M. Ethyl cellulose, cellulose acetate and carboxymethyl cellulose microstructures prepared using electrohydrodynamics and green solvents. Cellulose, 2018, 25(3), 1687-1703.
[http://dx.doi.org/10.1007/s10570-018-1673-y]
[18]
Zhang, F.; Lu, Q.; Ming, J.; Dou, H.; Liu, Z.; Zuo, B.; Qin, M.; Li, F.; Kaplan, D.l.; Zhang, X. Silk dissolution and regeneration at the nanofibril scale. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(24), 3879-3885.
[http://dx.doi.org/10.1039/c3tb21582b]
[19]
Liu, Z.; Zhang, F.; Ming, J.; Bie, S.; Li, J.; Zuo, B. Preparation of electrospun silk fibroin nanofibers from solutions containing native silk fibrils. J. Appl. Polym. Sci., 2015, 132, 41236.
[http://dx.doi.org/10.1002/app.41236]
[20]
Shao, H.; Fang, J.; Wang, H.; Lin, T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC Advances, 2015, 5(19), 14345-14350.
[http://dx.doi.org/10.1039/C4RA16360E]
[21]
Abidi, N.; Cabrales, L.; Haigler, C.H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr. Polym., 2014, 100, 9-16.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.074] [PMID: 24188832]
[22]
Li, M.; Wang, L.J.; Li, D.; Cheng, Y.L.; Adhikari, B. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr. Polym., 2014, 102, 136-143.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.021] [PMID: 24507265]
[23]
Poletto, M.; Ornaghi, H.L.; Zattera, A.J. Native cellulose: structure, characterization and thermal properties. Materials (Basel), 2014, 7(9), 6105-6119.
[http://dx.doi.org/10.3390/ma7096105] [PMID: 28788179]
[24]
Habibi, N. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 131, 55-58.
[http://dx.doi.org/10.1016/j.saa.2014.04.039] [PMID: 24820322]
[25]
Choo, K.; Ching, Y.C.; Chuah, C.H.; Julai, S.; Liou, N.S. Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials (Basel), 2016, 9(8), 644.
[http://dx.doi.org/10.3390/ma9080644] [PMID: 28773763]
[26]
Saba, N.; Mohammad, F.; Pervaiz, M.; Jawaid, M.; Alothman, O.Y.; Sain, M. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int. J. Biol. Macromol., 2017, 97, 190-200.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.029] [PMID: 28082223]

© 2024 Bentham Science Publishers | Privacy Policy